test_imperative.py 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17
import unittest
import numpy as np
X
Xin Pan 已提交
18
import sys
19 20 21

import paddle.fluid as fluid
from paddle.fluid import core
J
JiabinYang 已提交
22 23 24 25
from paddle.fluid.imperative.nn import FC
from paddle.fluid.imperative.nn import SimpleRNNCell
from typing import List, Any, Tuple

M
minqiyang 已提交
26
from test_imperative_base import new_program_scope
27 28


X
Xin Pan 已提交
29
class MyLayer(fluid.imperative.Layer):
30 31 32 33
    def __init__(self):
        super(MyLayer, self).__init__()

    def forward(self, inputs):
M
minqiyang 已提交
34
        x = fluid.layers.relu(inputs)
35
        self._x_for_debug = x
X
Xin Pan 已提交
36 37 38
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
39 40


X
Xin Pan 已提交
41 42 43 44 45 46
class MyPyLayer(fluid.imperative.PyLayer):
    def __init__(self):
        super(MyPyLayer, self).__init__()

    @staticmethod
    def forward(inputs):
X
Xin Pan 已提交
47
        return np.tanh(inputs[0])
X
Xin Pan 已提交
48 49

    @staticmethod
X
Xin Pan 已提交
50 51
    def backward(inputs):
        inp, out, dout = inputs
X
Xin Pan 已提交
52
        return np.array(dout) * (1 - np.square(np.array(out)))
X
Xin Pan 已提交
53 54


X
Xin Pan 已提交
55
class MLP(fluid.imperative.Layer):
X
Xin Pan 已提交
56 57 58 59 60 61 62 63 64 65
    def __init__(self):
        super(MLP, self).__init__()
        self._fc1 = FC(3,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))
        self._fc2 = FC(4,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))

    def forward(self, inputs):
M
minqiyang 已提交
66
        x = self._fc1(inputs)
X
Xin Pan 已提交
67 68 69 70 71
        x = self._fc2(x)
        x = fluid.layers.reduce_sum(x)
        return x


J
JiabinYang 已提交
72
class SimpleRNN(fluid.imperative.Layer):
J
JiabinYang 已提交
73
    def __init__(self):
J
JiabinYang 已提交
74
        super(SimpleRNN, self).__init__()
J
JiabinYang 已提交
75 76 77 78 79 80
        self.seq_len = 4
        self._cell = SimpleRNNCell(
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
81 82

    def forward(self, inputs):
J
JiabinYang 已提交
83
        outs = list()
J
JiabinYang 已提交
84 85 86 87 88 89 90 91 92
        pre_hiddens = list()

        init_hidden = fluid.layers.tensor.create_parameter(
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
93
        for i in range(self.seq_len):
J
JiabinYang 已提交
94 95 96
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
97 98
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
99

J
JiabinYang 已提交
100
        return outs, pre_hiddens
J
JiabinYang 已提交
101 102


103 104 105 106 107
class TestImperative(unittest.TestCase):
    def test_layer(self):
        with fluid.imperative.guard():
            cl = core.Layer()
            cl.forward([])
X
Xin Pan 已提交
108
            l = fluid.imperative.Layer()
M
minqiyang 已提交
109
            self.assertRaises(NotImplementedError, l.forward, [])
X
polish  
Xin Pan 已提交
110 111 112 113 114 115 116 117 118 119

    def test_pylayer_func_id(self):

        with fluid.imperative.guard():

            class PyLayer1(fluid.imperative.PyLayer):
                def __init__(self):
                    super(PyLayer1, self).__init__()

                @staticmethod
M
minqiyang 已提交
120 121
                def forward(input):
                    return input
X
polish  
Xin Pan 已提交
122 123

                @staticmethod
M
minqiyang 已提交
124 125
                def backward(input):
                    return input
X
polish  
Xin Pan 已提交
126 127 128 129 130 131

            class PyLayer2(fluid.imperative.PyLayer):
                def __init__(self):
                    super(PyLayer2, self).__init__()

                @staticmethod
M
minqiyang 已提交
132 133
                def forward(input):
                    return input
X
polish  
Xin Pan 已提交
134 135

                @staticmethod
M
minqiyang 已提交
136 137
                def backward(input):
                    return input
X
polish  
Xin Pan 已提交
138 139 140

            py_layer_1 = PyLayer1()
            py_layer_2 = PyLayer2()
M
minqiyang 已提交
141 142
            py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
            py_layer_2(fluid.imperative.base.to_variable(np.ones([2, 2])))
X
polish  
Xin Pan 已提交
143 144 145 146 147
            id = py_layer_1.forward_id
            self.assertGreater(id, 0)
            self.assertEqual(py_layer_1.backward_id, id + 1)
            self.assertEqual(py_layer_2.forward_id, id + 2)
            self.assertEqual(py_layer_2.backward_id, id + 3)
M
minqiyang 已提交
148
            py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
X
polish  
Xin Pan 已提交
149
            self.assertEqual(py_layer_1.forward_id, id)
150

X
Xin Pan 已提交
151
    def test_pylayer(self):
X
Xin Pan 已提交
152
        np_inp = np.ones([2, 2], np.float32)
X
Xin Pan 已提交
153 154
        with fluid.imperative.guard():
            my_py_layer = MyPyLayer()
X
Xin Pan 已提交
155
            var_inp = fluid.imperative.base.to_variable(np_inp)
M
minqiyang 已提交
156
            outs = my_py_layer(var_inp)
X
Xin Pan 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
            dy_out = np.sum(outs[0]._numpy())
            outs[0]._backward()
            dy_grad = var_inp._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            # TODO(panyx0718): Paddle doesn't diff against data `inp`.
            x1 = inp * 1
            # TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
            x = fluid.layers.reduce_sum(fluid.layers.tanh(x1))
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[x1.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
X
Xin Pan 已提交
178

179
    def test_layer_in_out(self):
X
Xin Pan 已提交
180
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
181
        with fluid.imperative.guard():
M
minqiyang 已提交
182
            var_inp = fluid.imperative.base.to_variable(np_inp)
183
            l = MyLayer()
M
minqiyang 已提交
184
            x = l(var_inp)[0]
185
            self.assertIsNotNone(x)
X
Xin Pan 已提交
186
            dy_out = x._numpy()
187
            x._backward()
X
Xin Pan 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
            dy_grad = l._x_for_debug._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
            l = MyLayer()
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        with fluid.imperative.guard():
M
minqiyang 已提交
209
            var_inp = fluid.imperative.base.to_variable(np_inp)
X
Xin Pan 已提交
210
            mlp = MLP()
M
minqiyang 已提交
211
            out = mlp(var_inp)
X
Xin Pan 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
            dy_out = out._numpy()
            out._backward()
            dy_grad = mlp._fc1._w._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            mlp = MLP()
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
                out, parameter_list=[mlp._fc1._w.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
232

J
JiabinYang 已提交
233 234 235 236 237
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
J
JiabinYang 已提交
238 239 240 241 242 243 244 245 246 247
        with fluid.imperative.guard():
            var_inp = fluid.imperative.base.to_variable(np_inp)
            var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
            simple_rnn = SimpleRNN()
            outs, pre_hiddens = simple_rnn.forward(var_inp)
            dy_out = outs[3]._numpy()
            outs[3]._backward()
            dy_grad_h2o = simple_rnn._cell._h2o_w._gradient()
            dy_grad_h2h = simple_rnn._cell._h2h_w._gradient()
            dy_grad_i2h = simple_rnn._cell._i2h_w._gradient()
J
JiabinYang 已提交
248 249 250 251 252 253 254

        with new_program_scope():
            print("im here")
            inp = fluid.layers.data(
                name="inp", shape=[1, 4, 3], append_batch_size=False)
            simple_rnn = SimpleRNN()
            outs, pre_hiddens = simple_rnn(inp)
J
JiabinYang 已提交
255
            param_grads = fluid.backward.append_backward(outs[3])
J
JiabinYang 已提交
256 257
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
J
JiabinYang 已提交
258
            static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
J
JiabinYang 已提交
259
                feed={inp.name: np_inp},
J
JiabinYang 已提交
260 261 262 263
                fetch_list=[
                    outs[3].name, param_grads[0][1].name,
                    param_grads[1][1].name, param_grads[2][1].name
                ])
J
JiabinYang 已提交
264 265 266 267
        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
J
JiabinYang 已提交
268

269 270 271

if __name__ == '__main__':
    unittest.main()