program.py 17.3 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
21
import numpy as np
W
WuHaobo 已提交
22 23 24 25 26 27 28 29 30 31

from collections import OrderedDict

import paddle.fluid as fluid

from ppcls.optimizer import LearningRateBuilder
from ppcls.optimizer import OptimizerBuilder
from ppcls.modeling import architectures
from ppcls.modeling.loss import CELoss
from ppcls.modeling.loss import MixCELoss
littletomatodonkey's avatar
littletomatodonkey 已提交
32
from ppcls.modeling.loss import JSDivLoss
W
WuHaobo 已提交
33 34 35 36 37 38
from ppcls.modeling.loss import GoogLeNetLoss
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger

from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.collective import DistributedStrategy
L
Leo Chen 已提交
39
import paddle.fluid as fluid
W
WuHaobo 已提交
40

S
shippingwang 已提交
41
from ema import ExponentialMovingAverage
R
fix  
root 已提交
42

W
WuHaobo 已提交
43

littletomatodonkey's avatar
littletomatodonkey 已提交
44
def create_feeds(image_shape, use_mix=None):
W
WuHaobo 已提交
45 46 47 48 49
    """
    Create feeds as model input

    Args:
        image_shape(list[int]): model input shape, such as [3, 224, 224]
littletomatodonkey's avatar
littletomatodonkey 已提交
50
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
51 52 53 54 55 56 57

    Returns:
        feeds(dict): dict of model input variables
    """
    feeds = OrderedDict()
    feeds['image'] = fluid.data(
        name="feed_image", shape=[None] + image_shape, dtype="float32")
littletomatodonkey's avatar
littletomatodonkey 已提交
58
    if use_mix:
W
WuHaobo 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        feeds['feed_y_a'] = fluid.data(
            name="feed_y_a", shape=[None, 1], dtype="int64")
        feeds['feed_y_b'] = fluid.data(
            name="feed_y_b", shape=[None, 1], dtype="int64")
        feeds['feed_lam'] = fluid.data(
            name="feed_lam", shape=[None, 1], dtype="float32")
    else:
        feeds['label'] = fluid.data(
            name="feed_label", shape=[None, 1], dtype="int64")

    return feeds


def create_dataloader(feeds):
    """
    Create a dataloader with model input variables

    Args:
        feeds(dict): dict of model input variables

    Returns:
        dataloader(fluid dataloader):
    """
    trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
    capacity = 64 if trainer_num <= 1 else 8
    dataloader = fluid.io.DataLoader.from_generator(
        feed_list=feeds,
        capacity=capacity,
        use_double_buffer=True,
        iterable=True)

    return dataloader


S
add ema  
shippingwang 已提交
93
def create_model(architecture, image, classes_num, is_train):
W
WuHaobo 已提交
94 95 96 97
    """
    Create a model

    Args:
98 99
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
100 101 102 103 104 105
        image(variable): model input variable
        classes_num(int): num of classes

    Returns:
        out(variable): model output variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
106
    name = architecture["name"]
littletomatodonkey's avatar
littletomatodonkey 已提交
107
    params = architecture.get("params", {})
L
Leo Chen 已提交
108

littletomatodonkey's avatar
littletomatodonkey 已提交
109 110
    if "is_test" in params:
        params['is_test'] = not is_train
littletomatodonkey's avatar
littletomatodonkey 已提交
111
    model = architectures.__dict__[name](**params)
L
Leo Chen 已提交
112 113 114 115

    if "data_format" in  params  and params["data_format"] == "NHWC":
        image = fluid.layers.transpose(image, [0, 2, 3, 1])
        image.stop_gradient = True
W
WuHaobo 已提交
116 117 118 119 120 121 122 123 124
    out = model.net(input=image, class_dim=classes_num)
    return out


def create_loss(out,
                feeds,
                architecture,
                classes_num=1000,
                epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
125 126
                use_mix=False,
                use_distillation=False):
W
WuHaobo 已提交
127 128 129 130 131 132 133 134 135 136 137
    """
    Create a loss for optimization, such as:
        1. CrossEnotry loss
        2. CrossEnotry loss with label smoothing
        3. CrossEnotry loss with mix(mixup, cutmix, fmix)
        4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix)
        5. GoogLeNet loss

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables
138 139
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
140 141
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
142
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
143 144 145 146

    Returns:
        loss(variable): loss variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
147
    if architecture["name"] == "GoogLeNet":
W
WuHaobo 已提交
148 149 150 151 152
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
        target = feeds['label']
        return loss(out[0], out[1], out[2], target)

littletomatodonkey's avatar
littletomatodonkey 已提交
153
    if use_distillation:
154 155
        assert len(out) == 2, ("distillation output length must be 2, "
                               "but got {}".format(len(out)))
littletomatodonkey's avatar
littletomatodonkey 已提交
156 157 158 159
        loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out[1], out[0])

    if use_mix:
W
WuHaobo 已提交
160 161 162 163 164 165 166 167 168 169 170
        loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
        feed_y_a = feeds['feed_y_a']
        feed_y_b = feeds['feed_y_b']
        feed_lam = feeds['feed_lam']
        return loss(out, feed_y_a, feed_y_b, feed_lam)
    else:
        loss = CELoss(class_dim=classes_num, epsilon=epsilon)
        target = feeds['label']
        return loss(out, target)


W
WuHaobo 已提交
171 172 173 174 175
def create_metric(out,
                  feeds,
                  architecture,
                  topk=5,
                  classes_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
176
                  use_distillation=False):
W
WuHaobo 已提交
177 178 179 180 181 182 183 184 185 186 187 188
    """
    Create measures of model accuracy, such as top1 and top5

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
        topk(int): usually top5
        classes_num(int): num of classes

    Returns:
        fetchs(dict): dict of measures
    """
W
WuHaobo 已提交
189 190 191 192 193 194 195 196 197
    if architecture["name"] == "GoogLeNet":
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        softmax_out = out[0]
    else:
        # just need student label to get metrics
        if use_distillation:
            out = out[1]
        softmax_out = fluid.layers.softmax(out, use_cudnn=False)

W
WuHaobo 已提交
198
    fetchs = OrderedDict()
W
WuHaobo 已提交
199 200
    # set top1 to fetchs
    top1 = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=1)
201
    fetchs['top1'] = (top1, AverageMeter('top1', '.4f', need_avg=True))
W
WuHaobo 已提交
202
    # set topk to fetchs
W
WuHaobo 已提交
203
    k = min(topk, classes_num)
W
WuHaobo 已提交
204
    topk = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=k)
W
WuHaobo 已提交
205
    topk_name = 'top{}'.format(k)
206
    fetchs[topk_name] = (topk, AverageMeter(topk_name, '.4f', need_avg=True))
W
WuHaobo 已提交
207 208 209 210 211 212 213 214 215 216

    return fetchs


def create_fetchs(out,
                  feeds,
                  architecture,
                  topk=5,
                  classes_num=1000,
                  epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
217 218
                  use_mix=False,
                  use_distillation=False):
W
WuHaobo 已提交
219 220
    """
    Create fetchs as model outputs(included loss and measures),
littletomatodonkey's avatar
littletomatodonkey 已提交
221
    will call create_loss and create_metric(if use_mix).
W
WuHaobo 已提交
222 223 224

    Args:
        out(variable): model output variable
W
WuHaobo 已提交
225 226
        feeds(dict): dict of model input variables.
            If use mix_up, it will not include label.
227 228
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
229 230 231
        topk(int): usually top5
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
232
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
233 234 235 236 237

    Returns:
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    fetchs = OrderedDict()
littletomatodonkey's avatar
littletomatodonkey 已提交
238 239
    loss = create_loss(out, feeds, architecture, classes_num, epsilon, use_mix,
                       use_distillation)
240
    fetchs['loss'] = (loss, AverageMeter('loss', '7.4f', need_avg=True))
littletomatodonkey's avatar
littletomatodonkey 已提交
241
    if not use_mix:
W
WuHaobo 已提交
242 243
        metric = create_metric(out, feeds, architecture, topk, classes_num,
                               use_distillation)
W
WuHaobo 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        fetchs.update(metric)

    return fetchs


def create_optimizer(config):
    """
    Create an optimizer using config, usually including
    learning rate and regularization.

    Args:
        config(dict):  such as
        {
            'LEARNING_RATE':
                {'function': 'Cosine',
                 'params': {'lr': 0.1}
                },
            'OPTIMIZER':
                {'function': 'Momentum',
                 'params':{'momentum': 0.9},
                 'regularizer':
                    {'function': 'L2', 'factor': 0.0001}
                }
        }

    Returns:
        an optimizer instance
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epochs'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = config['OPTIMIZER']
    opt = OptimizerBuilder(**opt_config)
    return opt(lr)


def dist_optimizer(config, optimizer):
    """
    Create a distributed optimizer based on a normal optimizer

    Args:
        config(dict):
        optimizer(): a normal optimizer

    Returns:
        optimizer: a distributed optimizer
    """
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_threads = 3
    exec_strategy.num_iteration_per_drop_scope = 10

    dist_strategy = DistributedStrategy()
    dist_strategy.nccl_comm_num = 1
    dist_strategy.fuse_all_reduce_ops = True
    dist_strategy.exec_strategy = exec_strategy
    optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy)

    return optimizer


311 312 313 314 315 316 317 318 319 320 321 322 323
def mixed_precision_optimizer(config, optimizer):
    use_fp16 = config.get('use_fp16', False)
    amp_scale_loss = config.get('amp_scale_loss', 1.0)
    use_dynamic_loss_scaling = config.get('use_dynamic_loss_scaling', False)
    if use_fp16:
        optimizer = fluid.contrib.mixed_precision.decorate(
            optimizer,
            init_loss_scaling=amp_scale_loss,
            use_dynamic_loss_scaling=use_dynamic_loss_scaling)

    return optimizer


324
def build(config, main_prog, startup_prog, is_train=True, is_distributed=True):
W
WuHaobo 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337
    """
    Build a program using a model and an optimizer
        1. create feeds
        2. create a dataloader
        3. create a model
        4. create fetchs
        5. create an optimizer

    Args:
        config(dict): config
        main_prog(): main program
        startup_prog(): startup program
        is_train(bool): train or valid
338
        is_distributed(bool): whether to use distributed training method
W
WuHaobo 已提交
339 340 341 342 343 344 345 346

    Returns:
        dataloader(): a bridge between the model and the data
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            use_mix = config.get('use_mix') and is_train
littletomatodonkey's avatar
littletomatodonkey 已提交
347 348
            use_distillation = config.get('use_distillation')
            feeds = create_feeds(config.image_shape, use_mix=use_mix)
W
WuHaobo 已提交
349
            dataloader = create_dataloader(feeds.values())
L
Leo Chen 已提交
350
            
littletomatodonkey's avatar
littletomatodonkey 已提交
351
            out = create_model(config.ARCHITECTURE, feeds['image'],
S
add ema  
shippingwang 已提交
352
                               config.classes_num, is_train)
W
WuHaobo 已提交
353 354 355
            fetchs = create_fetchs(
                out,
                feeds,
littletomatodonkey's avatar
littletomatodonkey 已提交
356
                config.ARCHITECTURE,
W
WuHaobo 已提交
357 358 359
                config.topk,
                config.classes_num,
                epsilon=config.get('ls_epsilon'),
littletomatodonkey's avatar
littletomatodonkey 已提交
360 361
                use_mix=use_mix,
                use_distillation=use_distillation)
W
WuHaobo 已提交
362 363 364
            if is_train:
                optimizer = create_optimizer(config)
                lr = optimizer._global_learning_rate()
365
                fetchs['lr'] = (lr, AverageMeter('lr', 'f', need_avg=False))
366 367

                optimizer = mixed_precision_optimizer(config, optimizer)
368 369
                if is_distributed:
                    optimizer = dist_optimizer(config, optimizer)
W
WuHaobo 已提交
370
                optimizer.minimize(fetchs['loss'][0])
L
Leo Chen 已提交
371

S
add ema  
shippingwang 已提交
372 373
                if config.get('use_ema'):

S
shippingwang 已提交
374 375 376 377
                    global_steps = fluid.layers.learning_rate_scheduler._decay_step_counter(
                    )
                    ema = ExponentialMovingAverage(
                        config.get('ema_decay'), thres_steps=global_steps)
S
add ema  
shippingwang 已提交
378
                    ema.update()
S
shippingwang 已提交
379
                    return dataloader, fetchs, ema
W
WuHaobo 已提交
380 381 382 383

    return dataloader, fetchs


littletomatodonkey's avatar
littletomatodonkey 已提交
384
def compile(config, program, loss_name=None, share_prog=None):
W
WuHaobo 已提交
385 386 387 388 389 390 391
    """
    Compile the program

    Args:
        config(dict): config
        program(): the program which is wrapped by
        loss_name(str): loss name
littletomatodonkey's avatar
littletomatodonkey 已提交
392
        share_prog(): the shared program, used for evaluation during training
W
WuHaobo 已提交
393 394 395 396 397 398 399 400 401 402

    Returns:
        compiled_program(): a compiled program
    """
    build_strategy = fluid.compiler.BuildStrategy()
    exec_strategy = fluid.ExecutionStrategy()

    exec_strategy.num_threads = 1
    exec_strategy.num_iteration_per_drop_scope = 10

L
Leo Chen 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    use_fp16 = config.get('use_fp16', False)
    fuse_bn_act_ops = config.get('fuse_bn_act_ops', True)
    fuse_elewise_add_act_ops = config.get('fuse_elewise_add_act_ops', True)
    fuse_bn_add_act_ops = config.get('fuse_bn_add_act_ops', True)
    enable_addto = config.get('enable_addto', True)

    if use_fp16:
        try:
            build_strategy.fuse_bn_act_ops = fuse_bn_act_ops
        except Exception as e:
            logger.info(
                "PaddlePaddle version 1.7.0 or higher is "
                "required when you want to fuse batch_norm and activation_op.")
        try:
            build_strategy.fuse_elewise_add_act_ops = fuse_elewise_add_act_ops
        except Exception as e:
            logger.info(
                "PaddlePaddle version 1.7.0 or higher is "
                "required when you want to fuse elewise_add_act and activation_op.")
        
        try:
            build_strategy.fuse_bn_add_act_ops = fuse_bn_add_act_ops
        except Exception as e:
            logger.info(
                "PaddlePaddle 2.0-rc or higher is "
                "required when you want to enable fuse_bn_add_act_ops strategy.")
        try:
            
            build_strategy.enable_addto = enable_addto
        except Exception as e:
            logger.info(
                "PaddlePaddle 2.0-rc or higher is "
                "required when you want to enable addto strategy.")

W
WuHaobo 已提交
437
    compiled_program = fluid.CompiledProgram(program).with_data_parallel(
littletomatodonkey's avatar
littletomatodonkey 已提交
438
        share_vars_from=share_prog,
W
WuHaobo 已提交
439 440 441 442 443 444 445
        loss_name=loss_name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    return compiled_program


S
shippingwang 已提交
446 447 448
total_step = 0


S
shippingwang 已提交
449 450 451 452 453 454
def run(dataloader,
        exe,
        program,
        fetchs,
        epoch=0,
        mode='train',
455
        config=None,
S
shippingwang 已提交
456
        vdl_writer=None):
W
WuHaobo 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
    """
    Feed data to the model and fetch the measures and loss

    Args:
        dataloader(fluid dataloader):
        exe():
        program():
        fetchs(dict): dict of measures and the loss
        epoch(int): epoch of training or validation
        model(str): log only

    Returns:
    """
    fetch_list = [f[0] for f in fetchs.values()]
    metric_list = [f[1] for f in fetchs.values()]
W
WuHaobo 已提交
472 473
    for m in metric_list:
        m.reset()
S
shippingwang 已提交
474
    batch_time = AverageMeter('elapse', '.3f')
W
WuHaobo 已提交
475 476 477 478 479 480
    tic = time.time()
    for idx, batch in enumerate(dataloader()):
        metrics = exe.run(program=program, feed=batch, fetch_list=fetch_list)
        batch_time.update(time.time() - tic)
        tic = time.time()
        for i, m in enumerate(metrics):
481
            metric_list[i].update(np.mean(m), len(batch[0]))
littletomatodonkey's avatar
littletomatodonkey 已提交
482
        fetchs_str = ''.join([str(m.value) + ' '
483
                              for m in metric_list] + [batch_time.value]) + 's'
S
fixed  
shippingwang 已提交
484
        if vdl_writer:
S
shippingwang 已提交
485
            global total_step
S
fixed  
shippingwang 已提交
486
            logger.scaler('loss', metrics[0][0], total_step, vdl_writer)
S
shippingwang 已提交
487
            total_step += 1
W
WuHaobo 已提交
488
        if mode == 'eval':
S
fix  
shippingwang 已提交
489 490 491
            if idx % config.get('print_interval', 10) == 0:
                logger.info("{:s} step:{:<4d} {:s}".format(mode, idx,
                                                           fetchs_str))
W
WuHaobo 已提交
492
        else:
S
shippingwang 已提交
493 494 495
            epoch_str = "epoch:{:<3d}".format(epoch)
            step_str = "{:s} step:{:<4d}".format(mode, idx)

496 497 498 499 500 501 502 503 504
            # Keep the first 10 batches statistics, They are important for develop
            if epoch == 0 and idx < 10:
                logger.info("{:s} {:s} {:s}".format(
                    logger.coloring(epoch_str, "HEADER")
                    if idx == 0 else epoch_str,
                    logger.coloring(step_str, "PURPLE"),
                    logger.coloring(fetchs_str, 'OKGREEN')))

            else:
S
fix  
shippingwang 已提交
505
                if idx % config.get('print_interval', 10) == 0:
506 507 508 509 510
                    logger.info("{:s} {:s} {:s}".format(
                        logger.coloring(epoch_str, "HEADER")
                        if idx == 0 else epoch_str,
                        logger.coloring(step_str, "PURPLE"),
                        logger.coloring(fetchs_str, 'OKGREEN')))
L
Leo Chen 已提交
511
        
S
refine  
shippingwang 已提交
512

littletomatodonkey's avatar
littletomatodonkey 已提交
513
    end_str = ''.join([str(m.mean) + ' '
514
                       for m in metric_list] + [batch_time.total]) + 's'
W
WuHaobo 已提交
515
    if mode == 'eval':
S
refine  
shippingwang 已提交
516
        logger.info("END {:s} {:s}s".format(mode, end_str))
W
WuHaobo 已提交
517
    else:
S
shippingwang 已提交
518 519
        end_epoch_str = "END epoch:{:<3d}".format(epoch)

520 521 522 523
        logger.info("{:s} {:s} {:s}".format(
            logger.coloring(end_epoch_str, "RED"),
            logger.coloring(mode, "PURPLE"),
            logger.coloring(end_str, "OKGREEN")))
littletomatodonkey's avatar
littletomatodonkey 已提交
524

W
WuHaobo 已提交
525
    # return top1_acc in order to save the best model
W
WuHaobo 已提交
526
    if mode == 'valid':
W
WuHaobo 已提交
527
        return fetchs["top1"][1].avg