# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import numpy as np from collections import OrderedDict import paddle.fluid as fluid from ppcls.optimizer import LearningRateBuilder from ppcls.optimizer import OptimizerBuilder from ppcls.modeling import architectures from ppcls.modeling.loss import CELoss from ppcls.modeling.loss import MixCELoss from ppcls.modeling.loss import JSDivLoss from ppcls.modeling.loss import GoogLeNetLoss from ppcls.utils.misc import AverageMeter from ppcls.utils import logger from paddle.fluid.incubate.fleet.collective import fleet from paddle.fluid.incubate.fleet.collective import DistributedStrategy from ema import ExponentialMovingAverage def create_feeds(image_shape, use_mix=None): """ Create feeds as model input Args: image_shape(list[int]): model input shape, such as [3, 224, 224] use_mix(bool): whether to use mix(include mixup, cutmix, fmix) Returns: feeds(dict): dict of model input variables """ feeds = OrderedDict() feeds['image'] = fluid.data( name="feed_image", shape=[None] + image_shape, dtype="float32") if use_mix: feeds['feed_y_a'] = fluid.data( name="feed_y_a", shape=[None, 1], dtype="int64") feeds['feed_y_b'] = fluid.data( name="feed_y_b", shape=[None, 1], dtype="int64") feeds['feed_lam'] = fluid.data( name="feed_lam", shape=[None, 1], dtype="float32") else: feeds['label'] = fluid.data( name="feed_label", shape=[None, 1], dtype="int64") return feeds def create_dataloader(feeds): """ Create a dataloader with model input variables Args: feeds(dict): dict of model input variables Returns: dataloader(fluid dataloader): """ trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) capacity = 64 if trainer_num <= 1 else 8 dataloader = fluid.io.DataLoader.from_generator( feed_list=feeds, capacity=capacity, use_double_buffer=True, iterable=True) return dataloader def create_model(architecture, image, classes_num, is_train): """ Create a model Args: architecture(dict): architecture information, name(such as ResNet50) is needed image(variable): model input variable classes_num(int): num of classes Returns: out(variable): model output variable """ name = architecture["name"] params = architecture.get("params", {}) if "is_test" in params: params['is_test'] = not is_train model = architectures.__dict__[name](**params) out = model.net(input=image, class_dim=classes_num) return out def create_loss(out, feeds, architecture, classes_num=1000, epsilon=None, use_mix=False, use_distillation=False): """ Create a loss for optimization, such as: 1. CrossEnotry loss 2. CrossEnotry loss with label smoothing 3. CrossEnotry loss with mix(mixup, cutmix, fmix) 4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix) 5. GoogLeNet loss Args: out(variable): model output variable feeds(dict): dict of model input variables architecture(dict): architecture information, name(such as ResNet50) is needed classes_num(int): num of classes epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0 use_mix(bool): whether to use mix(include mixup, cutmix, fmix) Returns: loss(variable): loss variable """ if architecture["name"] == "GoogLeNet": assert len(out) == 3, "GoogLeNet should have 3 outputs" loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon) target = feeds['label'] return loss(out[0], out[1], out[2], target) if use_distillation: assert len(out) == 2, ("distillation output length must be 2, " "but got {}".format(len(out))) loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon) return loss(out[1], out[0]) if use_mix: loss = MixCELoss(class_dim=classes_num, epsilon=epsilon) feed_y_a = feeds['feed_y_a'] feed_y_b = feeds['feed_y_b'] feed_lam = feeds['feed_lam'] return loss(out, feed_y_a, feed_y_b, feed_lam) else: loss = CELoss(class_dim=classes_num, epsilon=epsilon) target = feeds['label'] return loss(out, target) def create_metric(out, feeds, architecture, topk=5, classes_num=1000, use_distillation=False): """ Create measures of model accuracy, such as top1 and top5 Args: out(variable): model output variable feeds(dict): dict of model input variables(included label) topk(int): usually top5 classes_num(int): num of classes Returns: fetchs(dict): dict of measures """ if architecture["name"] == "GoogLeNet": assert len(out) == 3, "GoogLeNet should have 3 outputs" softmax_out = out[0] else: # just need student label to get metrics if use_distillation: out = out[1] softmax_out = fluid.layers.softmax(out, use_cudnn=False) fetchs = OrderedDict() # set top1 to fetchs top1 = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=1) fetchs['top1'] = (top1, AverageMeter('top1', '.4f', need_avg=True)) # set topk to fetchs k = min(topk, classes_num) topk = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=k) topk_name = 'top{}'.format(k) fetchs[topk_name] = (topk, AverageMeter(topk_name, '.4f', need_avg=True)) return fetchs def create_fetchs(out, feeds, architecture, topk=5, classes_num=1000, epsilon=None, use_mix=False, use_distillation=False): """ Create fetchs as model outputs(included loss and measures), will call create_loss and create_metric(if use_mix). Args: out(variable): model output variable feeds(dict): dict of model input variables. If use mix_up, it will not include label. architecture(dict): architecture information, name(such as ResNet50) is needed topk(int): usually top5 classes_num(int): num of classes epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0 use_mix(bool): whether to use mix(include mixup, cutmix, fmix) Returns: fetchs(dict): dict of model outputs(included loss and measures) """ fetchs = OrderedDict() loss = create_loss(out, feeds, architecture, classes_num, epsilon, use_mix, use_distillation) fetchs['loss'] = (loss, AverageMeter('loss', '7.4f', need_avg=True)) if not use_mix: metric = create_metric(out, feeds, architecture, topk, classes_num, use_distillation) fetchs.update(metric) return fetchs def create_optimizer(config): """ Create an optimizer using config, usually including learning rate and regularization. Args: config(dict): such as { 'LEARNING_RATE': {'function': 'Cosine', 'params': {'lr': 0.1} }, 'OPTIMIZER': {'function': 'Momentum', 'params':{'momentum': 0.9}, 'regularizer': {'function': 'L2', 'factor': 0.0001} } } Returns: an optimizer instance """ # create learning_rate instance lr_config = config['LEARNING_RATE'] lr_config['params'].update({ 'epochs': config['epochs'], 'step_each_epoch': config['total_images'] // config['TRAIN']['batch_size'], }) lr = LearningRateBuilder(**lr_config)() # create optimizer instance opt_config = config['OPTIMIZER'] opt = OptimizerBuilder(**opt_config) return opt(lr) def dist_optimizer(config, optimizer): """ Create a distributed optimizer based on a normal optimizer Args: config(dict): optimizer(): a normal optimizer Returns: optimizer: a distributed optimizer """ exec_strategy = fluid.ExecutionStrategy() exec_strategy.num_threads = 3 exec_strategy.num_iteration_per_drop_scope = 10 dist_strategy = DistributedStrategy() dist_strategy.nccl_comm_num = 1 dist_strategy.fuse_all_reduce_ops = True dist_strategy.exec_strategy = exec_strategy optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy) return optimizer def mixed_precision_optimizer(config, optimizer): use_fp16 = config.get('use_fp16', False) amp_scale_loss = config.get('amp_scale_loss', 1.0) use_dynamic_loss_scaling = config.get('use_dynamic_loss_scaling', False) if use_fp16: optimizer = fluid.contrib.mixed_precision.decorate( optimizer, init_loss_scaling=amp_scale_loss, use_dynamic_loss_scaling=use_dynamic_loss_scaling) return optimizer def build(config, main_prog, startup_prog, is_train=True, is_distributed=True): """ Build a program using a model and an optimizer 1. create feeds 2. create a dataloader 3. create a model 4. create fetchs 5. create an optimizer Args: config(dict): config main_prog(): main program startup_prog(): startup program is_train(bool): train or valid is_distributed(bool): whether to use distributed training method Returns: dataloader(): a bridge between the model and the data fetchs(dict): dict of model outputs(included loss and measures) """ with fluid.program_guard(main_prog, startup_prog): with fluid.unique_name.guard(): use_mix = config.get('use_mix') and is_train use_distillation = config.get('use_distillation') feeds = create_feeds(config.image_shape, use_mix=use_mix) dataloader = create_dataloader(feeds.values()) out = create_model(config.ARCHITECTURE, feeds['image'], config.classes_num, is_train) fetchs = create_fetchs( out, feeds, config.ARCHITECTURE, config.topk, config.classes_num, epsilon=config.get('ls_epsilon'), use_mix=use_mix, use_distillation=use_distillation) if is_train: optimizer = create_optimizer(config) lr = optimizer._global_learning_rate() fetchs['lr'] = (lr, AverageMeter('lr', 'f', need_avg=False)) optimizer = mixed_precision_optimizer(config, optimizer) if is_distributed: optimizer = dist_optimizer(config, optimizer) optimizer.minimize(fetchs['loss'][0]) if config.get('use_ema'): global_steps = fluid.layers.learning_rate_scheduler._decay_step_counter( ) ema = ExponentialMovingAverage( config.get('ema_decay'), thres_steps=global_steps) ema.update() return dataloader, fetchs, ema return dataloader, fetchs def compile(config, program, loss_name=None, share_prog=None): """ Compile the program Args: config(dict): config program(): the program which is wrapped by loss_name(str): loss name share_prog(): the shared program, used for evaluation during training Returns: compiled_program(): a compiled program """ build_strategy = fluid.compiler.BuildStrategy() exec_strategy = fluid.ExecutionStrategy() exec_strategy.num_threads = 1 exec_strategy.num_iteration_per_drop_scope = 10 compiled_program = fluid.CompiledProgram(program).with_data_parallel( share_vars_from=share_prog, loss_name=loss_name, build_strategy=build_strategy, exec_strategy=exec_strategy) return compiled_program total_step = 0 def run(dataloader, exe, program, fetchs, epoch=0, mode='train', config=None, vdl_writer=None): """ Feed data to the model and fetch the measures and loss Args: dataloader(fluid dataloader): exe(): program(): fetchs(dict): dict of measures and the loss epoch(int): epoch of training or validation model(str): log only Returns: """ fetch_list = [f[0] for f in fetchs.values()] metric_list = [f[1] for f in fetchs.values()] for m in metric_list: m.reset() batch_time = AverageMeter('elapse', '.3f') tic = time.time() for idx, batch in enumerate(dataloader()): metrics = exe.run(program=program, feed=batch, fetch_list=fetch_list) batch_time.update(time.time() - tic) tic = time.time() for i, m in enumerate(metrics): metric_list[i].update(np.mean(m), len(batch[0])) fetchs_str = ''.join([str(m.value) + ' ' for m in metric_list] + [batch_time.value]) + 's' if vdl_writer: global total_step logger.scaler('loss', metrics[0][0], total_step, vdl_writer) total_step += 1 if mode == 'eval': if idx % config.get('print_interval', 1) == 0: logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx, fetchs_str)) else: epoch_str = "epoch:{:<3d}".format(epoch) step_str = "{:s} step:{:<4d}".format(mode, idx) # Keep the first 10 batches statistics, They are important for develop if epoch == 0 and idx < 10: logger.info("{:s} {:s} {:s}".format( logger.coloring(epoch_str, "HEADER") if idx == 0 else epoch_str, logger.coloring(step_str, "PURPLE"), logger.coloring(fetchs_str, 'OKGREEN'))) else: if idx % config.get('print_interval', 1) == 0: logger.info("{:s} {:s} {:s}".format( logger.coloring(epoch_str, "HEADER") if idx == 0 else epoch_str, logger.coloring(step_str, "PURPLE"), logger.coloring(fetchs_str, 'OKGREEN'))) end_str = ''.join([str(m.mean) + ' ' for m in metric_list] + [batch_time.total]) + 's' if mode == 'eval': logger.info("END {:s} {:s}s".format(mode, end_str)) else: end_epoch_str = "END epoch:{:<3d}".format(epoch) logger.info("{:s} {:s} {:s}".format( logger.coloring(end_epoch_str, "RED"), logger.coloring(mode, "PURPLE"), logger.coloring(end_str, "OKGREEN"))) # return top1_acc in order to save the best model if mode == 'valid': return fetchs["top1"][1].avg