program.py 15.7 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
21
import numpy as np
W
WuHaobo 已提交
22 23 24 25 26 27 28 29 30 31

from collections import OrderedDict

import paddle.fluid as fluid

from ppcls.optimizer import LearningRateBuilder
from ppcls.optimizer import OptimizerBuilder
from ppcls.modeling import architectures
from ppcls.modeling.loss import CELoss
from ppcls.modeling.loss import MixCELoss
littletomatodonkey's avatar
littletomatodonkey 已提交
32
from ppcls.modeling.loss import JSDivLoss
W
WuHaobo 已提交
33 34 35 36 37 38 39
from ppcls.modeling.loss import GoogLeNetLoss
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger

from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.collective import DistributedStrategy

S
shippingwang 已提交
40
from ema import ExponentialMovingAverage
R
fix  
root 已提交
41

W
WuHaobo 已提交
42

littletomatodonkey's avatar
littletomatodonkey 已提交
43
def create_feeds(image_shape, use_mix=None):
W
WuHaobo 已提交
44 45 46 47 48
    """
    Create feeds as model input

    Args:
        image_shape(list[int]): model input shape, such as [3, 224, 224]
littletomatodonkey's avatar
littletomatodonkey 已提交
49
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
50 51 52 53 54 55 56

    Returns:
        feeds(dict): dict of model input variables
    """
    feeds = OrderedDict()
    feeds['image'] = fluid.data(
        name="feed_image", shape=[None] + image_shape, dtype="float32")
littletomatodonkey's avatar
littletomatodonkey 已提交
57
    if use_mix:
W
WuHaobo 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        feeds['feed_y_a'] = fluid.data(
            name="feed_y_a", shape=[None, 1], dtype="int64")
        feeds['feed_y_b'] = fluid.data(
            name="feed_y_b", shape=[None, 1], dtype="int64")
        feeds['feed_lam'] = fluid.data(
            name="feed_lam", shape=[None, 1], dtype="float32")
    else:
        feeds['label'] = fluid.data(
            name="feed_label", shape=[None, 1], dtype="int64")

    return feeds


def create_dataloader(feeds):
    """
    Create a dataloader with model input variables

    Args:
        feeds(dict): dict of model input variables

    Returns:
        dataloader(fluid dataloader):
    """
    trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
    capacity = 64 if trainer_num <= 1 else 8
    dataloader = fluid.io.DataLoader.from_generator(
        feed_list=feeds,
        capacity=capacity,
        use_double_buffer=True,
        iterable=True)

    return dataloader


S
add ema  
shippingwang 已提交
92
def create_model(architecture, image, classes_num, is_train):
W
WuHaobo 已提交
93 94 95 96
    """
    Create a model

    Args:
97 98
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
99 100 101 102 103 104
        image(variable): model input variable
        classes_num(int): num of classes

    Returns:
        out(variable): model output variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
105
    name = architecture["name"]
littletomatodonkey's avatar
littletomatodonkey 已提交
106
    params = architecture.get("params", {})
littletomatodonkey's avatar
littletomatodonkey 已提交
107 108
    if "is_test" in params:
        params['is_test'] = not is_train
littletomatodonkey's avatar
littletomatodonkey 已提交
109
    model = architectures.__dict__[name](**params)
W
WuHaobo 已提交
110 111 112 113 114 115 116 117 118
    out = model.net(input=image, class_dim=classes_num)
    return out


def create_loss(out,
                feeds,
                architecture,
                classes_num=1000,
                epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
119 120
                use_mix=False,
                use_distillation=False):
W
WuHaobo 已提交
121 122 123 124 125 126 127 128 129 130 131
    """
    Create a loss for optimization, such as:
        1. CrossEnotry loss
        2. CrossEnotry loss with label smoothing
        3. CrossEnotry loss with mix(mixup, cutmix, fmix)
        4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix)
        5. GoogLeNet loss

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables
132 133
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
134 135
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
136
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
137 138 139 140

    Returns:
        loss(variable): loss variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
141
    if architecture["name"] == "GoogLeNet":
W
WuHaobo 已提交
142 143 144 145 146
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
        target = feeds['label']
        return loss(out[0], out[1], out[2], target)

littletomatodonkey's avatar
littletomatodonkey 已提交
147
    if use_distillation:
148 149
        assert len(out) == 2, ("distillation output length must be 2, "
                               "but got {}".format(len(out)))
littletomatodonkey's avatar
littletomatodonkey 已提交
150 151 152 153
        loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out[1], out[0])

    if use_mix:
W
WuHaobo 已提交
154 155 156 157 158 159 160 161 162 163 164
        loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
        feed_y_a = feeds['feed_y_a']
        feed_y_b = feeds['feed_y_b']
        feed_lam = feeds['feed_lam']
        return loss(out, feed_y_a, feed_y_b, feed_lam)
    else:
        loss = CELoss(class_dim=classes_num, epsilon=epsilon)
        target = feeds['label']
        return loss(out, target)


W
WuHaobo 已提交
165 166 167 168 169
def create_metric(out,
                  feeds,
                  architecture,
                  topk=5,
                  classes_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
170
                  use_distillation=False):
W
WuHaobo 已提交
171 172 173 174 175 176 177 178 179 180 181 182
    """
    Create measures of model accuracy, such as top1 and top5

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
        topk(int): usually top5
        classes_num(int): num of classes

    Returns:
        fetchs(dict): dict of measures
    """
W
WuHaobo 已提交
183 184 185 186 187 188 189 190 191
    if architecture["name"] == "GoogLeNet":
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        softmax_out = out[0]
    else:
        # just need student label to get metrics
        if use_distillation:
            out = out[1]
        softmax_out = fluid.layers.softmax(out, use_cudnn=False)

W
WuHaobo 已提交
192
    fetchs = OrderedDict()
W
WuHaobo 已提交
193 194
    # set top1 to fetchs
    top1 = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=1)
195
    fetchs['top1'] = (top1, AverageMeter('top1', '.4f', need_avg=True))
W
WuHaobo 已提交
196
    # set topk to fetchs
W
WuHaobo 已提交
197
    k = min(topk, classes_num)
W
WuHaobo 已提交
198
    topk = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=k)
W
WuHaobo 已提交
199
    topk_name = 'top{}'.format(k)
200
    fetchs[topk_name] = (topk, AverageMeter(topk_name, '.4f', need_avg=True))
W
WuHaobo 已提交
201 202 203 204 205 206 207 208 209 210

    return fetchs


def create_fetchs(out,
                  feeds,
                  architecture,
                  topk=5,
                  classes_num=1000,
                  epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
211 212
                  use_mix=False,
                  use_distillation=False):
W
WuHaobo 已提交
213 214
    """
    Create fetchs as model outputs(included loss and measures),
littletomatodonkey's avatar
littletomatodonkey 已提交
215
    will call create_loss and create_metric(if use_mix).
W
WuHaobo 已提交
216 217 218

    Args:
        out(variable): model output variable
W
WuHaobo 已提交
219 220
        feeds(dict): dict of model input variables.
            If use mix_up, it will not include label.
221 222
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
223 224 225
        topk(int): usually top5
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
226
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
227 228 229 230 231

    Returns:
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    fetchs = OrderedDict()
littletomatodonkey's avatar
littletomatodonkey 已提交
232 233
    loss = create_loss(out, feeds, architecture, classes_num, epsilon, use_mix,
                       use_distillation)
234
    fetchs['loss'] = (loss, AverageMeter('loss', '7.4f', need_avg=True))
littletomatodonkey's avatar
littletomatodonkey 已提交
235
    if not use_mix:
W
WuHaobo 已提交
236 237
        metric = create_metric(out, feeds, architecture, topk, classes_num,
                               use_distillation)
W
WuHaobo 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
        fetchs.update(metric)

    return fetchs


def create_optimizer(config):
    """
    Create an optimizer using config, usually including
    learning rate and regularization.

    Args:
        config(dict):  such as
        {
            'LEARNING_RATE':
                {'function': 'Cosine',
                 'params': {'lr': 0.1}
                },
            'OPTIMIZER':
                {'function': 'Momentum',
                 'params':{'momentum': 0.9},
                 'regularizer':
                    {'function': 'L2', 'factor': 0.0001}
                }
        }

    Returns:
        an optimizer instance
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epochs'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = config['OPTIMIZER']
    opt = OptimizerBuilder(**opt_config)
    return opt(lr)


def dist_optimizer(config, optimizer):
    """
    Create a distributed optimizer based on a normal optimizer

    Args:
        config(dict):
        optimizer(): a normal optimizer

    Returns:
        optimizer: a distributed optimizer
    """
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_threads = 3
    exec_strategy.num_iteration_per_drop_scope = 10

    dist_strategy = DistributedStrategy()
    dist_strategy.nccl_comm_num = 1
    dist_strategy.fuse_all_reduce_ops = True
    dist_strategy.exec_strategy = exec_strategy
    optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy)

    return optimizer


305 306 307 308 309 310 311 312 313 314 315 316 317
def mixed_precision_optimizer(config, optimizer):
    use_fp16 = config.get('use_fp16', False)
    amp_scale_loss = config.get('amp_scale_loss', 1.0)
    use_dynamic_loss_scaling = config.get('use_dynamic_loss_scaling', False)
    if use_fp16:
        optimizer = fluid.contrib.mixed_precision.decorate(
            optimizer,
            init_loss_scaling=amp_scale_loss,
            use_dynamic_loss_scaling=use_dynamic_loss_scaling)

    return optimizer


318
def build(config, main_prog, startup_prog, is_train=True, is_distributed=True):
W
WuHaobo 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331
    """
    Build a program using a model and an optimizer
        1. create feeds
        2. create a dataloader
        3. create a model
        4. create fetchs
        5. create an optimizer

    Args:
        config(dict): config
        main_prog(): main program
        startup_prog(): startup program
        is_train(bool): train or valid
332
        is_distributed(bool): whether to use distributed training method
W
WuHaobo 已提交
333 334 335 336 337 338 339 340

    Returns:
        dataloader(): a bridge between the model and the data
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            use_mix = config.get('use_mix') and is_train
littletomatodonkey's avatar
littletomatodonkey 已提交
341 342
            use_distillation = config.get('use_distillation')
            feeds = create_feeds(config.image_shape, use_mix=use_mix)
W
WuHaobo 已提交
343
            dataloader = create_dataloader(feeds.values())
littletomatodonkey's avatar
littletomatodonkey 已提交
344
            out = create_model(config.ARCHITECTURE, feeds['image'],
S
add ema  
shippingwang 已提交
345
                               config.classes_num, is_train)
W
WuHaobo 已提交
346 347 348
            fetchs = create_fetchs(
                out,
                feeds,
littletomatodonkey's avatar
littletomatodonkey 已提交
349
                config.ARCHITECTURE,
W
WuHaobo 已提交
350 351 352
                config.topk,
                config.classes_num,
                epsilon=config.get('ls_epsilon'),
littletomatodonkey's avatar
littletomatodonkey 已提交
353 354
                use_mix=use_mix,
                use_distillation=use_distillation)
W
WuHaobo 已提交
355 356 357
            if is_train:
                optimizer = create_optimizer(config)
                lr = optimizer._global_learning_rate()
358
                fetchs['lr'] = (lr, AverageMeter('lr', 'f', need_avg=False))
359 360

                optimizer = mixed_precision_optimizer(config, optimizer)
361 362
                if is_distributed:
                    optimizer = dist_optimizer(config, optimizer)
W
WuHaobo 已提交
363
                optimizer.minimize(fetchs['loss'][0])
S
add ema  
shippingwang 已提交
364 365
                if config.get('use_ema'):

S
shippingwang 已提交
366 367 368 369
                    global_steps = fluid.layers.learning_rate_scheduler._decay_step_counter(
                    )
                    ema = ExponentialMovingAverage(
                        config.get('ema_decay'), thres_steps=global_steps)
S
add ema  
shippingwang 已提交
370
                    ema.update()
S
shippingwang 已提交
371
                    return dataloader, fetchs, ema
W
WuHaobo 已提交
372 373 374 375

    return dataloader, fetchs


littletomatodonkey's avatar
littletomatodonkey 已提交
376
def compile(config, program, loss_name=None, share_prog=None):
W
WuHaobo 已提交
377 378 379 380 381 382 383
    """
    Compile the program

    Args:
        config(dict): config
        program(): the program which is wrapped by
        loss_name(str): loss name
littletomatodonkey's avatar
littletomatodonkey 已提交
384
        share_prog(): the shared program, used for evaluation during training
W
WuHaobo 已提交
385 386 387 388 389 390 391 392 393 394 395

    Returns:
        compiled_program(): a compiled program
    """
    build_strategy = fluid.compiler.BuildStrategy()
    exec_strategy = fluid.ExecutionStrategy()

    exec_strategy.num_threads = 1
    exec_strategy.num_iteration_per_drop_scope = 10

    compiled_program = fluid.CompiledProgram(program).with_data_parallel(
littletomatodonkey's avatar
littletomatodonkey 已提交
396
        share_vars_from=share_prog,
W
WuHaobo 已提交
397 398 399 400 401 402 403
        loss_name=loss_name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    return compiled_program


S
shippingwang 已提交
404 405 406
total_step = 0


S
shippingwang 已提交
407 408 409 410 411 412
def run(dataloader,
        exe,
        program,
        fetchs,
        epoch=0,
        mode='train',
413
        config=None,
S
shippingwang 已提交
414
        vdl_writer=None):
W
WuHaobo 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    """
    Feed data to the model and fetch the measures and loss

    Args:
        dataloader(fluid dataloader):
        exe():
        program():
        fetchs(dict): dict of measures and the loss
        epoch(int): epoch of training or validation
        model(str): log only

    Returns:
    """
    fetch_list = [f[0] for f in fetchs.values()]
    metric_list = [f[1] for f in fetchs.values()]
W
WuHaobo 已提交
430 431
    for m in metric_list:
        m.reset()
S
shippingwang 已提交
432
    batch_time = AverageMeter('elapse', '.3f')
W
WuHaobo 已提交
433 434 435 436 437 438
    tic = time.time()
    for idx, batch in enumerate(dataloader()):
        metrics = exe.run(program=program, feed=batch, fetch_list=fetch_list)
        batch_time.update(time.time() - tic)
        tic = time.time()
        for i, m in enumerate(metrics):
439
            metric_list[i].update(np.mean(m), len(batch[0]))
littletomatodonkey's avatar
littletomatodonkey 已提交
440
        fetchs_str = ''.join([str(m.value) + ' '
441
                              for m in metric_list] + [batch_time.value]) + 's'
S
fixed  
shippingwang 已提交
442
        if vdl_writer:
S
shippingwang 已提交
443
            global total_step
S
fixed  
shippingwang 已提交
444
            logger.scaler('loss', metrics[0][0], total_step, vdl_writer)
S
shippingwang 已提交
445
            total_step += 1
W
WuHaobo 已提交
446
        if mode == 'eval':
447 448 449
            if idx % config.get('print_interval', 1) == 0:
                logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx,
                                                            fetchs_str))
W
WuHaobo 已提交
450
        else:
S
shippingwang 已提交
451 452 453
            epoch_str = "epoch:{:<3d}".format(epoch)
            step_str = "{:s} step:{:<4d}".format(mode, idx)

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
            # Keep the first 10 batches statistics, They are important for develop
            if epoch == 0 and idx < 10:
                logger.info("{:s} {:s} {:s}".format(
                    logger.coloring(epoch_str, "HEADER")
                    if idx == 0 else epoch_str,
                    logger.coloring(step_str, "PURPLE"),
                    logger.coloring(fetchs_str, 'OKGREEN')))

            else:
                if idx % config.get('print_interval', 1) == 0:
                    logger.info("{:s} {:s} {:s}".format(
                        logger.coloring(epoch_str, "HEADER")
                        if idx == 0 else epoch_str,
                        logger.coloring(step_str, "PURPLE"),
                        logger.coloring(fetchs_str, 'OKGREEN')))
S
refine  
shippingwang 已提交
469

littletomatodonkey's avatar
littletomatodonkey 已提交
470
    end_str = ''.join([str(m.mean) + ' '
471
                       for m in metric_list] + [batch_time.total]) + 's'
W
WuHaobo 已提交
472
    if mode == 'eval':
S
refine  
shippingwang 已提交
473
        logger.info("END {:s} {:s}s".format(mode, end_str))
W
WuHaobo 已提交
474
    else:
S
shippingwang 已提交
475 476
        end_epoch_str = "END epoch:{:<3d}".format(epoch)

477 478 479 480
        logger.info("{:s} {:s} {:s}".format(
            logger.coloring(end_epoch_str, "RED"),
            logger.coloring(mode, "PURPLE"),
            logger.coloring(end_str, "OKGREEN")))
littletomatodonkey's avatar
littletomatodonkey 已提交
481

W
WuHaobo 已提交
482
    # return top1_acc in order to save the best model
W
WuHaobo 已提交
483
    if mode == 'valid':
W
WuHaobo 已提交
484
        return fetchs["top1"][1].avg