program.py 13.5 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time

from collections import OrderedDict

import paddle.fluid as fluid

from ppcls.optimizer import LearningRateBuilder
from ppcls.optimizer import OptimizerBuilder
from ppcls.modeling import architectures
from ppcls.modeling.loss import CELoss
from ppcls.modeling.loss import MixCELoss
littletomatodonkey's avatar
littletomatodonkey 已提交
31
from ppcls.modeling.loss import JSDivLoss
W
WuHaobo 已提交
32 33 34 35 36 37 38 39
from ppcls.modeling.loss import GoogLeNetLoss
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger

from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.collective import DistributedStrategy


littletomatodonkey's avatar
littletomatodonkey 已提交
40
def create_feeds(image_shape, use_mix=None):
W
WuHaobo 已提交
41 42 43 44 45
    """
    Create feeds as model input

    Args:
        image_shape(list[int]): model input shape, such as [3, 224, 224]
littletomatodonkey's avatar
littletomatodonkey 已提交
46
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
47 48 49 50 51 52 53

    Returns:
        feeds(dict): dict of model input variables
    """
    feeds = OrderedDict()
    feeds['image'] = fluid.data(
        name="feed_image", shape=[None] + image_shape, dtype="float32")
littletomatodonkey's avatar
littletomatodonkey 已提交
54
    if use_mix:
W
WuHaobo 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        feeds['feed_y_a'] = fluid.data(
            name="feed_y_a", shape=[None, 1], dtype="int64")
        feeds['feed_y_b'] = fluid.data(
            name="feed_y_b", shape=[None, 1], dtype="int64")
        feeds['feed_lam'] = fluid.data(
            name="feed_lam", shape=[None, 1], dtype="float32")
    else:
        feeds['label'] = fluid.data(
            name="feed_label", shape=[None, 1], dtype="int64")

    return feeds


def create_dataloader(feeds):
    """
    Create a dataloader with model input variables

    Args:
        feeds(dict): dict of model input variables

    Returns:
        dataloader(fluid dataloader):
    """
    trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
    capacity = 64 if trainer_num <= 1 else 8
    dataloader = fluid.io.DataLoader.from_generator(
        feed_list=feeds,
        capacity=capacity,
        use_double_buffer=True,
        iterable=True)

    return dataloader


S
add ema  
shippingwang 已提交
89
def create_model(architecture, image, classes_num, is_train):
W
WuHaobo 已提交
90 91 92 93
    """
    Create a model

    Args:
94 95
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
96 97 98 99 100 101
        image(variable): model input variable
        classes_num(int): num of classes

    Returns:
        out(variable): model output variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
102
    name = architecture["name"]
littletomatodonkey's avatar
littletomatodonkey 已提交
103
    params = architecture.get("params", {})
S
add ema  
shippingwang 已提交
104 105
    params['is_test'] = not is_train
    print(params)
littletomatodonkey's avatar
littletomatodonkey 已提交
106
    model = architectures.__dict__[name](**params)
W
WuHaobo 已提交
107 108 109 110 111 112 113 114 115
    out = model.net(input=image, class_dim=classes_num)
    return out


def create_loss(out,
                feeds,
                architecture,
                classes_num=1000,
                epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
116 117
                use_mix=False,
                use_distillation=False):
W
WuHaobo 已提交
118 119 120 121 122 123 124 125 126 127 128
    """
    Create a loss for optimization, such as:
        1. CrossEnotry loss
        2. CrossEnotry loss with label smoothing
        3. CrossEnotry loss with mix(mixup, cutmix, fmix)
        4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix)
        5. GoogLeNet loss

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables
129 130
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
131 132
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
133
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
134 135 136 137

    Returns:
        loss(variable): loss variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
138
    if architecture["name"] == "GoogLeNet":
W
WuHaobo 已提交
139 140 141 142 143
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
        target = feeds['label']
        return loss(out[0], out[1], out[2], target)

littletomatodonkey's avatar
littletomatodonkey 已提交
144
    if use_distillation:
145 146
        assert len(out) == 2, ("distillation output length must be 2, "
                               "but got {}".format(len(out)))
littletomatodonkey's avatar
littletomatodonkey 已提交
147 148 149 150
        loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out[1], out[0])

    if use_mix:
W
WuHaobo 已提交
151 152 153 154 155 156 157 158 159 160 161
        loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
        feed_y_a = feeds['feed_y_a']
        feed_y_b = feeds['feed_y_b']
        feed_lam = feeds['feed_lam']
        return loss(out, feed_y_a, feed_y_b, feed_lam)
    else:
        loss = CELoss(class_dim=classes_num, epsilon=epsilon)
        target = feeds['label']
        return loss(out, target)


W
WuHaobo 已提交
162 163 164 165 166
def create_metric(out,
                  feeds,
                  architecture,
                  topk=5,
                  classes_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
167
                  use_distillation=False):
W
WuHaobo 已提交
168 169 170 171 172 173 174 175 176 177 178 179
    """
    Create measures of model accuracy, such as top1 and top5

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
        topk(int): usually top5
        classes_num(int): num of classes

    Returns:
        fetchs(dict): dict of measures
    """
W
WuHaobo 已提交
180 181 182 183 184 185 186 187 188
    if architecture["name"] == "GoogLeNet":
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        softmax_out = out[0]
    else:
        # just need student label to get metrics
        if use_distillation:
            out = out[1]
        softmax_out = fluid.layers.softmax(out, use_cudnn=False)

W
WuHaobo 已提交
189
    fetchs = OrderedDict()
W
WuHaobo 已提交
190 191
    # set top1 to fetchs
    top1 = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=1)
192
    fetchs['top1'] = (top1, AverageMeter('top1', '.4f', need_avg=True))
W
WuHaobo 已提交
193
    # set topk to fetchs
W
WuHaobo 已提交
194
    k = min(topk, classes_num)
W
WuHaobo 已提交
195
    topk = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=k)
W
WuHaobo 已提交
196
    topk_name = 'top{}'.format(k)
197
    fetchs[topk_name] = (topk, AverageMeter(topk_name, '.4f', need_avg=True))
W
WuHaobo 已提交
198 199 200 201 202 203 204 205 206 207

    return fetchs


def create_fetchs(out,
                  feeds,
                  architecture,
                  topk=5,
                  classes_num=1000,
                  epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
208 209
                  use_mix=False,
                  use_distillation=False):
W
WuHaobo 已提交
210 211
    """
    Create fetchs as model outputs(included loss and measures),
littletomatodonkey's avatar
littletomatodonkey 已提交
212
    will call create_loss and create_metric(if use_mix).
W
WuHaobo 已提交
213 214 215

    Args:
        out(variable): model output variable
W
WuHaobo 已提交
216 217
        feeds(dict): dict of model input variables.
            If use mix_up, it will not include label.
218 219
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
220 221 222
        topk(int): usually top5
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
223
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
224 225 226 227 228

    Returns:
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    fetchs = OrderedDict()
littletomatodonkey's avatar
littletomatodonkey 已提交
229 230
    loss = create_loss(out, feeds, architecture, classes_num, epsilon, use_mix,
                       use_distillation)
231
    fetchs['loss'] = (loss, AverageMeter('loss', '7.4f', need_avg=True))
littletomatodonkey's avatar
littletomatodonkey 已提交
232
    if not use_mix:
W
WuHaobo 已提交
233 234
        metric = create_metric(out, feeds, architecture, topk, classes_num,
                               use_distillation)
W
WuHaobo 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
        fetchs.update(metric)

    return fetchs


def create_optimizer(config):
    """
    Create an optimizer using config, usually including
    learning rate and regularization.

    Args:
        config(dict):  such as
        {
            'LEARNING_RATE':
                {'function': 'Cosine',
                 'params': {'lr': 0.1}
                },
            'OPTIMIZER':
                {'function': 'Momentum',
                 'params':{'momentum': 0.9},
                 'regularizer':
                    {'function': 'L2', 'factor': 0.0001}
                }
        }

    Returns:
        an optimizer instance
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epochs'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = config['OPTIMIZER']
    opt = OptimizerBuilder(**opt_config)
    return opt(lr)


def dist_optimizer(config, optimizer):
    """
    Create a distributed optimizer based on a normal optimizer

    Args:
        config(dict):
        optimizer(): a normal optimizer

    Returns:
        optimizer: a distributed optimizer
    """
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_threads = 3
    exec_strategy.num_iteration_per_drop_scope = 10

    dist_strategy = DistributedStrategy()
    dist_strategy.nccl_comm_num = 1
    dist_strategy.fuse_all_reduce_ops = True
    dist_strategy.exec_strategy = exec_strategy
    optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy)

    return optimizer


def build(config, main_prog, startup_prog, is_train=True):
    """
    Build a program using a model and an optimizer
        1. create feeds
        2. create a dataloader
        3. create a model
        4. create fetchs
        5. create an optimizer

    Args:
        config(dict): config
        main_prog(): main program
        startup_prog(): startup program
        is_train(bool): train or valid

    Returns:
        dataloader(): a bridge between the model and the data
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            use_mix = config.get('use_mix') and is_train
littletomatodonkey's avatar
littletomatodonkey 已提交
324 325
            use_distillation = config.get('use_distillation')
            feeds = create_feeds(config.image_shape, use_mix=use_mix)
W
WuHaobo 已提交
326
            dataloader = create_dataloader(feeds.values())
littletomatodonkey's avatar
littletomatodonkey 已提交
327
            out = create_model(config.ARCHITECTURE, feeds['image'],
S
add ema  
shippingwang 已提交
328
                               config.classes_num, is_train)
W
WuHaobo 已提交
329 330 331
            fetchs = create_fetchs(
                out,
                feeds,
littletomatodonkey's avatar
littletomatodonkey 已提交
332
                config.ARCHITECTURE,
W
WuHaobo 已提交
333 334 335
                config.topk,
                config.classes_num,
                epsilon=config.get('ls_epsilon'),
littletomatodonkey's avatar
littletomatodonkey 已提交
336 337
                use_mix=use_mix,
                use_distillation=use_distillation)
W
WuHaobo 已提交
338 339 340
            if is_train:
                optimizer = create_optimizer(config)
                lr = optimizer._global_learning_rate()
341
                fetchs['lr'] = (lr, AverageMeter('lr', 'f', need_avg=False))
W
WuHaobo 已提交
342 343
                optimizer = dist_optimizer(config, optimizer)
                optimizer.minimize(fetchs['loss'][0])
S
add ema  
shippingwang 已提交
344 345 346 347 348 349
                if config.get('use_ema'):

                    global_steps = fluid.layers.learning_rate_scheduler._decay_step_counter()
                    ema = ExponentialMovingAverage(config.get('ema_decay'), thres_steps=global_steps)
                    ema.update()
                    fetchs['ema'] = ema
W
WuHaobo 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

    return dataloader, fetchs


def compile(config, program, loss_name=None):
    """
    Compile the program

    Args:
        config(dict): config
        program(): the program which is wrapped by
        loss_name(str): loss name

    Returns:
        compiled_program(): a compiled program
    """
    build_strategy = fluid.compiler.BuildStrategy()
    exec_strategy = fluid.ExecutionStrategy()

    exec_strategy.num_threads = 1
    exec_strategy.num_iteration_per_drop_scope = 10

    compiled_program = fluid.CompiledProgram(program).with_data_parallel(
        loss_name=loss_name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    return compiled_program


def run(dataloader, exe, program, fetchs, epoch=0, mode='train'):
    """
    Feed data to the model and fetch the measures and loss

    Args:
        dataloader(fluid dataloader):
        exe():
        program():
        fetchs(dict): dict of measures and the loss
        epoch(int): epoch of training or validation
        model(str): log only

    Returns:
    """
    fetch_list = [f[0] for f in fetchs.values()]
    metric_list = [f[1] for f in fetchs.values()]
W
WuHaobo 已提交
396 397
    for m in metric_list:
        m.reset()
S
shippingwang 已提交
398
    batch_time = AverageMeter('elapse', '.3f')
W
WuHaobo 已提交
399 400 401 402 403 404 405
    tic = time.time()
    for idx, batch in enumerate(dataloader()):
        metrics = exe.run(program=program, feed=batch, fetch_list=fetch_list)
        batch_time.update(time.time() - tic)
        tic = time.time()
        for i, m in enumerate(metrics):
            metric_list[i].update(m[0], len(batch[0]))
littletomatodonkey's avatar
littletomatodonkey 已提交
406 407
        fetchs_str = ''.join([str(m.value) + ' '
                              for m in metric_list] + [batch_time.value])
W
WuHaobo 已提交
408
        if mode == 'eval':
W
WuHaobo 已提交
409 410
            logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx, fetchs_str))
        else:
S
refine  
shippingwang 已提交
411
            logger.info("epoch:{:<3d} {:s} step:{:<4d} {:s}s".format(
littletomatodonkey's avatar
littletomatodonkey 已提交
412
                epoch, mode, idx, fetchs_str))
S
refine  
shippingwang 已提交
413

littletomatodonkey's avatar
littletomatodonkey 已提交
414 415
    end_str = ''.join([str(m.mean) + ' '
                       for m in metric_list] + [batch_time.total])
W
WuHaobo 已提交
416
    if mode == 'eval':
S
refine  
shippingwang 已提交
417
        logger.info("END {:s} {:s}s".format(mode, end_str))
W
WuHaobo 已提交
418 419
    else:
        logger.info("END epoch:{:<3d} {:s} {:s}s".format(epoch, mode, end_str))
littletomatodonkey's avatar
littletomatodonkey 已提交
420

W
WuHaobo 已提交
421
    # return top1_acc in order to save the best model
W
WuHaobo 已提交
422
    if mode == 'valid':
W
WuHaobo 已提交
423
        return fetchs["top1"][1].avg