Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
39f946aa
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
39f946aa
编写于
6月 18, 2020
作者:
S
shippingwang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add dali
上级
507c74a7
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
447 addition
and
12 deletion
+447
-12
configs/high_performance/dali.yaml
configs/high_performance/dali.yaml
+78
-0
tools/dali.py
tools/dali.py
+325
-0
tools/program.py
tools/program.py
+12
-2
tools/run_dali.sh
tools/run_dali.sh
+13
-0
tools/train.py
tools/train.py
+19
-10
未找到文件。
configs/high_performance/dali.yaml
0 → 100644
浏览文件 @
39f946aa
mode
:
'
train'
ARCHITECTURE
:
name
:
'
ResNet50_vd'
pretrained_model
:
"
"
model_save_dir
:
"
./output/"
classes_num
:
1000
total_images
:
1281167
save_interval
:
1
validate
:
True
valid_interval
:
1
epochs
:
200
topk
:
5
image_shape
:
[
3
,
224
,
224
]
use_mix
:
True
ls_epsilon
:
0.1
use_dali
:
True
LEARNING_RATE
:
function
:
'
Cosine'
params
:
lr
:
0.1
OPTIMIZER
:
function
:
'
Momentum'
params
:
momentum
:
0.9
regularizer
:
function
:
'
L2'
factor
:
0.000070
TRAIN
:
batch_size
:
256
num_workers
:
4
file_list
:
"
./dataset/ILSVRC2012/train_list.txt"
data_dir
:
"
./dataset/ILSVRC2012/"
shuffle_seed
:
0
transforms
:
-
DecodeImage
:
to_rgb
:
True
to_np
:
False
channel_first
:
False
-
RandCropImage
:
size
:
224
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1./255.
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
mix
:
-
MixupOperator
:
alpha
:
0.2
VALID
:
batch_size
:
64
num_workers
:
4
file_list
:
"
./dataset/ILSVRC2012/val_list.txt"
data_dir
:
"
./dataset/ILSVRC2012/"
shuffle_seed
:
0
transforms
:
-
DecodeImage
:
to_rgb
:
True
to_np
:
False
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
tools/dali.py
0 → 100644
浏览文件 @
39f946aa
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
os
import
numpy
as
np
from
nvidia.dali.pipeline
import
Pipeline
import
nvidia.dali.ops
as
ops
import
nvidia.dali.types
as
types
from
nvidia.dali.plugin.paddle
import
DALIGenericIterator
import
paddle
from
paddle
import
fluid
class
HybridTrainPipe
(
Pipeline
):
def
__init__
(
self
,
file_root
,
file_list
,
batch_size
,
resize_shorter
,
crop
,
min_area
,
lower
,
upper
,
interp
,
mean
,
std
,
device_id
,
shard_id
=
0
,
num_shards
=
1
,
random_shuffle
=
True
,
num_threads
=
4
,
seed
=
42
):
super
(
HybridTrainPipe
,
self
).
__init__
(
batch_size
,
num_threads
,
device_id
,
seed
=
seed
)
self
.
input
=
ops
.
FileReader
(
file_root
=
file_root
,
file_list
=
file_list
,
shard_id
=
shard_id
,
num_shards
=
num_shards
,
random_shuffle
=
random_shuffle
)
# set internal nvJPEG buffers size to handle full-sized ImageNet images
# without additional reallocations
device_memory_padding
=
211025920
host_memory_padding
=
140544512
self
.
decode
=
ops
.
ImageDecoderRandomCrop
(
device
=
'mixed'
,
output_type
=
types
.
RGB
,
device_memory_padding
=
device_memory_padding
,
host_memory_padding
=
host_memory_padding
,
random_aspect_ratio
=
[
lower
,
upper
],
random_area
=
[
min_area
,
1.0
],
num_attempts
=
100
)
self
.
res
=
ops
.
Resize
(
device
=
'gpu'
,
resize_x
=
crop
,
resize_y
=
crop
,
interp_type
=
interp
)
self
.
cmnp
=
ops
.
CropMirrorNormalize
(
device
=
"gpu"
,
output_dtype
=
types
.
FLOAT
,
output_layout
=
types
.
NCHW
,
crop
=
(
crop
,
crop
),
image_type
=
types
.
RGB
,
mean
=
mean
,
std
=
std
)
self
.
coin
=
ops
.
CoinFlip
(
probability
=
0.5
)
self
.
to_int64
=
ops
.
Cast
(
dtype
=
types
.
INT64
,
device
=
"gpu"
)
def
define_graph
(
self
):
rng
=
self
.
coin
()
jpegs
,
labels
=
self
.
input
(
name
=
"Reader"
)
images
=
self
.
decode
(
jpegs
)
images
=
self
.
res
(
images
)
output
=
self
.
cmnp
(
images
.
gpu
(),
mirror
=
rng
)
return
[
output
,
self
.
to_int64
(
labels
.
gpu
())]
def
__len__
(
self
):
return
self
.
epoch_size
(
"Reader"
)
class
HybridValPipe
(
Pipeline
):
def
__init__
(
self
,
file_root
,
file_list
,
batch_size
,
resize_shorter
,
crop
,
interp
,
mean
,
std
,
device_id
,
shard_id
=
0
,
num_shards
=
1
,
random_shuffle
=
False
,
num_threads
=
4
,
seed
=
42
):
super
(
HybridValPipe
,
self
).
__init__
(
batch_size
,
num_threads
,
device_id
,
seed
=
seed
)
self
.
input
=
ops
.
FileReader
(
file_root
=
file_root
,
file_list
=
file_list
,
shard_id
=
shard_id
,
num_shards
=
num_shards
,
random_shuffle
=
random_shuffle
)
self
.
decode
=
ops
.
ImageDecoder
(
device
=
"mixed"
,
output_type
=
types
.
RGB
)
self
.
res
=
ops
.
Resize
(
device
=
"gpu"
,
resize_shorter
=
resize_shorter
,
interp_type
=
interp
)
self
.
cmnp
=
ops
.
CropMirrorNormalize
(
device
=
"gpu"
,
output_dtype
=
types
.
FLOAT
,
output_layout
=
types
.
NCHW
,
crop
=
(
crop
,
crop
),
image_type
=
types
.
RGB
,
mean
=
mean
,
std
=
std
)
self
.
to_int64
=
ops
.
Cast
(
dtype
=
types
.
INT64
,
device
=
"gpu"
)
def
define_graph
(
self
):
jpegs
,
labels
=
self
.
input
(
name
=
"Reader"
)
images
=
self
.
decode
(
jpegs
)
images
=
self
.
res
(
images
)
output
=
self
.
cmnp
(
images
)
return
[
output
,
self
.
to_int64
(
labels
.
gpu
())]
def
__len__
(
self
):
return
self
.
epoch_size
(
"Reader"
)
def
build
(
settings
,
mode
=
'train'
):
env
=
os
.
environ
assert
settings
.
get
(
'use_gpu'
,
True
)
==
True
,
"gpu training is required for DALI"
#assert not settings.get('use_mix'), "mixup is not supported by DALI reader"
assert
not
settings
.
get
(
'use_aa'
),
"auto augment is not supported by DALI reader"
assert
float
(
env
.
get
(
'FLAGS_fraction_of_gpu_memory_to_use'
,
0.92
))
<
0.9
,
\
"Please leave enough GPU memory for DALI workspace, e.g., by setting"
\
" `export FLAGS_fraction_of_gpu_memory_to_use=0.8`"
file_root
=
settings
.
TRAIN
.
data_dir
bs
=
settings
.
TRAIN
.
batch_size
if
mode
==
'train'
else
settings
.
VALID
.
batch_size
print
(
bs
,
paddle
.
fluid
.
core
.
get_cuda_device_count
())
assert
bs
%
paddle
.
fluid
.
core
.
get_cuda_device_count
()
==
0
,
\
"batch size must be multiple of number of devices"
batch_size
=
bs
//
paddle
.
fluid
.
core
.
get_cuda_device_count
()
image_mean
=
[
0.485
,
0.456
,
0.406
]
image_std
=
[
0.229
,
0.224
,
0.225
]
mean
=
[
v
*
255
for
v
in
image_mean
]
std
=
[
v
*
255
for
v
in
image_std
]
crop
=
224
# settings.crop_size
resize_shorter
=
256
# settings.resize_short_size
min_area
=
0.08
# settings.lower_scale
lower
=
3.
/
4.
# settings.lower_ratio
upper
=
4.
/
3.
# settings.upper_ratio
interp
=
1
# settings.interpolation or 1 # default to linear
interp_map
=
{
0
:
types
.
INTERP_NN
,
# cv2.INTER_NEAREST
1
:
types
.
INTERP_LINEAR
,
# cv2.INTER_LINEAR
2
:
types
.
INTERP_CUBIC
,
# cv2.INTER_CUBIC
4
:
types
.
INTERP_LANCZOS3
,
# XXX use LANCZOS3 for cv2.INTER_LANCZOS4
}
assert
interp
in
interp_map
,
"interpolation method not supported by DALI"
interp
=
interp_map
[
interp
]
if
mode
!=
'train'
:
p
=
fluid
.
framework
.
cuda_places
()[
0
]
place
=
fluid
.
core
.
Place
()
place
.
set_place
(
p
)
device_id
=
place
.
gpu_device_id
()
file_list
=
os
.
path
.
join
(
file_root
,
'val_list.txt'
)
if
not
os
.
path
.
exists
(
file_list
):
file_list
=
None
file_root
=
os
.
path
.
join
(
file_root
,
'val'
)
pipe
=
HybridValPipe
(
file_root
,
file_list
,
batch_size
,
resize_shorter
,
crop
,
interp
,
mean
,
std
,
device_id
=
device_id
)
pipe
.
build
()
return
DALIGenericIterator
(
pipe
,
[
'feed_image'
,
'feed_label'
],
size
=
len
(
pipe
),
dynamic_shape
=
True
,
fill_last_batch
=
False
,
last_batch_padded
=
True
)
file_list
=
os
.
path
.
join
(
file_root
,
'train_list.txt'
)
if
not
os
.
path
.
exists
(
file_list
):
file_list
=
None
file_root
=
os
.
path
.
join
(
file_root
,
'train'
)
if
'PADDLE_TRAINER_ID'
in
env
and
'PADDLE_TRAINERS_NUM'
in
env
:
shard_id
=
int
(
env
[
'PADDLE_TRAINER_ID'
])
num_shards
=
int
(
env
[
'PADDLE_TRAINERS_NUM'
])
device_id
=
int
(
env
[
'FLAGS_selected_gpus'
])
pipe
=
HybridTrainPipe
(
file_root
,
file_list
,
batch_size
,
resize_shorter
,
crop
,
min_area
,
lower
,
upper
,
interp
,
mean
,
std
,
device_id
,
shard_id
,
num_shards
,
seed
=
42
+
shard_id
)
pipe
.
build
()
pipelines
=
[
pipe
]
sample_per_shard
=
len
(
pipe
)
//
num_shards
else
:
pipelines
=
[]
places
=
fluid
.
framework
.
cuda_places
()
num_shards
=
len
(
places
)
for
idx
,
p
in
enumerate
(
places
):
place
=
fluid
.
core
.
Place
()
place
.
set_place
(
p
)
device_id
=
place
.
gpu_device_id
()
pipe
=
HybridTrainPipe
(
file_root
,
file_list
,
batch_size
,
resize_shorter
,
crop
,
min_area
,
lower
,
upper
,
interp
,
mean
,
std
,
device_id
,
idx
,
num_shards
,
seed
=
42
+
idx
)
pipe
.
build
()
pipelines
.
append
(
pipe
)
sample_per_shard
=
len
(
pipelines
[
0
])
return
DALIGenericIterator
(
pipelines
,
[
'feed_image'
,
'feed_label'
],
size
=
sample_per_shard
)
def
train
(
settings
):
return
build
(
settings
,
'train'
)
def
val
(
settings
):
return
build
(
settings
,
'val'
)
def
_to_Tensor
(
lod_tensor
,
dtype
):
data_tensor
=
fluid
.
layers
.
create_tensor
(
dtype
=
dtype
)
data
=
np
.
array
(
lod_tensor
).
astype
(
dtype
)
fluid
.
layers
.
assign
(
data
,
data_tensor
)
return
data_tensor
def
post_mix
(
settings
,
batch
):
batch_size
=
settings
.
TRAIN
.
batch_size
//
paddle
.
fluid
.
core
.
get_cuda_device_count
(
)
batch_imgs
=
_to_Tensor
(
batch
[
0
][
'feed_image'
],
'float32'
)
batch_label
=
_to_Tensor
(
batch
[
0
][
'feed_label'
],
'int64'
)
alpha
=
0.2
idx
=
_to_Tensor
(
np
.
random
.
permutation
(
batch_size
),
'int32'
)
lam
=
np
.
random
.
beta
(
alpha
,
alpha
)
batch_imgs
=
lam
*
batch_imgs
+
(
1
-
lam
)
*
paddle
.
fluid
.
layers
.
gather
(
batch_imgs
,
idx
)
# print(type(batch_label))
feed
=
[{
'feed_image'
:
batch_imgs
,
'feed_y_a'
:
batch_label
,
'feed_y_b'
:
paddle
.
fluid
.
layers
.
gather
(
batch_label
,
idx
),
'feed_lam'
:
_to_Tensor
([
lam
]
*
batch_size
,
'float32'
)
}]
return
feed
def
post_mix_numpy
(
settings
,
batch
):
batch_size
=
settings
.
TRAIN
.
batch_size
//
paddle
.
fluid
.
core
.
get_cuda_device_count
(
)
batch_imgs
=
np
.
array
(
batch
[
0
][
'feed_image'
])
batch_label
=
np
.
array
(
batch
[
0
][
'feed_label'
])
alpha
=
0.2
idx
=
np
.
random
.
permutation
(
batch_size
)
lam
=
np
.
random
.
beta
(
alpha
,
alpha
)
batch_imgs
=
lam
*
batch_imgs
+
(
1
-
lam
)
*
batch_imgs
[
idx
]
feed
=
[{
'feed_image'
:
batch_imgs
,
'feed_y_a'
:
batch_label
,
'feed_y_b'
:
batch_label
[
idx
],
'feed_lam'
:
np
.
array
([
lam
]
*
batch_size
).
astype
(
'float32'
)
}]
return
feed
tools/program.py
浏览文件 @
39f946aa
...
...
@@ -338,7 +338,8 @@ def build(config, main_prog, startup_prog, is_train=True):
use_mix
=
config
.
get
(
'use_mix'
)
and
is_train
use_distillation
=
config
.
get
(
'use_distillation'
)
feeds
=
create_feeds
(
config
.
image_shape
,
use_mix
=
use_mix
)
dataloader
=
create_dataloader
(
feeds
.
values
())
dataloader
=
create_dataloader
(
feeds
.
values
())
if
not
config
.
get
(
'use_dali'
)
else
None
out
=
create_model
(
config
.
ARCHITECTURE
,
feeds
[
'image'
],
config
.
classes_num
,
is_train
)
fetchs
=
create_fetchs
(
...
...
@@ -405,6 +406,7 @@ def run(dataloader,
fetchs
,
epoch
=
0
,
mode
=
'train'
,
config
=
None
,
vdl_writer
=
None
):
"""
Feed data to the model and fetch the measures and loss
...
...
@@ -425,7 +427,13 @@ def run(dataloader,
m
.
reset
()
batch_time
=
AverageMeter
(
'elapse'
,
'.3f'
)
tic
=
time
.
time
()
for
idx
,
batch
in
enumerate
(
dataloader
()):
dataloader
=
dataloader
if
config
.
get
(
'use_dali'
)
else
dataloader
()()
for
idx
,
batch
in
enumerate
(
dataloader
):
if
config
.
get
(
'use_dali'
):
import
dali
batch
=
dali
.
post_mix_numpy
(
config
,
batch
)
metrics
=
exe
.
run
(
program
=
program
,
feed
=
batch
,
fetch_list
=
fetch_list
)
batch_time
.
update
(
time
.
time
()
-
tic
)
tic
=
time
.
time
()
...
...
@@ -448,6 +456,8 @@ def run(dataloader,
if
idx
==
0
else
epoch_str
,
logger
.
coloring
(
step_str
,
"PURPLE"
),
logger
.
coloring
(
fetchs_str
,
'OKGREEN'
)))
if
config
.
get
(
'use_dali'
):
dataloader
.
reset
()
end_str
=
''
.
join
([
str
(
m
.
mean
)
+
' '
for
m
in
metric_list
]
+
[
batch_time
.
total
])
+
's'
...
...
tools/run_dali.sh
0 → 100755
浏览文件 @
39f946aa
#!/usr/bin/env bash
export
PYTHONPATH
=
$PWD
:
$PYTHONPA
export
FLAGS_fraction_of_gpu_memory_to_use
=
0.8
python3
-m
paddle.distributed.launch
\
--selected_gpus
=
"0,1"
\
tools/train.py
\
-c
./configs/high_performance/dali.yaml
\
-o
TRAIN.batch_size
=
4
\
-o
use_mix
=
True
\
-o
use_dali
=
True
tools/train.py
浏览文件 @
39f946aa
...
...
@@ -90,14 +90,23 @@ def main(args):
# load model from 1. checkpoint to resume training, 2. pretrained model to finetune
init_model
(
config
,
train_prog
,
exe
)
if
not
config
.
get
(
'use_dali'
):
train_reader
=
Reader
(
config
,
'train'
)()
train_dataloader
.
set_sample_list_generator
(
train_reader
,
place
)
train_reader
=
Reader
(
config
,
'train'
)()
train_dataloader
.
set_sample_list_generator
(
train_reader
,
place
)
if
config
.
validate
:
valid_reader
=
Reader
(
config
,
'valid'
)()
valid_dataloader
.
set_sample_list_generator
(
valid_reader
,
place
)
compiled_valid_prog
=
program
.
compile
(
config
,
valid_prog
)
if
config
.
validate
:
valid_reader
=
Reader
(
config
,
'valid'
)()
valid_dataloader
.
set_sample_list_generator
(
valid_reader
,
place
)
compiled_valid_prog
=
program
.
compile
(
config
,
valid_prog
)
else
:
import
dali
train_dataloader
=
dali
.
train
(
settings
=
config
)
if
config
.
validate
:
if
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
0
))
==
0
:
valid_dataloader
=
dali
.
val
(
settings
=
config
)
compiled_valid_prog
=
program
.
compile
(
config
,
valid_prog
)
compiled_train_prog
=
fleet
.
main_program
...
...
@@ -110,16 +119,16 @@ def main(args):
for
epoch_id
in
range
(
config
.
epochs
):
# 1. train with train dataset
program
.
run
(
train_dataloader
,
exe
,
compiled_train_prog
,
train_fetchs
,
epoch_id
,
'train'
,
vdl_writer
)
epoch_id
,
'train'
,
config
,
vdl_writer
)
if
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
0
))
==
0
:
# 2. validate with validate dataset
if
config
.
validate
and
epoch_id
%
config
.
valid_interval
==
0
:
if
config
.
get
(
'use_ema'
):
logger
.
info
(
logger
.
coloring
(
"EMA validate start..."
))
with
ema
.
apply
(
exe
):
top1_acc
=
program
.
run
(
valid_dataloader
,
exe
,
compiled_valid_prog
,
valid_fetchs
,
epoch_id
,
'valid'
)
top1_acc
=
program
.
run
(
valid_dataloader
,
exe
,
compiled_valid_prog
,
valid_fetchs
,
epoch_id
,
'valid'
,
config
)
logger
.
info
(
logger
.
coloring
(
"EMA validate over!"
))
top1_acc
=
program
.
run
(
valid_dataloader
,
exe
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录