metrics.py 18.4 KB
Newer Older
W
weishengyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from cmath import nan
W
weishengyu 已提交
16 17 18
import numpy as np
import paddle
import paddle.nn as nn
C
cuicheng01 已提交
19 20 21 22 23 24
import paddle.nn.functional as F

from sklearn.metrics import hamming_loss
from sklearn.metrics import accuracy_score as accuracy_metric
from sklearn.metrics import multilabel_confusion_matrix
from sklearn.preprocessing import binarize
W
weishengyu 已提交
25

Z
zhiboniu 已提交
26 27
from easydict import EasyDict

C
cuicheng01 已提交
28
from ppcls.metric.avg_metrics import AvgMetrics
Z
zhiboniu 已提交
29
from ppcls.utils.misc import AverageMeter, AttrMeter
30
from ppcls.utils import logger
D
dongshuilong 已提交
31

C
cuicheng01 已提交
32 33

class TopkAcc(AvgMetrics):
W
weishengyu 已提交
34 35 36 37 38 39
    def __init__(self, topk=(1, 5)):
        super().__init__()
        assert isinstance(topk, (int, list, tuple))
        if isinstance(topk, int):
            topk = [topk]
        self.topk = topk
C
cuicheng01 已提交
40
        self.reset()
41
        self.warned = False
C
cuicheng01 已提交
42 43

    def reset(self):
44
        self.avg_meters = {
45
            f"top{k}": AverageMeter(f"top{k}")
46 47
            for k in self.topk
        }
W
weishengyu 已提交
48 49 50 51 52

    def forward(self, x, label):
        if isinstance(x, dict):
            x = x["logits"]

53 54
        output_dims = x.shape[-1]

W
weishengyu 已提交
55
        metric_dict = dict()
56 57
        for idx, k in enumerate(self.topk):
            if output_dims < k:
58 59 60 61
                if not self.warned:
                    msg = f"The output dims({output_dims}) is less than k({k}), so the Top-{k} metric is meaningless."
                    logger.warning(msg)
                    self.warned = True
62
                metric_dict[f"top{k}"] = 1
63 64
            else:
                metric_dict[f"top{k}"] = paddle.metric.accuracy(x, label, k=k)
65 66
            self.avg_meters[f"top{k}"].update(metric_dict[f"top{k}"],
                                              x.shape[0])
W
weishengyu 已提交
67 68
        return metric_dict

D
dongshuilong 已提交
69

W
weishengyu 已提交
70
class mAP(nn.Layer):
H
HydrogenSulfate 已提交
71
    def __init__(self, descending=True):
W
weishengyu 已提交
72
        super().__init__()
H
HydrogenSulfate 已提交
73
        self.descending = descending
W
weishengyu 已提交
74

D
dongshuilong 已提交
75
    def forward(self, similarities_matrix, query_img_id, gallery_img_id,
D
dongshuilong 已提交
76
                keep_mask):
W
weishengyu 已提交
77
        metric_dict = dict()
D
dongshuilong 已提交
78 79

        choosen_indices = paddle.argsort(
H
HydrogenSulfate 已提交
80
            similarities_matrix, axis=1, descending=self.descending)
D
dongshuilong 已提交
81 82 83 84 85 86 87 88
        gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
        gallery_labels_transpose = paddle.broadcast_to(
            gallery_labels_transpose,
            shape=[
                choosen_indices.shape[0], gallery_labels_transpose.shape[1]
            ])
        choosen_label = paddle.index_sample(gallery_labels_transpose,
                                            choosen_indices)
B
Bin Lu 已提交
89
        equal_flag = paddle.equal(choosen_label, query_img_id)
D
dongshuilong 已提交
90 91 92 93 94
        if keep_mask is not None:
            keep_mask = paddle.index_sample(
                keep_mask.astype('float32'), choosen_indices)
            equal_flag = paddle.logical_and(equal_flag,
                                            keep_mask.astype('bool'))
B
Bin Lu 已提交
95 96
        equal_flag = paddle.cast(equal_flag, 'float32')

D
dongshuilong 已提交
97 98 99 100
        num_rel = paddle.sum(equal_flag, axis=1)
        num_rel = paddle.greater_than(num_rel, paddle.to_tensor(0.))
        num_rel_index = paddle.nonzero(num_rel.astype("int"))
        num_rel_index = paddle.reshape(num_rel_index, [num_rel_index.shape[0]])
101 102 103 104 105

        if paddle.numel(num_rel_index).item() == 0:
            metric_dict["mAP"] = np.nan
            return metric_dict

D
dongshuilong 已提交
106 107
        equal_flag = paddle.index_select(equal_flag, num_rel_index, axis=0)

B
Bin Lu 已提交
108 109
        acc_sum = paddle.cumsum(equal_flag, axis=1)
        div = paddle.arange(acc_sum.shape[1]).astype("float32") + 1
D
dongshuilong 已提交
110
        precision = paddle.divide(acc_sum, div)
B
Bin Lu 已提交
111 112 113

        #calc map
        precision_mask = paddle.multiply(equal_flag, precision)
D
dongshuilong 已提交
114 115
        ap = paddle.sum(precision_mask, axis=1) / paddle.sum(equal_flag,
                                                             axis=1)
116
        metric_dict["mAP"] = float(paddle.mean(ap))
W
weishengyu 已提交
117 118
        return metric_dict

D
dongshuilong 已提交
119

W
weishengyu 已提交
120
class mINP(nn.Layer):
H
HydrogenSulfate 已提交
121
    def __init__(self, descending=True):
W
weishengyu 已提交
122
        super().__init__()
H
HydrogenSulfate 已提交
123
        self.descending = descending
W
weishengyu 已提交
124

D
dongshuilong 已提交
125
    def forward(self, similarities_matrix, query_img_id, gallery_img_id,
D
dongshuilong 已提交
126
                keep_mask):
W
weishengyu 已提交
127
        metric_dict = dict()
D
dongshuilong 已提交
128 129

        choosen_indices = paddle.argsort(
H
HydrogenSulfate 已提交
130
            similarities_matrix, axis=1, descending=self.descending)
D
dongshuilong 已提交
131 132 133 134 135 136 137 138
        gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
        gallery_labels_transpose = paddle.broadcast_to(
            gallery_labels_transpose,
            shape=[
                choosen_indices.shape[0], gallery_labels_transpose.shape[1]
            ])
        choosen_label = paddle.index_sample(gallery_labels_transpose,
                                            choosen_indices)
D
dongshuilong 已提交
139 140
        equal_flag = paddle.equal(choosen_label, query_img_id)
        if keep_mask is not None:
141
            keep_mask = paddle.indechmx_sample(
D
dongshuilong 已提交
142 143 144
                keep_mask.astype('float32'), choosen_indices)
            equal_flag = paddle.logical_and(equal_flag,
                                            keep_mask.astype('bool'))
D
dongshuilong 已提交
145
        equal_flag = paddle.cast(equal_flag, 'float32')
D
dongshuilong 已提交
146 147 148 149 150 151

        num_rel = paddle.sum(equal_flag, axis=1)
        num_rel = paddle.greater_than(num_rel, paddle.to_tensor(0.))
        num_rel_index = paddle.nonzero(num_rel.astype("int"))
        num_rel_index = paddle.reshape(num_rel_index, [num_rel_index.shape[0]])
        equal_flag = paddle.index_select(equal_flag, num_rel_index, axis=0)
B
Bin Lu 已提交
152 153

        #do accumulative sum
D
dongshuilong 已提交
154
        div = paddle.arange(equal_flag.shape[1]).astype("float32") + 2
D
dongshuilong 已提交
155 156
        minus = paddle.divide(equal_flag, div)
        auxilary = paddle.subtract(equal_flag, minus)
D
dongshuilong 已提交
157
        hard_index = paddle.argmax(auxilary, axis=1).astype("float32")
D
dongshuilong 已提交
158
        all_INP = paddle.divide(paddle.sum(equal_flag, axis=1), hard_index)
B
Bin Lu 已提交
159
        mINP = paddle.mean(all_INP)
160
        metric_dict["mINP"] = float(mINP)
W
weishengyu 已提交
161 162
        return metric_dict

D
dongshuilong 已提交
163

C
cuicheng01 已提交
164
class TprAtFpr(nn.Layer):
165
    def __init__(self, max_fpr=1 / 1000.):
C
cuicheng01 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        super().__init__()
        self.gt_pos_score_list = []
        self.gt_neg_score_list = []
        self.softmax = nn.Softmax(axis=-1)
        self.max_fpr = max_fpr
        self.max_tpr = 0.

    def forward(self, x, label):
        if isinstance(x, dict):
            x = x["logits"]
        x = self.softmax(x)
        for i, label_i in enumerate(label):
            if label_i[0] == 0:
                self.gt_neg_score_list.append(x[i][1].numpy())
            else:
                self.gt_pos_score_list.append(x[i][1].numpy())
        return {}

    def reset(self):
        self.gt_pos_score_list = []
        self.gt_neg_score_list = []
        self.max_tpr = 0.

    @property
    def avg(self):
        return self.max_tpr

    @property
    def avg_info(self):
        max_tpr = 0.
        result = ""
        gt_pos_score_list = np.array(self.gt_pos_score_list)
        gt_neg_score_list = np.array(self.gt_neg_score_list)
        for i in range(0, 10000):
            threshold = i / 10000.
            if len(gt_pos_score_list) == 0:
                continue
203 204
            tpr = np.sum(
                gt_pos_score_list > threshold) / len(gt_pos_score_list)
C
cuicheng01 已提交
205 206
            if len(gt_neg_score_list) == 0 and tpr > max_tpr:
                max_tpr = tpr
C
cuicheng01 已提交
207 208 209 210
                result = "threshold: {}, fpr: 0.0, tpr: {:.5f}".format(
                    threshold, tpr)
                msg = f"The number of negative samples is 0, please add negative samples."
                logger.warning(msg)
211 212
            fpr = np.sum(
                gt_neg_score_list > threshold) / len(gt_neg_score_list)
C
cuicheng01 已提交
213 214
            if fpr <= self.max_fpr and tpr > max_tpr:
                max_tpr = tpr
215 216
                result = "threshold: {}, fpr: {}, tpr: {:.5f}".format(
                    threshold, fpr, tpr)
C
cuicheng01 已提交
217 218 219 220
        self.max_tpr = max_tpr
        return result


weixin_46524038's avatar
weixin_46524038 已提交
221
class MultilabelMeanAccuracy(nn.Layer):
weixin_46524038's avatar
weixin_46524038 已提交
222 223 224 225
    def __init__(self,
                 start_threshold=0.4,
                 num_iterations=10,
                 end_threshold=0.9):
weixin_46524038's avatar
weixin_46524038 已提交
226
        super().__init__()
weixin_46524038's avatar
weixin_46524038 已提交
227 228 229
        self.start_threshold = start_threshold
        self.num_iterations = num_iterations
        self.end_threshold = end_threshold
weixin_46524038's avatar
weixin_46524038 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        self.gt_all_score_list = []
        self.gt_label_score_list = []
        self.max_acc = 0.

    def forward(self, x, label):
        if isinstance(x, dict):
            x = x["logits"]
        x = F.sigmoid(x)
        label = label[:, 0, :]
        for i in range(len(x)):
            self.gt_all_score_list.append(x[i].numpy())
            self.gt_label_score_list.append(label[i].numpy())
        return {}

    def reset(self):
        self.gt_all_score_list = []
        self.gt_label_score_list = []
        self.max_acc = 0.

    @property
    def avg(self):
        return self.max_acc

    @property
    def avg_info(self):
        max_acc = 0.
        result = ""
        gt_all_score_list = np.array(self.gt_all_score_list)
        gt_label_score_list = np.array(self.gt_label_score_list)
weixin_46524038's avatar
weixin_46524038 已提交
259 260 261 262
        for i in range(self.num_iterations):
            threshold = self.start_threshold + i * (self.end_threshold -
                                                    self.start_threshold
                                                    ) / self.num_iterations
weixin_46524038's avatar
weixin_46524038 已提交
263 264 265 266 267 268 269 270 271
            pred_label = (gt_all_score_list > threshold).astype(int)
            TP = np.sum(
                (gt_label_score_list == 1) * (pred_label == 1)).astype(float)
            TN = np.sum(
                (gt_label_score_list == 0) * (pred_label == 0)).astype(float)
            acc = (TP + TN) / len(gt_all_score_list)
            if max_acc <= acc:
                max_acc = acc
                result = "threshold: {}, mean_acc: {}".format(
weixin_46524038's avatar
weixin_46524038 已提交
272 273
                    threshold, max_acc / len(gt_label_score_list[0]))
        self.max_acc = max_acc / len(gt_label_score_list[0])
weixin_46524038's avatar
weixin_46524038 已提交
274 275 276
        return result


W
weishengyu 已提交
277
class Recallk(nn.Layer):
H
HydrogenSulfate 已提交
278
    def __init__(self, topk=(1, 5), descending=True):
W
weishengyu 已提交
279
        super().__init__()
B
Bin Lu 已提交
280
        assert isinstance(topk, (int, list, tuple))
W
weishengyu 已提交
281 282 283
        if isinstance(topk, int):
            topk = [topk]
        self.topk = topk
H
HydrogenSulfate 已提交
284
        self.descending = descending
W
weishengyu 已提交
285

D
dongshuilong 已提交
286 287
    def forward(self, similarities_matrix, query_img_id, gallery_img_id,
                keep_mask):
W
weishengyu 已提交
288
        metric_dict = dict()
B
Bin Lu 已提交
289

290
        # get cmc
D
dongshuilong 已提交
291
        choosen_indices = paddle.argsort(
H
HydrogenSulfate 已提交
292
            similarities_matrix, axis=1, descending=self.descending)
293
        gallery_labels_transpose = gallery_img_id.t()
D
dongshuilong 已提交
294 295 296 297 298 299 300
        gallery_labels_transpose = paddle.broadcast_to(
            gallery_labels_transpose,
            shape=[
                choosen_indices.shape[0], gallery_labels_transpose.shape[1]
            ])
        choosen_label = paddle.index_sample(gallery_labels_transpose,
                                            choosen_indices)
B
Bin Lu 已提交
301
        equal_flag = paddle.equal(choosen_label, query_img_id)
D
dongshuilong 已提交
302 303
        if keep_mask is not None:
            keep_mask = paddle.index_sample(
304 305 306
                keep_mask.astype("float32"), choosen_indices)
            equal_flag = equal_flag & keep_mask.astype("bool")
        equal_flag = paddle.cast(equal_flag, "float32")
D
dongshuilong 已提交
307
        real_query_num = paddle.sum(equal_flag, axis=1)
308
        real_query_num = paddle.sum((real_query_num > 0.0).astype("float32"))
D
dongshuilong 已提交
309

B
Bin Lu 已提交
310
        acc_sum = paddle.cumsum(equal_flag, axis=1)
311
        mask = (acc_sum > 0.0).astype("float32")
D
dongshuilong 已提交
312
        all_cmc = (paddle.sum(mask, axis=0) / real_query_num).numpy()
W
weishengyu 已提交
313 314 315 316 317

        for k in self.topk:
            metric_dict["recall{}".format(k)] = all_cmc[k - 1]
        return metric_dict

D
dongshuilong 已提交
318

B
Bin Lu 已提交
319
class Precisionk(nn.Layer):
H
HydrogenSulfate 已提交
320
    def __init__(self, topk=(1, 5), descending=True):
B
Bin Lu 已提交
321 322 323 324 325
        super().__init__()
        assert isinstance(topk, (int, list, tuple))
        if isinstance(topk, int):
            topk = [topk]
        self.topk = topk
H
HydrogenSulfate 已提交
326
        self.descending = descending
B
Bin Lu 已提交
327 328 329 330 331 332 333

    def forward(self, similarities_matrix, query_img_id, gallery_img_id,
                keep_mask):
        metric_dict = dict()

        #get cmc
        choosen_indices = paddle.argsort(
H
HydrogenSulfate 已提交
334
            similarities_matrix, axis=1, descending=self.descending)
B
Bin Lu 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
        gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
        gallery_labels_transpose = paddle.broadcast_to(
            gallery_labels_transpose,
            shape=[
                choosen_indices.shape[0], gallery_labels_transpose.shape[1]
            ])
        choosen_label = paddle.index_sample(gallery_labels_transpose,
                                            choosen_indices)
        equal_flag = paddle.equal(choosen_label, query_img_id)
        if keep_mask is not None:
            keep_mask = paddle.index_sample(
                keep_mask.astype('float32'), choosen_indices)
            equal_flag = paddle.logical_and(equal_flag,
                                            keep_mask.astype('bool'))
        equal_flag = paddle.cast(equal_flag, 'float32')
C
cuicheng01 已提交
350

B
Bin Lu 已提交
351 352 353 354 355 356 357 358 359 360
        Ns = paddle.arange(gallery_img_id.shape[0]) + 1
        equal_flag_cumsum = paddle.cumsum(equal_flag, axis=1)
        Precision_at_k = (paddle.mean(equal_flag_cumsum, axis=0) / Ns).numpy()

        for k in self.topk:
            metric_dict["precision@{}".format(k)] = Precision_at_k[k - 1]

        return metric_dict


361 362 363 364 365 366 367
class DistillationTopkAcc(TopkAcc):
    def __init__(self, model_key, feature_key=None, topk=(1, 5)):
        super().__init__(topk=topk)
        self.model_key = model_key
        self.feature_key = feature_key

    def forward(self, x, label):
G
gaotingquan 已提交
368 369
        if isinstance(x, dict):
            x = x[self.model_key]
370 371 372
        if self.feature_key is not None:
            x = x[self.feature_key]
        return super().forward(x, label)
C
cuicheng01 已提交
373 374 375 376 377 378 379 380 381 382 383 384


class GoogLeNetTopkAcc(TopkAcc):
    def __init__(self, topk=(1, 5)):
        super().__init__()
        assert isinstance(topk, (int, list, tuple))
        if isinstance(topk, int):
            topk = [topk]
        self.topk = topk

    def forward(self, x, label):
        return super().forward(x[0], label)
C
cuicheng01 已提交
385 386


C
cuicheng01 已提交
387 388 389 390
class MultiLabelMetric(AvgMetrics):
    def __init__(self, bi_threshold=0.5):
        super().__init__()
        self.bi_threshold = bi_threshold
C
cuicheng01 已提交
391

C
cuicheng01 已提交
392 393 394
    def _multi_hot_encode(self, output):
        logits = F.sigmoid(output).numpy()
        return binarize(logits, threshold=self.bi_threshold)
C
cuicheng01 已提交
395 396


C
cuicheng01 已提交
397
class HammingDistance(MultiLabelMetric):
C
cuicheng01 已提交
398 399 400 401 402 403 404 405
    """
    Soft metric based label for multilabel classification
    Returns:
        The smaller the return value is, the better model is.
    """

    def __init__(self):
        super().__init__()
C
cuicheng01 已提交
406 407 408
        self.reset()

    def reset(self):
C
cuicheng01 已提交
409
        self.avg_meters = {"HammingDistance": AverageMeter("HammingDistance")}
C
cuicheng01 已提交
410

C
cuicheng01 已提交
411 412
    def forward(self, output, target):
        preds = super()._multi_hot_encode(output)
C
cuicheng01 已提交
413 414 415
        metric_dict = dict()
        metric_dict["HammingDistance"] = paddle.to_tensor(
            hamming_loss(target, preds))
416
        self.avg_meters["HammingDistance"].update(
417
            float(metric_dict["HammingDistance"]), output.shape[0])
C
cuicheng01 已提交
418 419 420
        return metric_dict


C
cuicheng01 已提交
421
class AccuracyScore(MultiLabelMetric):
C
cuicheng01 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    """
    Hard metric for multilabel classification
    Args:
        base: ["sample", "label"], default="sample"
            if "sample", return metric score based sample,
            if "label", return metric score based label.
    Returns:
        accuracy:
    """

    def __init__(self, base="label"):
        super().__init__()
        assert base in ["sample", "label"
                        ], 'must be one of ["sample", "label"]'
        self.base = base
C
cuicheng01 已提交
437 438 439 440
        self.reset()

    def reset(self):
        self.avg_meters = {"AccuracyScore": AverageMeter("AccuracyScore")}
C
cuicheng01 已提交
441

C
cuicheng01 已提交
442 443
    def forward(self, output, target):
        preds = super()._multi_hot_encode(output)
C
cuicheng01 已提交
444 445 446 447 448 449 450 451 452 453 454 455
        metric_dict = dict()
        if self.base == "sample":
            accuracy = accuracy_metric(target, preds)
        elif self.base == "label":
            mcm = multilabel_confusion_matrix(target, preds)
            tns = mcm[:, 0, 0]
            fns = mcm[:, 1, 0]
            tps = mcm[:, 1, 1]
            fps = mcm[:, 0, 1]
            accuracy = (sum(tps) + sum(tns)) / (
                sum(tps) + sum(tns) + sum(fns) + sum(fps))
        metric_dict["AccuracyScore"] = paddle.to_tensor(accuracy)
456
        self.avg_meters["AccuracyScore"].update(
457
            float(metric_dict["AccuracyScore"]), output.shape[0])
C
cuicheng01 已提交
458
        return metric_dict
Z
zhiboniu 已提交
459 460 461 462 463


def get_attr_metrics(gt_label, preds_probs, threshold):
    """
    index: evaluated label index
Z
zhiboniu 已提交
464
    adapted from "https://github.com/valencebond/Rethinking_of_PAR/blob/master/metrics/pedestrian_metrics.py"
Z
zhiboniu 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    """
    pred_label = (preds_probs > threshold).astype(int)

    eps = 1e-20
    result = EasyDict()

    has_fuyi = gt_label == -1
    pred_label[has_fuyi] = -1

    ###############################
    # label metrics
    # TP + FN
    result.gt_pos = np.sum((gt_label == 1), axis=0).astype(float)
    # TN + FP
    result.gt_neg = np.sum((gt_label == 0), axis=0).astype(float)
    # TP
    result.true_pos = np.sum((gt_label == 1) * (pred_label == 1),
                             axis=0).astype(float)
    # TN
    result.true_neg = np.sum((gt_label == 0) * (pred_label == 0),
                             axis=0).astype(float)
    # FP
    result.false_pos = np.sum(((gt_label == 0) * (pred_label == 1)),
                              axis=0).astype(float)
    # FN
    result.false_neg = np.sum(((gt_label == 1) * (pred_label == 0)),
                              axis=0).astype(float)

    ################
    # instance metrics
    result.gt_pos_ins = np.sum((gt_label == 1), axis=1).astype(float)
    result.true_pos_ins = np.sum((pred_label == 1), axis=1).astype(float)
    # true positive
    result.intersect_pos = np.sum((gt_label == 1) * (pred_label == 1),
                                  axis=1).astype(float)
    # IOU
    result.union_pos = np.sum(((gt_label == 1) + (pred_label == 1)),
                              axis=1).astype(float)

    return result


class ATTRMetric(nn.Layer):
    def __init__(self, threshold=0.5):
        super().__init__()
        self.threshold = threshold

Z
zhiboniu 已提交
512 513 514
    def reset(self):
        self.attrmeter = AttrMeter(threshold=0.5)

Z
zhiboniu 已提交
515
    def forward(self, output, target):
Z
zhiboniu 已提交
516
        metric_dict = get_attr_metrics(target[:, 0, :].numpy(),
Z
zhiboniu 已提交
517
                                       output.numpy(), self.threshold)
Z
zhiboniu 已提交
518
        self.attrmeter.update(metric_dict)
C
cuicheng01 已提交
519
        return metric_dict