program.py 15.8 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time

from collections import OrderedDict

import paddle.fluid as fluid

from ppcls.optimizer import LearningRateBuilder
from ppcls.optimizer import OptimizerBuilder
from ppcls.modeling import architectures
from ppcls.modeling.loss import CELoss
from ppcls.modeling.loss import MixCELoss
littletomatodonkey's avatar
littletomatodonkey 已提交
31
from ppcls.modeling.loss import JSDivLoss
W
WuHaobo 已提交
32 33 34 35 36 37 38
from ppcls.modeling.loss import GoogLeNetLoss
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger

from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.collective import DistributedStrategy

S
shippingwang 已提交
39
from ema import ExponentialMovingAverage
R
fix  
root 已提交
40

W
WuHaobo 已提交
41

S
shippingwang 已提交
42
def create_feeds(image_shape, use_mix=None, use_dali=None):
W
WuHaobo 已提交
43 44 45 46 47
    """
    Create feeds as model input

    Args:
        image_shape(list[int]): model input shape, such as [3, 224, 224]
littletomatodonkey's avatar
littletomatodonkey 已提交
48
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
49 50 51 52 53 54 55

    Returns:
        feeds(dict): dict of model input variables
    """
    feeds = OrderedDict()
    feeds['image'] = fluid.data(
        name="feed_image", shape=[None] + image_shape, dtype="float32")
S
shippingwang 已提交
56 57

    if use_mix and not use_dali:
W
WuHaobo 已提交
58 59 60 61 62 63 64
        feeds['feed_y_a'] = fluid.data(
            name="feed_y_a", shape=[None, 1], dtype="int64")
        feeds['feed_y_b'] = fluid.data(
            name="feed_y_b", shape=[None, 1], dtype="int64")
        feeds['feed_lam'] = fluid.data(
            name="feed_lam", shape=[None, 1], dtype="float32")
    else:
S
shippingwang 已提交
65

W
WuHaobo 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        feeds['label'] = fluid.data(
            name="feed_label", shape=[None, 1], dtype="int64")

    return feeds


def create_dataloader(feeds):
    """
    Create a dataloader with model input variables

    Args:
        feeds(dict): dict of model input variables

    Returns:
        dataloader(fluid dataloader):
    """
    trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
    capacity = 64 if trainer_num <= 1 else 8
    dataloader = fluid.io.DataLoader.from_generator(
        feed_list=feeds,
        capacity=capacity,
        use_double_buffer=True,
        iterable=True)

    return dataloader


S
add ema  
shippingwang 已提交
93
def create_model(architecture, image, classes_num, is_train):
W
WuHaobo 已提交
94 95 96 97
    """
    Create a model

    Args:
98 99
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
100 101 102 103 104 105
        image(variable): model input variable
        classes_num(int): num of classes

    Returns:
        out(variable): model output variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
106
    name = architecture["name"]
littletomatodonkey's avatar
littletomatodonkey 已提交
107
    params = architecture.get("params", {})
littletomatodonkey's avatar
littletomatodonkey 已提交
108 109
    if "is_test" in params:
        params['is_test'] = not is_train
littletomatodonkey's avatar
littletomatodonkey 已提交
110
    model = architectures.__dict__[name](**params)
W
WuHaobo 已提交
111 112 113 114 115 116 117 118 119
    out = model.net(input=image, class_dim=classes_num)
    return out


def create_loss(out,
                feeds,
                architecture,
                classes_num=1000,
                epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
120 121
                use_mix=False,
                use_distillation=False):
W
WuHaobo 已提交
122 123 124 125 126 127 128 129 130 131 132
    """
    Create a loss for optimization, such as:
        1. CrossEnotry loss
        2. CrossEnotry loss with label smoothing
        3. CrossEnotry loss with mix(mixup, cutmix, fmix)
        4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix)
        5. GoogLeNet loss

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables
133 134
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
135 136
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
137
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
138 139 140 141

    Returns:
        loss(variable): loss variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
142
    if architecture["name"] == "GoogLeNet":
W
WuHaobo 已提交
143 144 145 146 147
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
        target = feeds['label']
        return loss(out[0], out[1], out[2], target)

littletomatodonkey's avatar
littletomatodonkey 已提交
148
    if use_distillation:
149 150
        assert len(out) == 2, ("distillation output length must be 2, "
                               "but got {}".format(len(out)))
littletomatodonkey's avatar
littletomatodonkey 已提交
151 152 153 154
        loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out[1], out[0])

    if use_mix:
W
WuHaobo 已提交
155 156 157 158 159 160 161 162 163 164 165
        loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
        feed_y_a = feeds['feed_y_a']
        feed_y_b = feeds['feed_y_b']
        feed_lam = feeds['feed_lam']
        return loss(out, feed_y_a, feed_y_b, feed_lam)
    else:
        loss = CELoss(class_dim=classes_num, epsilon=epsilon)
        target = feeds['label']
        return loss(out, target)


W
WuHaobo 已提交
166 167 168 169 170
def create_metric(out,
                  feeds,
                  architecture,
                  topk=5,
                  classes_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
171
                  use_distillation=False):
W
WuHaobo 已提交
172 173 174 175 176 177 178 179 180 181 182 183
    """
    Create measures of model accuracy, such as top1 and top5

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
        topk(int): usually top5
        classes_num(int): num of classes

    Returns:
        fetchs(dict): dict of measures
    """
W
WuHaobo 已提交
184 185 186 187 188 189 190 191 192
    if architecture["name"] == "GoogLeNet":
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        softmax_out = out[0]
    else:
        # just need student label to get metrics
        if use_distillation:
            out = out[1]
        softmax_out = fluid.layers.softmax(out, use_cudnn=False)

W
WuHaobo 已提交
193
    fetchs = OrderedDict()
W
WuHaobo 已提交
194 195
    # set top1 to fetchs
    top1 = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=1)
196
    fetchs['top1'] = (top1, AverageMeter('top1', '.4f', need_avg=True))
W
WuHaobo 已提交
197
    # set topk to fetchs
W
WuHaobo 已提交
198
    k = min(topk, classes_num)
W
WuHaobo 已提交
199
    topk = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=k)
W
WuHaobo 已提交
200
    topk_name = 'top{}'.format(k)
201
    fetchs[topk_name] = (topk, AverageMeter(topk_name, '.4f', need_avg=True))
W
WuHaobo 已提交
202 203 204 205 206 207 208 209 210 211

    return fetchs


def create_fetchs(out,
                  feeds,
                  architecture,
                  topk=5,
                  classes_num=1000,
                  epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
212 213
                  use_mix=False,
                  use_distillation=False):
W
WuHaobo 已提交
214 215
    """
    Create fetchs as model outputs(included loss and measures),
littletomatodonkey's avatar
littletomatodonkey 已提交
216
    will call create_loss and create_metric(if use_mix).
W
WuHaobo 已提交
217 218 219

    Args:
        out(variable): model output variable
W
WuHaobo 已提交
220 221
        feeds(dict): dict of model input variables.
            If use mix_up, it will not include label.
222 223
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
224 225 226
        topk(int): usually top5
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
227
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
228 229 230 231 232

    Returns:
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    fetchs = OrderedDict()
littletomatodonkey's avatar
littletomatodonkey 已提交
233 234
    loss = create_loss(out, feeds, architecture, classes_num, epsilon, use_mix,
                       use_distillation)
235
    fetchs['loss'] = (loss, AverageMeter('loss', '7.4f', need_avg=True))
littletomatodonkey's avatar
littletomatodonkey 已提交
236
    if not use_mix:
W
WuHaobo 已提交
237 238
        metric = create_metric(out, feeds, architecture, topk, classes_num,
                               use_distillation)
W
WuHaobo 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        fetchs.update(metric)

    return fetchs


def create_optimizer(config):
    """
    Create an optimizer using config, usually including
    learning rate and regularization.

    Args:
        config(dict):  such as
        {
            'LEARNING_RATE':
                {'function': 'Cosine',
                 'params': {'lr': 0.1}
                },
            'OPTIMIZER':
                {'function': 'Momentum',
                 'params':{'momentum': 0.9},
                 'regularizer':
                    {'function': 'L2', 'factor': 0.0001}
                }
        }

    Returns:
        an optimizer instance
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epochs'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = config['OPTIMIZER']
    opt = OptimizerBuilder(**opt_config)
    return opt(lr)


def dist_optimizer(config, optimizer):
    """
    Create a distributed optimizer based on a normal optimizer

    Args:
        config(dict):
        optimizer(): a normal optimizer

    Returns:
        optimizer: a distributed optimizer
    """
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_threads = 3
    exec_strategy.num_iteration_per_drop_scope = 10

    dist_strategy = DistributedStrategy()
    dist_strategy.nccl_comm_num = 1
    dist_strategy.fuse_all_reduce_ops = True
    dist_strategy.exec_strategy = exec_strategy
    optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy)

    return optimizer


306 307 308 309 310 311 312 313 314 315 316 317 318
def mixed_precision_optimizer(config, optimizer):
    use_fp16 = config.get('use_fp16', False)
    amp_scale_loss = config.get('amp_scale_loss', 1.0)
    use_dynamic_loss_scaling = config.get('use_dynamic_loss_scaling', False)
    if use_fp16:
        optimizer = fluid.contrib.mixed_precision.decorate(
            optimizer,
            init_loss_scaling=amp_scale_loss,
            use_dynamic_loss_scaling=use_dynamic_loss_scaling)

    return optimizer


W
WuHaobo 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
def build(config, main_prog, startup_prog, is_train=True):
    """
    Build a program using a model and an optimizer
        1. create feeds
        2. create a dataloader
        3. create a model
        4. create fetchs
        5. create an optimizer

    Args:
        config(dict): config
        main_prog(): main program
        startup_prog(): startup program
        is_train(bool): train or valid

    Returns:
        dataloader(): a bridge between the model and the data
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            use_mix = config.get('use_mix') and is_train
S
shippingwang 已提交
341
            use_dali = config.get('use_dali')
littletomatodonkey's avatar
littletomatodonkey 已提交
342
            use_distillation = config.get('use_distillation')
S
fix bug  
shippingwang 已提交
343
            feeds = create_feeds(config.image_shape, use_mix, use_dali)
S
shippingwang 已提交
344 345 346 347 348 349

            if use_dali and use_mix:
                import dali
                #feeds = dali.normalize(feeds,config)
                feeds = dali.mix(feeds, config, is_train)

S
shippingwang 已提交
350 351
            dataloader = create_dataloader(feeds.values()) if not config.get(
                'use_dali') else None
littletomatodonkey's avatar
littletomatodonkey 已提交
352
            out = create_model(config.ARCHITECTURE, feeds['image'],
S
add ema  
shippingwang 已提交
353
                               config.classes_num, is_train)
W
WuHaobo 已提交
354 355 356
            fetchs = create_fetchs(
                out,
                feeds,
littletomatodonkey's avatar
littletomatodonkey 已提交
357
                config.ARCHITECTURE,
W
WuHaobo 已提交
358 359 360
                config.topk,
                config.classes_num,
                epsilon=config.get('ls_epsilon'),
littletomatodonkey's avatar
littletomatodonkey 已提交
361 362
                use_mix=use_mix,
                use_distillation=use_distillation)
W
WuHaobo 已提交
363 364 365
            if is_train:
                optimizer = create_optimizer(config)
                lr = optimizer._global_learning_rate()
366
                fetchs['lr'] = (lr, AverageMeter('lr', 'f', need_avg=False))
367 368

                optimizer = mixed_precision_optimizer(config, optimizer)
W
WuHaobo 已提交
369 370
                optimizer = dist_optimizer(config, optimizer)
                optimizer.minimize(fetchs['loss'][0])
S
add ema  
shippingwang 已提交
371 372
                if config.get('use_ema'):

S
shippingwang 已提交
373 374 375 376
                    global_steps = fluid.layers.learning_rate_scheduler._decay_step_counter(
                    )
                    ema = ExponentialMovingAverage(
                        config.get('ema_decay'), thres_steps=global_steps)
S
add ema  
shippingwang 已提交
377
                    ema.update()
S
shippingwang 已提交
378
                    return dataloader, fetchs, ema
W
WuHaobo 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

    return dataloader, fetchs


def compile(config, program, loss_name=None):
    """
    Compile the program

    Args:
        config(dict): config
        program(): the program which is wrapped by
        loss_name(str): loss name

    Returns:
        compiled_program(): a compiled program
    """
    build_strategy = fluid.compiler.BuildStrategy()
    exec_strategy = fluid.ExecutionStrategy()

    exec_strategy.num_threads = 1
    exec_strategy.num_iteration_per_drop_scope = 10

    compiled_program = fluid.CompiledProgram(program).with_data_parallel(
        loss_name=loss_name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    return compiled_program


S
shippingwang 已提交
409 410 411
total_step = 0


S
shippingwang 已提交
412 413 414 415 416 417
def run(dataloader,
        exe,
        program,
        fetchs,
        epoch=0,
        mode='train',
S
shippingwang 已提交
418
        config=None,
S
shippingwang 已提交
419
        vdl_writer=None):
W
WuHaobo 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
    """
    Feed data to the model and fetch the measures and loss

    Args:
        dataloader(fluid dataloader):
        exe():
        program():
        fetchs(dict): dict of measures and the loss
        epoch(int): epoch of training or validation
        model(str): log only

    Returns:
    """
    fetch_list = [f[0] for f in fetchs.values()]
    metric_list = [f[1] for f in fetchs.values()]
W
WuHaobo 已提交
435 436
    for m in metric_list:
        m.reset()
S
shippingwang 已提交
437
    batch_time = AverageMeter('elapse', '.3f')
W
WuHaobo 已提交
438
    tic = time.time()
S
shippingwang 已提交
439
    dataloader = dataloader if config.get('use_dali') else dataloader()()
S
shippingwang 已提交
440
    #sta = 0
S
shippingwang 已提交
441 442
    for idx, batch in enumerate(dataloader):

S
shippingwang 已提交
443
        #start_time = time.time()
W
WuHaobo 已提交
444
        metrics = exe.run(program=program, feed=batch, fetch_list=fetch_list)
S
shippingwang 已提交
445 446 447 448 449 450 451 452
        #end_time = time.time()
        #statistics = end_time - start_time
        # if idx >= 10:
        #    sta = sta+statistics
        # if idx == 110 and int(os.getenv("PADDLE_TRAINER_ID", 0)) == 0:
        #    print("10-100batch speed 000", sta/100, 's/batch', 'bs', config.TRAIN.batch_size)
        # if idx == 110 and int(os.getenv("PADDLE_TRAINER_ID", 0)) == 1:
        #    print("10-100batch speed 111", sta/100, 's/batch', 'bs', config.TRAIN.batch_size)
W
WuHaobo 已提交
453 454 455 456
        batch_time.update(time.time() - tic)
        tic = time.time()
        for i, m in enumerate(metrics):
            metric_list[i].update(m[0], len(batch[0]))
littletomatodonkey's avatar
littletomatodonkey 已提交
457
        fetchs_str = ''.join([str(m.value) + ' '
458
                              for m in metric_list] + [batch_time.value]) + 's'
S
fixed  
shippingwang 已提交
459
        if vdl_writer:
S
shippingwang 已提交
460
            global total_step
S
fixed  
shippingwang 已提交
461
            logger.scaler('loss', metrics[0][0], total_step, vdl_writer)
S
shippingwang 已提交
462
            total_step += 1
W
WuHaobo 已提交
463
        if mode == 'eval':
W
WuHaobo 已提交
464 465
            logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx, fetchs_str))
        else:
S
shippingwang 已提交
466 467 468 469
            epoch_str = "epoch:{:<3d}".format(epoch)
            step_str = "{:s} step:{:<4d}".format(mode, idx)

            logger.info("{:s} {:s} {:s}".format(
470 471 472 473
                logger.coloring(epoch_str, "HEADER")
                if idx == 0 else epoch_str,
                logger.coloring(step_str, "PURPLE"),
                logger.coloring(fetchs_str, 'OKGREEN')))
S
shippingwang 已提交
474 475
    if config.get('use_dali'):
        dataloader.reset()
S
refine  
shippingwang 已提交
476

littletomatodonkey's avatar
littletomatodonkey 已提交
477
    end_str = ''.join([str(m.mean) + ' '
478
                       for m in metric_list] + [batch_time.total]) + 's'
W
WuHaobo 已提交
479
    if mode == 'eval':
S
refine  
shippingwang 已提交
480
        logger.info("END {:s} {:s}s".format(mode, end_str))
W
WuHaobo 已提交
481
    else:
S
shippingwang 已提交
482 483
        end_epoch_str = "END epoch:{:<3d}".format(epoch)

484 485 486 487
        logger.info("{:s} {:s} {:s}".format(
            logger.coloring(end_epoch_str, "RED"),
            logger.coloring(mode, "PURPLE"),
            logger.coloring(end_str, "OKGREEN")))
littletomatodonkey's avatar
littletomatodonkey 已提交
488

W
WuHaobo 已提交
489
    # return top1_acc in order to save the best model
W
WuHaobo 已提交
490
    if mode == 'valid':
W
WuHaobo 已提交
491
        return fetchs["top1"][1].avg