metrics.py 15.7 KB
Newer Older
W
weishengyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
import paddle.nn as nn
C
cuicheng01 已提交
18 19 20 21 22 23
import paddle.nn.functional as F

from sklearn.metrics import hamming_loss
from sklearn.metrics import accuracy_score as accuracy_metric
from sklearn.metrics import multilabel_confusion_matrix
from sklearn.preprocessing import binarize
W
weishengyu 已提交
24

Z
zhiboniu 已提交
25 26
from easydict import EasyDict

C
cuicheng01 已提交
27 28
from ppcls.metric.avg_metrics import AvgMetrics
from ppcls.utils.misc import AverageMeter
D
dongshuilong 已提交
29

C
cuicheng01 已提交
30 31

class TopkAcc(AvgMetrics):
W
weishengyu 已提交
32 33 34 35 36 37
    def __init__(self, topk=(1, 5)):
        super().__init__()
        assert isinstance(topk, (int, list, tuple))
        if isinstance(topk, int):
            topk = [topk]
        self.topk = topk
C
cuicheng01 已提交
38 39 40
        self.reset()

    def reset(self):
41 42 43 44
        self.avg_meters = {
            "top{}".format(k): AverageMeter("top{}".format(k))
            for k in self.topk
        }
W
weishengyu 已提交
45 46 47 48 49 50 51 52 53

    def forward(self, x, label):
        if isinstance(x, dict):
            x = x["logits"]

        metric_dict = dict()
        for k in self.topk:
            metric_dict["top{}".format(k)] = paddle.metric.accuracy(
                x, label, k=k)
54 55
            self.avg_meters["top{}".format(k)].update(
                metric_dict["top{}".format(k)].numpy()[0], x.shape[0])
W
weishengyu 已提交
56 57
        return metric_dict

D
dongshuilong 已提交
58

W
weishengyu 已提交
59
class mAP(nn.Layer):
H
HydrogenSulfate 已提交
60
    def __init__(self, descending=True):
W
weishengyu 已提交
61
        super().__init__()
H
HydrogenSulfate 已提交
62
        self.descending = descending
W
weishengyu 已提交
63

D
dongshuilong 已提交
64
    def forward(self, similarities_matrix, query_img_id, gallery_img_id,
D
dongshuilong 已提交
65
                keep_mask):
W
weishengyu 已提交
66
        metric_dict = dict()
D
dongshuilong 已提交
67 68

        choosen_indices = paddle.argsort(
H
HydrogenSulfate 已提交
69
            similarities_matrix, axis=1, descending=self.descending)
D
dongshuilong 已提交
70 71 72 73 74 75 76 77
        gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
        gallery_labels_transpose = paddle.broadcast_to(
            gallery_labels_transpose,
            shape=[
                choosen_indices.shape[0], gallery_labels_transpose.shape[1]
            ])
        choosen_label = paddle.index_sample(gallery_labels_transpose,
                                            choosen_indices)
B
Bin Lu 已提交
78
        equal_flag = paddle.equal(choosen_label, query_img_id)
D
dongshuilong 已提交
79 80 81 82 83
        if keep_mask is not None:
            keep_mask = paddle.index_sample(
                keep_mask.astype('float32'), choosen_indices)
            equal_flag = paddle.logical_and(equal_flag,
                                            keep_mask.astype('bool'))
B
Bin Lu 已提交
84 85
        equal_flag = paddle.cast(equal_flag, 'float32')

D
dongshuilong 已提交
86 87 88 89 90 91
        num_rel = paddle.sum(equal_flag, axis=1)
        num_rel = paddle.greater_than(num_rel, paddle.to_tensor(0.))
        num_rel_index = paddle.nonzero(num_rel.astype("int"))
        num_rel_index = paddle.reshape(num_rel_index, [num_rel_index.shape[0]])
        equal_flag = paddle.index_select(equal_flag, num_rel_index, axis=0)

B
Bin Lu 已提交
92 93
        acc_sum = paddle.cumsum(equal_flag, axis=1)
        div = paddle.arange(acc_sum.shape[1]).astype("float32") + 1
D
dongshuilong 已提交
94
        precision = paddle.divide(acc_sum, div)
B
Bin Lu 已提交
95 96 97

        #calc map
        precision_mask = paddle.multiply(equal_flag, precision)
D
dongshuilong 已提交
98 99
        ap = paddle.sum(precision_mask, axis=1) / paddle.sum(equal_flag,
                                                             axis=1)
B
Bin Lu 已提交
100
        metric_dict["mAP"] = paddle.mean(ap).numpy()[0]
W
weishengyu 已提交
101 102
        return metric_dict

D
dongshuilong 已提交
103

W
weishengyu 已提交
104
class mINP(nn.Layer):
H
HydrogenSulfate 已提交
105
    def __init__(self, descending=True):
W
weishengyu 已提交
106
        super().__init__()
H
HydrogenSulfate 已提交
107
        self.descending = descending
W
weishengyu 已提交
108

D
dongshuilong 已提交
109
    def forward(self, similarities_matrix, query_img_id, gallery_img_id,
D
dongshuilong 已提交
110
                keep_mask):
W
weishengyu 已提交
111
        metric_dict = dict()
D
dongshuilong 已提交
112 113

        choosen_indices = paddle.argsort(
H
HydrogenSulfate 已提交
114
            similarities_matrix, axis=1, descending=self.descending)
D
dongshuilong 已提交
115 116 117 118 119 120 121 122
        gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
        gallery_labels_transpose = paddle.broadcast_to(
            gallery_labels_transpose,
            shape=[
                choosen_indices.shape[0], gallery_labels_transpose.shape[1]
            ])
        choosen_label = paddle.index_sample(gallery_labels_transpose,
                                            choosen_indices)
D
dongshuilong 已提交
123 124
        equal_flag = paddle.equal(choosen_label, query_img_id)
        if keep_mask is not None:
125
            keep_mask = paddle.indechmx_sample(
D
dongshuilong 已提交
126 127 128
                keep_mask.astype('float32'), choosen_indices)
            equal_flag = paddle.logical_and(equal_flag,
                                            keep_mask.astype('bool'))
D
dongshuilong 已提交
129
        equal_flag = paddle.cast(equal_flag, 'float32')
D
dongshuilong 已提交
130 131 132 133 134 135

        num_rel = paddle.sum(equal_flag, axis=1)
        num_rel = paddle.greater_than(num_rel, paddle.to_tensor(0.))
        num_rel_index = paddle.nonzero(num_rel.astype("int"))
        num_rel_index = paddle.reshape(num_rel_index, [num_rel_index.shape[0]])
        equal_flag = paddle.index_select(equal_flag, num_rel_index, axis=0)
B
Bin Lu 已提交
136 137

        #do accumulative sum
D
dongshuilong 已提交
138
        div = paddle.arange(equal_flag.shape[1]).astype("float32") + 2
D
dongshuilong 已提交
139 140
        minus = paddle.divide(equal_flag, div)
        auxilary = paddle.subtract(equal_flag, minus)
D
dongshuilong 已提交
141
        hard_index = paddle.argmax(auxilary, axis=1).astype("float32")
D
dongshuilong 已提交
142
        all_INP = paddle.divide(paddle.sum(equal_flag, axis=1), hard_index)
B
Bin Lu 已提交
143 144
        mINP = paddle.mean(all_INP)
        metric_dict["mINP"] = mINP.numpy()[0]
W
weishengyu 已提交
145 146
        return metric_dict

D
dongshuilong 已提交
147

C
cuicheng01 已提交
148
class TprAtFpr(nn.Layer):
149
    def __init__(self, max_fpr=1 / 1000.):
C
cuicheng01 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        super().__init__()
        self.gt_pos_score_list = []
        self.gt_neg_score_list = []
        self.softmax = nn.Softmax(axis=-1)
        self.max_fpr = max_fpr
        self.max_tpr = 0.

    def forward(self, x, label):
        if isinstance(x, dict):
            x = x["logits"]
        x = self.softmax(x)
        for i, label_i in enumerate(label):
            if label_i[0] == 0:
                self.gt_neg_score_list.append(x[i][1].numpy())
            else:
                self.gt_pos_score_list.append(x[i][1].numpy())
        return {}

    def reset(self):
        self.gt_pos_score_list = []
        self.gt_neg_score_list = []
        self.max_tpr = 0.

    @property
    def avg(self):
        return self.max_tpr

    @property
    def avg_info(self):
        max_tpr = 0.
        result = ""
        gt_pos_score_list = np.array(self.gt_pos_score_list)
        gt_neg_score_list = np.array(self.gt_neg_score_list)
        for i in range(0, 10000):
            threshold = i / 10000.
            if len(gt_pos_score_list) == 0:
                continue
187 188
            tpr = np.sum(
                gt_pos_score_list > threshold) / len(gt_pos_score_list)
C
cuicheng01 已提交
189 190
            if len(gt_neg_score_list) == 0 and tpr > max_tpr:
                max_tpr = tpr
191 192 193 194
                result = "threshold: {}, fpr: {}, tpr: {:.5f}".format(
                    threshold, fpr, tpr)
            fpr = np.sum(
                gt_neg_score_list > threshold) / len(gt_neg_score_list)
C
cuicheng01 已提交
195 196
            if fpr <= self.max_fpr and tpr > max_tpr:
                max_tpr = tpr
197 198
                result = "threshold: {}, fpr: {}, tpr: {:.5f}".format(
                    threshold, fpr, tpr)
C
cuicheng01 已提交
199 200 201 202
        self.max_tpr = max_tpr
        return result


W
weishengyu 已提交
203
class Recallk(nn.Layer):
H
HydrogenSulfate 已提交
204
    def __init__(self, topk=(1, 5), descending=True):
W
weishengyu 已提交
205
        super().__init__()
B
Bin Lu 已提交
206
        assert isinstance(topk, (int, list, tuple))
W
weishengyu 已提交
207 208 209
        if isinstance(topk, int):
            topk = [topk]
        self.topk = topk
H
HydrogenSulfate 已提交
210
        self.descending = descending
W
weishengyu 已提交
211

D
dongshuilong 已提交
212 213
    def forward(self, similarities_matrix, query_img_id, gallery_img_id,
                keep_mask):
W
weishengyu 已提交
214
        metric_dict = dict()
B
Bin Lu 已提交
215 216

        #get cmc
D
dongshuilong 已提交
217
        choosen_indices = paddle.argsort(
H
HydrogenSulfate 已提交
218
            similarities_matrix, axis=1, descending=self.descending)
D
dongshuilong 已提交
219 220 221 222 223 224 225 226
        gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
        gallery_labels_transpose = paddle.broadcast_to(
            gallery_labels_transpose,
            shape=[
                choosen_indices.shape[0], gallery_labels_transpose.shape[1]
            ])
        choosen_label = paddle.index_sample(gallery_labels_transpose,
                                            choosen_indices)
B
Bin Lu 已提交
227
        equal_flag = paddle.equal(choosen_label, query_img_id)
D
dongshuilong 已提交
228 229 230 231 232
        if keep_mask is not None:
            keep_mask = paddle.index_sample(
                keep_mask.astype('float32'), choosen_indices)
            equal_flag = paddle.logical_and(equal_flag,
                                            keep_mask.astype('bool'))
B
Bin Lu 已提交
233
        equal_flag = paddle.cast(equal_flag, 'float32')
D
dongshuilong 已提交
234 235 236 237 238
        real_query_num = paddle.sum(equal_flag, axis=1)
        real_query_num = paddle.sum(
            paddle.greater_than(real_query_num, paddle.to_tensor(0.)).astype(
                "float32"))

B
Bin Lu 已提交
239
        acc_sum = paddle.cumsum(equal_flag, axis=1)
D
dongshuilong 已提交
240 241 242
        mask = paddle.greater_than(acc_sum,
                                   paddle.to_tensor(0.)).astype("float32")
        all_cmc = (paddle.sum(mask, axis=0) / real_query_num).numpy()
W
weishengyu 已提交
243 244 245 246 247

        for k in self.topk:
            metric_dict["recall{}".format(k)] = all_cmc[k - 1]
        return metric_dict

D
dongshuilong 已提交
248

B
Bin Lu 已提交
249
class Precisionk(nn.Layer):
H
HydrogenSulfate 已提交
250
    def __init__(self, topk=(1, 5), descending=True):
B
Bin Lu 已提交
251 252 253 254 255
        super().__init__()
        assert isinstance(topk, (int, list, tuple))
        if isinstance(topk, int):
            topk = [topk]
        self.topk = topk
H
HydrogenSulfate 已提交
256
        self.descending = descending
B
Bin Lu 已提交
257 258 259 260 261 262 263

    def forward(self, similarities_matrix, query_img_id, gallery_img_id,
                keep_mask):
        metric_dict = dict()

        #get cmc
        choosen_indices = paddle.argsort(
H
HydrogenSulfate 已提交
264
            similarities_matrix, axis=1, descending=self.descending)
B
Bin Lu 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
        gallery_labels_transpose = paddle.broadcast_to(
            gallery_labels_transpose,
            shape=[
                choosen_indices.shape[0], gallery_labels_transpose.shape[1]
            ])
        choosen_label = paddle.index_sample(gallery_labels_transpose,
                                            choosen_indices)
        equal_flag = paddle.equal(choosen_label, query_img_id)
        if keep_mask is not None:
            keep_mask = paddle.index_sample(
                keep_mask.astype('float32'), choosen_indices)
            equal_flag = paddle.logical_and(equal_flag,
                                            keep_mask.astype('bool'))
        equal_flag = paddle.cast(equal_flag, 'float32')
C
cuicheng01 已提交
280

B
Bin Lu 已提交
281 282 283 284 285 286 287 288 289 290
        Ns = paddle.arange(gallery_img_id.shape[0]) + 1
        equal_flag_cumsum = paddle.cumsum(equal_flag, axis=1)
        Precision_at_k = (paddle.mean(equal_flag_cumsum, axis=0) / Ns).numpy()

        for k in self.topk:
            metric_dict["precision@{}".format(k)] = Precision_at_k[k - 1]

        return metric_dict


291 292 293 294 295 296 297
class DistillationTopkAcc(TopkAcc):
    def __init__(self, model_key, feature_key=None, topk=(1, 5)):
        super().__init__(topk=topk)
        self.model_key = model_key
        self.feature_key = feature_key

    def forward(self, x, label):
G
gaotingquan 已提交
298 299
        if isinstance(x, dict):
            x = x[self.model_key]
300 301 302
        if self.feature_key is not None:
            x = x[self.feature_key]
        return super().forward(x, label)
C
cuicheng01 已提交
303 304 305 306 307 308 309 310 311 312 313 314


class GoogLeNetTopkAcc(TopkAcc):
    def __init__(self, topk=(1, 5)):
        super().__init__()
        assert isinstance(topk, (int, list, tuple))
        if isinstance(topk, int):
            topk = [topk]
        self.topk = topk

    def forward(self, x, label):
        return super().forward(x[0], label)
C
cuicheng01 已提交
315 316


C
cuicheng01 已提交
317 318 319 320
class MultiLabelMetric(AvgMetrics):
    def __init__(self, bi_threshold=0.5):
        super().__init__()
        self.bi_threshold = bi_threshold
C
cuicheng01 已提交
321

C
cuicheng01 已提交
322 323 324
    def _multi_hot_encode(self, output):
        logits = F.sigmoid(output).numpy()
        return binarize(logits, threshold=self.bi_threshold)
C
cuicheng01 已提交
325 326


C
cuicheng01 已提交
327
class HammingDistance(MultiLabelMetric):
C
cuicheng01 已提交
328 329 330 331 332 333 334 335
    """
    Soft metric based label for multilabel classification
    Returns:
        The smaller the return value is, the better model is.
    """

    def __init__(self):
        super().__init__()
C
cuicheng01 已提交
336 337 338
        self.reset()

    def reset(self):
C
cuicheng01 已提交
339
        self.avg_meters = {"HammingDistance": AverageMeter("HammingDistance")}
C
cuicheng01 已提交
340

C
cuicheng01 已提交
341 342
    def forward(self, output, target):
        preds = super()._multi_hot_encode(output)
C
cuicheng01 已提交
343 344 345
        metric_dict = dict()
        metric_dict["HammingDistance"] = paddle.to_tensor(
            hamming_loss(target, preds))
346 347
        self.avg_meters["HammingDistance"].update(
            metric_dict["HammingDistance"].numpy()[0], output.shape[0])
C
cuicheng01 已提交
348 349 350
        return metric_dict


C
cuicheng01 已提交
351
class AccuracyScore(MultiLabelMetric):
C
cuicheng01 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    """
    Hard metric for multilabel classification
    Args:
        base: ["sample", "label"], default="sample"
            if "sample", return metric score based sample,
            if "label", return metric score based label.
    Returns:
        accuracy:
    """

    def __init__(self, base="label"):
        super().__init__()
        assert base in ["sample", "label"
                        ], 'must be one of ["sample", "label"]'
        self.base = base
C
cuicheng01 已提交
367 368 369 370
        self.reset()

    def reset(self):
        self.avg_meters = {"AccuracyScore": AverageMeter("AccuracyScore")}
C
cuicheng01 已提交
371

C
cuicheng01 已提交
372 373
    def forward(self, output, target):
        preds = super()._multi_hot_encode(output)
C
cuicheng01 已提交
374 375 376 377 378 379 380 381 382 383 384 385
        metric_dict = dict()
        if self.base == "sample":
            accuracy = accuracy_metric(target, preds)
        elif self.base == "label":
            mcm = multilabel_confusion_matrix(target, preds)
            tns = mcm[:, 0, 0]
            fns = mcm[:, 1, 0]
            tps = mcm[:, 1, 1]
            fps = mcm[:, 0, 1]
            accuracy = (sum(tps) + sum(tns)) / (
                sum(tps) + sum(tns) + sum(fns) + sum(fps))
        metric_dict["AccuracyScore"] = paddle.to_tensor(accuracy)
386 387
        self.avg_meters["AccuracyScore"].update(
            metric_dict["AccuracyScore"].numpy()[0], output.shape[0])
C
cuicheng01 已提交
388
        return metric_dict
Z
zhiboniu 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440


def get_attr_metrics(gt_label, preds_probs, threshold):
    """
    index: evaluated label index
    """
    pred_label = (preds_probs > threshold).astype(int)

    eps = 1e-20
    result = EasyDict()

    has_fuyi = gt_label == -1
    pred_label[has_fuyi] = -1

    ###############################
    # label metrics
    # TP + FN
    result.gt_pos = np.sum((gt_label == 1), axis=0).astype(float)
    # TN + FP
    result.gt_neg = np.sum((gt_label == 0), axis=0).astype(float)
    # TP
    result.true_pos = np.sum((gt_label == 1) * (pred_label == 1),
                             axis=0).astype(float)
    # TN
    result.true_neg = np.sum((gt_label == 0) * (pred_label == 0),
                             axis=0).astype(float)
    # FP
    result.false_pos = np.sum(((gt_label == 0) * (pred_label == 1)),
                              axis=0).astype(float)
    # FN
    result.false_neg = np.sum(((gt_label == 1) * (pred_label == 0)),
                              axis=0).astype(float)

    ################
    # instance metrics
    result.gt_pos_ins = np.sum((gt_label == 1), axis=1).astype(float)
    result.true_pos_ins = np.sum((pred_label == 1), axis=1).astype(float)
    # true positive
    result.intersect_pos = np.sum((gt_label == 1) * (pred_label == 1),
                                  axis=1).astype(float)
    # IOU
    result.union_pos = np.sum(((gt_label == 1) + (pred_label == 1)),
                              axis=1).astype(float)

    return result


class ATTRMetric(nn.Layer):
    def __init__(self, threshold=0.5):
        super().__init__()
        self.threshold = threshold

Z
zhiboniu 已提交
441
    def forward(self, output, target):
Z
zhiboniu 已提交
442
        metric_dict = get_attr_metrics(target[:, 0, :].numpy(),
Z
zhiboniu 已提交
443 444
                                       output.numpy(), self.threshold)
        return metric_dict