提交 c6865e25 编写于 作者: H HydrogenSulfate 提交者: Walter

refactor(retrieval): polish retrieval.py

上级 97f99cd8
......@@ -16,108 +16,90 @@ from __future__ import division
from __future__ import print_function
import platform
from collections import defaultdict
import numpy as np
import paddle
from ppcls.engine.train.utils import type_name
from ppcls.utils import logger
from ppcls.utils import all_gather
from ppcls.utils import all_gather, logger
def retrieval_eval(engine, epoch_id=0):
engine.model.eval()
# step1. prepare query and gallery features
if engine.gallery_query_dataloader is not None:
gallery_feas, gallery_label_id, gallery_camera_id = compute_feature(
gallery_feat, gallery_label, gallery_camera = compute_feature(
engine, "gallery_query")
query_feas, query_label_id, query_camera_id = gallery_feas, gallery_label_id, gallery_camera_id
query_feat, query_label, query_camera = gallery_feat, gallery_label, gallery_camera
else:
gallery_feas, gallery_label_id, gallery_camera_id = compute_feature(
gallery_feat, gallery_label, gallery_camera = compute_feature(
engine, "gallery")
query_feas, query_label_id, query_camera_id = compute_feature(engine,
"query")
query_feat, query_label, query_camera = compute_feature(engine,
"query")
# step2. split features into feature blocks for saving memory
num_query = len(query_feat)
block_size = engine.config["Global"].get("sim_block_size", 64)
sections = [block_size] * (len(query_feas) // block_size)
if len(query_feas) % block_size > 0:
sections.append(len(query_feas) % block_size)
query_feas_blocks = paddle.split(query_feas, sections)
query_camera_id_blocks = (paddle.split(query_camera_id, sections)
if query_camera_id is not None else None)
query_label_id_blocks = paddle.split(query_label_id, sections)
sections = [block_size] * (num_query // block_size)
if num_query % block_size > 0:
sections.append(num_query % block_size)
query_feat_blocks = paddle.split(query_feat, sections)
query_label_blocks = paddle.split(query_label, sections)
query_camera_blocks = paddle.split(
query_camera, sections) if query_camera is not None else None
metric_key = None
# step3. compute metric
if engine.eval_loss_func is None:
metric_dict = {metric_key: 0.}
metric_dict = {metric_key: 0.0}
else:
use_reranking = engine.config["Global"].get("re_ranking", False)
logger.info(f"re_ranking={use_reranking}")
metric_dict = {}
if use_reranking:
for _, metric_func in enumerate(
engine.eval_metric_func.metric_func_list):
if hasattr(metric_func,
"descending") and metric_func.descending is True:
metric_func.descending = False
logger.warning(
f"re_ranking=True, set {type_name(metric_func)}.descending set to False"
)
# compute distance matrix
distmat = compute_re_ranking_dist(
query_feas, gallery_feas, engine.config["Global"].get(
query_feat, gallery_feat, engine.config["Global"].get(
"feature_normalize", True), 20, 6, 0.3)
# exclude illegal distance
camera_id_mask = query_camera_id != gallery_camera_id.t()
image_id_mask = query_label_id != gallery_label_id.t()
keep_mask = paddle.logical_or(image_id_mask, camera_id_mask)
distmat = distmat * keep_mask.astype(query_feas.dtype)
inf_mat = (
paddle.logical_not(keep_mask).astype(query_feas.dtype)) * (
distmat.max() + 1)
distmat = distmat + inf_mat
metric_block = engine.eval_metric_func(distmat, query_label_id,
gallery_label_id, keep_mask)
for key in metric_block:
metric_dict[key] = metric_block[key]
if query_camera is not None:
camera_mask = query_camera != gallery_camera.t()
label_mask = query_label != gallery_label.t()
keep_mask = label_mask | camera_mask
distmat = keep_mask.astype(query_feat.dtype) * distmat + (
~keep_mask).astype(query_feat.dtype) * (distmat.max() + 1)
else:
keep_mask = None
# compute metric with all samples
metric_dict = engine.eval_metric_func(-distmat, query_label,
gallery_label, keep_mask)
else:
for block_idx, block_fea in enumerate(query_feas_blocks):
metric_dict = defaultdict(float)
for block_idx, block_feat in enumerate(query_feat_blocks):
# compute distance matrix
distmat = paddle.matmul(
block_fea, gallery_feas, transpose_y=True)
if query_camera_id is not None:
query_camera_id_block = query_camera_id_blocks[block_idx]
camera_id_mask = query_camera_id_block != gallery_camera_id.t(
)
query_label_id_block = query_label_id_blocks[block_idx]
image_id_mask = query_label_id_block != gallery_label_id.t(
)
keep_mask = paddle.logical_or(image_id_mask,
camera_id_mask)
distmat = distmat * keep_mask.astype("float32")
block_feat, gallery_feat, transpose_y=True)
# exclude illegal distance
if query_camera is not None:
camera_mask = query_camera_blocks[
block_idx] != gallery_camera.t()
label_mask = query_label_blocks[
block_idx] != gallery_label.t()
keep_mask = label_mask | camera_mask
distmat = keep_mask.astype(query_feat.dtype) * distmat
else:
keep_mask = None
# compute metric by block
metric_block = engine.eval_metric_func(
distmat, query_label_id_blocks[block_idx],
gallery_label_id, keep_mask)
distmat, query_label_blocks[block_idx], gallery_label,
keep_mask)
# accumulate metric
for key in metric_block:
if key not in metric_dict:
metric_dict[key] = metric_block[key] * block_fea.shape[
0] / len(query_feas)
else:
metric_dict[key] += metric_block[
key] * block_fea.shape[0] / len(query_feas)
metric_dict[key] += metric_block[key] * block_feat.shape[
0] / num_query
metric_info_list = []
for key in metric_dict:
metric_info_list.append(f"{key}: {metric_dict[key]:.5f}")
for key, value in metric_dict.items():
metric_info_list.append(f"{key}: {value:.5f}")
if metric_key is None:
metric_key = key
metric_msg = ", ".join(metric_info_list)
......@@ -127,9 +109,6 @@ def retrieval_eval(engine, epoch_id=0):
def compute_feature(engine, name="gallery"):
has_camera_id = False
all_camera_id = None
if name == "gallery":
dataloader = engine.gallery_dataloader
elif name == "query":
......@@ -137,13 +116,16 @@ def compute_feature(engine, name="gallery"):
elif name == "gallery_query":
dataloader = engine.gallery_query_dataloader
else:
raise RuntimeError("Only support gallery or query dataset")
raise ValueError(
f"Only support gallery or query or gallery_query dataset, but got {name}"
)
batch_feas_list = []
label_id_list = []
camera_id_list = []
all_feat = []
all_label = []
all_camera = []
max_iter = len(dataloader) - 1 if platform.system() == "Windows" else len(
dataloader)
has_camera = False
for idx, batch in enumerate(dataloader): # load is very time-consuming
if idx >= max_iter:
break
......@@ -154,8 +136,8 @@ def compute_feature(engine, name="gallery"):
batch = [paddle.to_tensor(x) for x in batch]
batch[1] = batch[1].reshape([-1, 1]).astype("int64")
if len(batch) == 3:
has_camera_id = True
if len(batch) >= 3:
has_camera = True
batch[2] = batch[2].reshape([-1, 1]).astype("int64")
if engine.amp and engine.amp_eval:
with paddle.amp.auto_cast(
......@@ -163,62 +145,61 @@ def compute_feature(engine, name="gallery"):
"flatten_contiguous_range", "greater_than"
},
level=engine.amp_level):
out = engine.model(batch[0], batch[1])
out = engine.model(batch[0])
else:
out = engine.model(batch[0], batch[1])
out = engine.model(batch[0])
if "Student" in out:
out = out["Student"]
# get features
if engine.config["Global"].get("retrieval_feature_from",
"features") == "features":
# use neck's output as features
batch_feas = out["features"]
# use output from neck as feature
batch_feat = out["features"]
else:
# use backbone's output as features
batch_feas = out["backbone"]
# use output from backbone as feature
batch_feat = out["backbone"]
# do norm(optinal)
# do norm(optional)
if engine.config["Global"].get("feature_normalize", True):
batch_feas_norm = paddle.sqrt(
paddle.sum(paddle.square(batch_feas), axis=1, keepdim=True))
batch_feas = paddle.divide(batch_feas, batch_feas_norm)
batch_feat = paddle.nn.functional.normalize(batch_feat, p=2)
# do binarize(optinal)
# do binarize(optional)
if engine.config["Global"].get("feature_binarize") == "round":
batch_feas = paddle.round(batch_feas).astype("float32") * 2.0 - 1.0
batch_feat = paddle.round(batch_feat).astype("float32") * 2.0 - 1.0
elif engine.config["Global"].get("feature_binarize") == "sign":
batch_feas = paddle.sign(batch_feas).astype("float32")
batch_feat = paddle.sign(batch_feat).astype("float32")
if paddle.distributed.get_world_size() > 1:
batch_feas_list.append(all_gather(batch_feas))
label_id_list.append(all_gather(batch[1]))
if has_camera_id:
camera_id_list.append(all_gather(batch[2]))
all_feat.append(all_gather(batch_feat))
all_label.append(all_gather(batch[1]))
if has_camera:
all_camera.append(all_gather(batch[2]))
else:
batch_feas_list.append(batch_feas)
label_id_list.append(batch[1])
if has_camera_id:
camera_id_list.append(batch[2])
all_feat.append(batch_feat)
all_label.append(batch[1])
if has_camera:
all_camera.append(batch[2])
if engine.use_dali:
dataloader.reset()
all_feas = paddle.concat(batch_feas_list)
all_label_id = paddle.concat(label_id_list)
if has_camera_id:
all_camera_id = paddle.concat(camera_id_list)
all_feat = paddle.concat(all_feat)
all_label = paddle.concat(all_label)
if has_camera:
all_camera = paddle.concat(all_camera)
else:
all_camera = None
# discard redundant padding sample(s) at the end
total_samples = len(
dataloader.dataset) if not engine.use_dali else dataloader.size
all_feas = all_feas[:total_samples]
all_label_id = all_label_id[:total_samples]
if has_camera_id:
all_camera_id = all_camera_id[:total_samples]
total_samples = dataloader.size if engine.use_dali else len(
dataloader.dataset)
all_feat = all_feat[:total_samples]
all_label = all_label[:total_samples]
if has_camera:
all_camera = all_camera[:total_samples]
logger.info(f"Build {name} done, all feat shape: {all_feas.shape}")
return all_feas, all_label_id, all_camera_id
logger.info(f"Build {name} done, all feat shape: {all_feat.shape}")
return all_feat, all_label, all_camera
def k_reciprocal_neighbor(rank: np.ndarray, p: int, k: int) -> np.ndarray:
......@@ -239,8 +220,8 @@ def k_reciprocal_neighbor(rank: np.ndarray, p: int, k: int) -> np.ndarray:
return forward_k_neigh_index[candidate]
def compute_re_ranking_dist(query_feas: paddle.Tensor,
gallery_feas: paddle.Tensor,
def compute_re_ranking_dist(query_feat: paddle.Tensor,
gallery_feat: paddle.Tensor,
feature_normed: bool=True,
k1: int=20,
k2: int=6,
......@@ -251,8 +232,8 @@ def compute_re_ranking_dist(query_feas: paddle.Tensor,
Code refernence: https://github.com/michuanhaohao/reid-strong-baseline/blob/master/utils/re_ranking.py
Args:
query_feas (paddle.Tensor): Query features with shape of [num_query, feature_dim].
gallery_feas (paddle.Tensor): Gallery features with shape of [num_gallery, feature_dim].
query_feat (paddle.Tensor): Query features with shape of [num_query, feature_dim].
gallery_feat (paddle.Tensor): Gallery features with shape of [num_gallery, feature_dim].
feature_normed (bool, optional): Whether input features are normalized.
k1 (int, optional): Parameter for K-reciprocal nearest neighbors. Defaults to 20.
k2 (int, optional): Parameter for K-nearest neighbors. Defaults to 6.
......@@ -261,10 +242,10 @@ def compute_re_ranking_dist(query_feas: paddle.Tensor,
Returns:
paddle.Tensor: (1 - lamb) x Dj + lamb x D, with shape of [num_query, num_gallery].
"""
num_query = query_feas.shape[0]
num_gallery = gallery_feas.shape[0]
num_query = query_feat.shape[0]
num_gallery = gallery_feat.shape[0]
num_all = num_query + num_gallery
feat = paddle.concat([query_feas, gallery_feas], 0)
feat = paddle.concat([query_feat, gallery_feat], 0)
logger.info("Using GPU to compute original distance matrix")
# use L2 distance
......@@ -273,8 +254,7 @@ def compute_re_ranking_dist(query_feas: paddle.Tensor,
else:
original_dist = paddle.pow(feat, 2).sum(axis=1, keepdim=True).expand([num_all, num_all]) + \
paddle.pow(feat, 2).sum(axis=1, keepdim=True).expand([num_all, num_all]).t()
original_dist = original_dist.addmm(
x=feat, y=feat.t(), alpha=-2.0, beta=1.0)
original_dist = original_dist.addmm(feat, feat.t(), -2.0, 1.0)
original_dist = original_dist.numpy()
del feat
......@@ -298,7 +278,6 @@ def compute_re_ranking_dist(query_feas: paddle.Tensor,
p_k_reciprocal_exp_ind = np.append(p_k_reciprocal_exp_ind,
q_k_reciprocal_ind)
p_k_reciprocal_exp_ind = np.unique(p_k_reciprocal_exp_ind)
# reweight distance using gaussian kernel
weight = np.exp(-original_dist[p, p_k_reciprocal_exp_ind])
V[p, p_k_reciprocal_exp_ind] = weight / np.sum(weight)
......@@ -318,6 +297,7 @@ def compute_re_ranking_dist(query_feas: paddle.Tensor,
for gj in range(num_all):
invIndex.append(np.nonzero(V[:, gj])[0])
# compute jaccard distance
jaccard_dist = np.zeros_like(original_dist, dtype=np.float16)
for p in range(num_query):
sum_min = np.zeros(shape=[1, num_all], dtype=np.float16)
......@@ -328,7 +308,8 @@ def compute_re_ranking_dist(query_feas: paddle.Tensor,
sum_min[0, gi] += np.minimum(V[p, gj], V[gi, gj])
jaccard_dist[p] = 1 - sum_min / (2 - sum_min)
final_dist = jaccard_dist * (1 - lamb) + original_dist * lamb
# fuse jaccard distance with original distance
final_dist = (1 - lamb) * jaccard_dist + lamb * original_dist
del original_dist
del V
del jaccard_dist
......
......@@ -287,10 +287,10 @@ class Recallk(nn.Layer):
keep_mask):
metric_dict = dict()
#get cmc
# get cmc
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = gallery_img_id.t()
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
shape=[
......@@ -301,18 +301,14 @@ class Recallk(nn.Layer):
equal_flag = paddle.equal(choosen_label, query_img_id)
if keep_mask is not None:
keep_mask = paddle.index_sample(
keep_mask.astype('float32'), choosen_indices)
equal_flag = paddle.logical_and(equal_flag,
keep_mask.astype('bool'))
equal_flag = paddle.cast(equal_flag, 'float32')
keep_mask.astype("float32"), choosen_indices)
equal_flag = equal_flag & keep_mask.astype("bool")
equal_flag = paddle.cast(equal_flag, "float32")
real_query_num = paddle.sum(equal_flag, axis=1)
real_query_num = paddle.sum(
paddle.greater_than(real_query_num, paddle.to_tensor(0.)).astype(
"float32"))
real_query_num = paddle.sum((real_query_num > 0.0).astype("float32"))
acc_sum = paddle.cumsum(equal_flag, axis=1)
mask = paddle.greater_than(acc_sum,
paddle.to_tensor(0.)).astype("float32")
mask = (acc_sum > 0.0).astype("float32")
all_cmc = (paddle.sum(mask, axis=0) / real_query_num).numpy()
for k in self.topk:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册