metrics.py 7.4 KB
Newer Older
W
weishengyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
import paddle.nn as nn

D
dongshuilong 已提交
19

W
weishengyu 已提交
20
class TopkAcc(nn.Layer):
W
weishengyu 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
    def __init__(self, topk=(1, 5)):
        super().__init__()
        assert isinstance(topk, (int, list, tuple))
        if isinstance(topk, int):
            topk = [topk]
        self.topk = topk

    def forward(self, x, label):
        if isinstance(x, dict):
            x = x["logits"]

        metric_dict = dict()
        for k in self.topk:
            metric_dict["top{}".format(k)] = paddle.metric.accuracy(
                x, label, k=k)
        return metric_dict

D
dongshuilong 已提交
38

W
weishengyu 已提交
39
class mAP(nn.Layer):
D
dongshuilong 已提交
40
    def __init__(self):
W
weishengyu 已提交
41 42
        super().__init__()

D
dongshuilong 已提交
43
    def forward(self, similarities_matrix, query_img_id, gallery_img_id,
D
dongshuilong 已提交
44
                keep_mask):
W
weishengyu 已提交
45
        metric_dict = dict()
D
dongshuilong 已提交
46 47 48 49 50 51 52 53 54 55 56

        choosen_indices = paddle.argsort(
            similarities_matrix, axis=1, descending=True)
        gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
        gallery_labels_transpose = paddle.broadcast_to(
            gallery_labels_transpose,
            shape=[
                choosen_indices.shape[0], gallery_labels_transpose.shape[1]
            ])
        choosen_label = paddle.index_sample(gallery_labels_transpose,
                                            choosen_indices)
B
Bin Lu 已提交
57
        equal_flag = paddle.equal(choosen_label, query_img_id)
D
dongshuilong 已提交
58 59 60 61 62
        if keep_mask is not None:
            keep_mask = paddle.index_sample(
                keep_mask.astype('float32'), choosen_indices)
            equal_flag = paddle.logical_and(equal_flag,
                                            keep_mask.astype('bool'))
B
Bin Lu 已提交
63 64
        equal_flag = paddle.cast(equal_flag, 'float32')

D
dongshuilong 已提交
65 66 67 68 69 70
        num_rel = paddle.sum(equal_flag, axis=1)
        num_rel = paddle.greater_than(num_rel, paddle.to_tensor(0.))
        num_rel_index = paddle.nonzero(num_rel.astype("int"))
        num_rel_index = paddle.reshape(num_rel_index, [num_rel_index.shape[0]])
        equal_flag = paddle.index_select(equal_flag, num_rel_index, axis=0)

B
Bin Lu 已提交
71 72
        acc_sum = paddle.cumsum(equal_flag, axis=1)
        div = paddle.arange(acc_sum.shape[1]).astype("float32") + 1
D
dongshuilong 已提交
73
        precision = paddle.divide(acc_sum, div)
B
Bin Lu 已提交
74 75 76

        #calc map
        precision_mask = paddle.multiply(equal_flag, precision)
D
dongshuilong 已提交
77 78
        ap = paddle.sum(precision_mask, axis=1) / paddle.sum(equal_flag,
                                                             axis=1)
B
Bin Lu 已提交
79
        metric_dict["mAP"] = paddle.mean(ap).numpy()[0]
W
weishengyu 已提交
80 81
        return metric_dict

D
dongshuilong 已提交
82

W
weishengyu 已提交
83
class mINP(nn.Layer):
D
dongshuilong 已提交
84
    def __init__(self):
W
weishengyu 已提交
85 86
        super().__init__()

D
dongshuilong 已提交
87
    def forward(self, similarities_matrix, query_img_id, gallery_img_id,
D
dongshuilong 已提交
88
                keep_mask):
W
weishengyu 已提交
89
        metric_dict = dict()
D
dongshuilong 已提交
90 91 92 93 94 95 96 97 98 99 100

        choosen_indices = paddle.argsort(
            similarities_matrix, axis=1, descending=True)
        gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
        gallery_labels_transpose = paddle.broadcast_to(
            gallery_labels_transpose,
            shape=[
                choosen_indices.shape[0], gallery_labels_transpose.shape[1]
            ])
        choosen_label = paddle.index_sample(gallery_labels_transpose,
                                            choosen_indices)
D
dongshuilong 已提交
101 102 103 104 105 106
        equal_flag = paddle.equal(choosen_label, query_img_id)
        if keep_mask is not None:
            keep_mask = paddle.index_sample(
                keep_mask.astype('float32'), choosen_indices)
            equal_flag = paddle.logical_and(equal_flag,
                                            keep_mask.astype('bool'))
D
dongshuilong 已提交
107
        equal_flag = paddle.cast(equal_flag, 'float32')
D
dongshuilong 已提交
108 109 110 111 112 113

        num_rel = paddle.sum(equal_flag, axis=1)
        num_rel = paddle.greater_than(num_rel, paddle.to_tensor(0.))
        num_rel_index = paddle.nonzero(num_rel.astype("int"))
        num_rel_index = paddle.reshape(num_rel_index, [num_rel_index.shape[0]])
        equal_flag = paddle.index_select(equal_flag, num_rel_index, axis=0)
B
Bin Lu 已提交
114 115

        #do accumulative sum
D
dongshuilong 已提交
116
        div = paddle.arange(equal_flag.shape[1]).astype("float32") + 2
D
dongshuilong 已提交
117 118
        minus = paddle.divide(equal_flag, div)
        auxilary = paddle.subtract(equal_flag, minus)
D
dongshuilong 已提交
119
        hard_index = paddle.argmax(auxilary, axis=1).astype("float32")
D
dongshuilong 已提交
120
        all_INP = paddle.divide(paddle.sum(equal_flag, axis=1), hard_index)
B
Bin Lu 已提交
121 122
        mINP = paddle.mean(all_INP)
        metric_dict["mINP"] = mINP.numpy()[0]
W
weishengyu 已提交
123 124
        return metric_dict

D
dongshuilong 已提交
125

W
weishengyu 已提交
126
class Recallk(nn.Layer):
D
dongshuilong 已提交
127
    def __init__(self, topk=(1, 5)):
W
weishengyu 已提交
128
        super().__init__()
B
Bin Lu 已提交
129
        assert isinstance(topk, (int, list, tuple))
W
weishengyu 已提交
130 131 132 133
        if isinstance(topk, int):
            topk = [topk]
        self.topk = topk

D
dongshuilong 已提交
134 135
    def forward(self, similarities_matrix, query_img_id, gallery_img_id,
                keep_mask):
W
weishengyu 已提交
136
        metric_dict = dict()
B
Bin Lu 已提交
137 138

        #get cmc
D
dongshuilong 已提交
139 140 141 142 143 144 145 146 147 148
        choosen_indices = paddle.argsort(
            similarities_matrix, axis=1, descending=True)
        gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
        gallery_labels_transpose = paddle.broadcast_to(
            gallery_labels_transpose,
            shape=[
                choosen_indices.shape[0], gallery_labels_transpose.shape[1]
            ])
        choosen_label = paddle.index_sample(gallery_labels_transpose,
                                            choosen_indices)
B
Bin Lu 已提交
149
        equal_flag = paddle.equal(choosen_label, query_img_id)
D
dongshuilong 已提交
150 151 152 153 154
        if keep_mask is not None:
            keep_mask = paddle.index_sample(
                keep_mask.astype('float32'), choosen_indices)
            equal_flag = paddle.logical_and(equal_flag,
                                            keep_mask.astype('bool'))
B
Bin Lu 已提交
155
        equal_flag = paddle.cast(equal_flag, 'float32')
D
dongshuilong 已提交
156 157 158 159 160
        real_query_num = paddle.sum(equal_flag, axis=1)
        real_query_num = paddle.sum(
            paddle.greater_than(real_query_num, paddle.to_tensor(0.)).astype(
                "float32"))

B
Bin Lu 已提交
161
        acc_sum = paddle.cumsum(equal_flag, axis=1)
D
dongshuilong 已提交
162 163 164
        mask = paddle.greater_than(acc_sum,
                                   paddle.to_tensor(0.)).astype("float32")
        all_cmc = (paddle.sum(mask, axis=0) / real_query_num).numpy()
W
weishengyu 已提交
165 166 167 168 169

        for k in self.topk:
            metric_dict["recall{}".format(k)] = all_cmc[k - 1]
        return metric_dict

D
dongshuilong 已提交
170

171 172 173 174 175 176 177 178 179 180 181
class DistillationTopkAcc(TopkAcc):
    def __init__(self, model_key, feature_key=None, topk=(1, 5)):
        super().__init__(topk=topk)
        self.model_key = model_key
        self.feature_key = feature_key

    def forward(self, x, label):
        x = x[self.model_key]
        if self.feature_key is not None:
            x = x[self.feature_key]
        return super().forward(x, label)
C
cuicheng01 已提交
182 183 184 185 186 187 188 189 190 191 192 193


class GoogLeNetTopkAcc(TopkAcc):
    def __init__(self, topk=(1, 5)):
        super().__init__()
        assert isinstance(topk, (int, list, tuple))
        if isinstance(topk, int):
            topk = [topk]
        self.topk = topk

    def forward(self, x, label):
        return super().forward(x[0], label)