test_imperative.py 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17
import unittest
import numpy as np
X
Xin Pan 已提交
18
import sys
19 20 21

import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
22
from paddle.fluid.imperative.nn import FC
M
minqiyang 已提交
23
from test_imperative_base import new_program_scope
24 25


X
Xin Pan 已提交
26
class MyLayer(fluid.imperative.Layer):
27 28 29 30
    def __init__(self):
        super(MyLayer, self).__init__()

    def forward(self, inputs):
M
minqiyang 已提交
31
        x = fluid.layers.relu(inputs)
32
        self._x_for_debug = x
X
Xin Pan 已提交
33 34 35
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
36 37


X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51
class MyPyLayer(fluid.imperative.PyLayer):
    def __init__(self):
        super(MyPyLayer, self).__init__()

    @staticmethod
    def forward(inputs):
        sys.stderr.write('before forward\n')
        ret = np.tanh(inputs[0])
        sys.stderr.write('after forward: %s\n' % ret)
        tensor = core.LoDTensor()
        tensor.set(ret, core.CPUPlace())
        return tuple([tensor])

    @staticmethod
X
Xin Pan 已提交
52 53 54 55 56 57 58 59 60 61 62 63
    def backward(inputs):
        sys.stderr.write('calling into backward: %s\n' % str(inputs))
        inp, out, dout = inputs
        inp = np.array(inp)
        out = np.array(out)
        dout = np.array(dout)
        sys.stderr.write('calling into backward: %s, %s, %s\n' %
                         (inp, out, dout))
        ret = np.array(dout) * (1 - np.square(np.array(out)))
        tensor = core.LoDTensor()
        tensor.set(ret, core.CPUPlace())
        return tuple([tensor])
X
Xin Pan 已提交
64 65


X
Xin Pan 已提交
66
class MLP(fluid.imperative.Layer):
X
Xin Pan 已提交
67 68 69 70 71 72 73 74 75 76
    def __init__(self):
        super(MLP, self).__init__()
        self._fc1 = FC(3,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))
        self._fc2 = FC(4,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))

    def forward(self, inputs):
M
minqiyang 已提交
77
        x = self._fc1(inputs)
X
Xin Pan 已提交
78 79 80 81 82
        x = self._fc2(x)
        x = fluid.layers.reduce_sum(x)
        return x


83 84 85 86 87
class TestImperative(unittest.TestCase):
    def test_layer(self):
        with fluid.imperative.guard():
            cl = core.Layer()
            cl.forward([])
X
Xin Pan 已提交
88
            l = fluid.imperative.Layer()
M
minqiyang 已提交
89
            self.assertRaises(NotImplementedError, l.forward, [])
X
polish  
Xin Pan 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

    def test_pylayer_func_id(self):

        with fluid.imperative.guard():

            class PyLayer1(fluid.imperative.PyLayer):
                def __init__(self):
                    super(PyLayer1, self).__init__()

                @staticmethod
                def forward(inputs):
                    return inputs

                @staticmethod
                def backward(inputs):
                    return inputs

            class PyLayer2(fluid.imperative.PyLayer):
                def __init__(self):
                    super(PyLayer2, self).__init__()

                @staticmethod
                def forward(inputs):
                    return inputs

                @staticmethod
                def backward(inputs):
                    return inputs

            py_layer_1 = PyLayer1()
            py_layer_2 = PyLayer2()
            py_layer_1([fluid.imperative.base.to_variable(np.ones([2, 2]))])
            py_layer_2([fluid.imperative.base.to_variable(np.ones([2, 2]))])
            id = py_layer_1.forward_id
            self.assertGreater(id, 0)
            self.assertEqual(py_layer_1.backward_id, id + 1)
            self.assertEqual(py_layer_2.forward_id, id + 2)
            self.assertEqual(py_layer_2.backward_id, id + 3)
            py_layer_1([fluid.imperative.base.to_variable(np.ones([2, 2]))])
            self.assertEqual(py_layer_1.forward_id, id)
130

X
Xin Pan 已提交
131
    def test_pylayer(self):
X
Xin Pan 已提交
132
        np_inp = np.ones([2, 2], np.float32)
X
Xin Pan 已提交
133 134
        with fluid.imperative.guard():
            my_py_layer = MyPyLayer()
X
Xin Pan 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            var_inp = fluid.imperative.base.to_variable(np_inp)
            outs = my_py_layer([var_inp])
            dy_out = np.sum(outs[0]._numpy())
            outs[0]._backward()
            dy_grad = var_inp._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            # TODO(panyx0718): Paddle doesn't diff against data `inp`.
            x1 = inp * 1
            # TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
            x = fluid.layers.reduce_sum(fluid.layers.tanh(x1))
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[x1.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
X
Xin Pan 已提交
158

159
    def test_layer_in_out(self):
X
Xin Pan 已提交
160
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
161
        with fluid.imperative.guard():
M
minqiyang 已提交
162
            var_inp = fluid.imperative.base.to_variable(np_inp)
163
            l = MyLayer()
M
minqiyang 已提交
164
            x = l(var_inp)[0]
165
            self.assertIsNotNone(x)
X
Xin Pan 已提交
166
            dy_out = x._numpy()
167
            x._backward()
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
            dy_grad = l._x_for_debug._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
            l = MyLayer()
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        with fluid.imperative.guard():
M
minqiyang 已提交
189
            var_inp = fluid.imperative.base.to_variable(np_inp)
X
Xin Pan 已提交
190
            mlp = MLP()
M
minqiyang 已提交
191
            out = mlp(var_inp)
X
Xin Pan 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
            dy_out = out._numpy()
            out._backward()
            dy_grad = mlp._fc1._w._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            mlp = MLP()
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
                out, parameter_list=[mlp._fc1._w.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
212 213 214 215


if __name__ == '__main__':
    unittest.main()