提交 c9f2c474 编写于 作者: W weishengyu

update metric

上级 b56237dc
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
# TODO: fix the format
class Topk(nn.Layer):
def __init__(self, topk=(1, 5)):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
def forward(self, x, label):
if isinstance(x, dict):
x = x["logits"]
metric_dict = dict()
for k in self.topk:
metric_dict["top{}".format(k)] = paddle.metric.accuracy(
x, label, k=k)
return metric_dict
class mAP(nn.Layer):
def __init__(self, max_rank=50):
super().__init__()
self.max_rank = max_rank
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
metric_dict = dict()
num_q, num_g = similarities_matrix.shape
q_pids = query_img_id.numpy().reshape((query_img_id.shape[0]))
g_pids = gallery_img_id.numpy().reshape((gallery_img_id.shape[0]))
if num_g < self.max_rank:
self.max_rank = num_g
print('Note: number of gallery samples is quite small, got {}'.
format(num_g))
indices = paddle.argsort(
similarities_matrix, axis=1, descending=True).numpy()
_, all_AP, _ = get_metrics(indices, num_q, num_g, q_pids, g_pids,
self.max_rank)
mAP = np.mean(all_AP)
metric_dict["mAP"] = mAP
return metric_dict
class mINP(nn.Layer):
def __init__(self, max_rank=50):
super().__init__()
self.max_rank = max_rank
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
metric_dict = dict()
num_q, num_g = similarities_matrix.shape
q_pids = query_img_id.numpy().reshape((query_img_id.shape[0]))
g_pids = gallery_img_id.numpy().reshape((gallery_img_id.shape[0]))
if num_g < self.max_rank:
max_rank = num_g
print('Note: number of gallery samples is quite small, got {}'.
format(num_g))
indices = paddle.argsort(
similarities_matrix, axis=1, descending=True).numpy()
_, _, all_INP = get_metrics(indices, num_q, num_g, q_pids, g_pids,
self.max_rank)
mINP = np.mean(all_INP)
metric_dict["mINP"] = mINP
return metric_dict
class Recallk(nn.Layer):
def __init__(self, max_rank=50, topk=(1, 5)):
super().__init__()
self.max_rank = max_rank
assert isinstance(topk, (int, list))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
metric_dict = dict()
num_q, num_g = similarities_matrix.shape
q_pids = query_img_id.numpy().reshape((query_img_id.shape[0]))
g_pids = gallery_img_id.numpy().reshape((gallery_img_id.shape[0]))
if num_g < self.max_rank:
max_rank = num_g
print('Note: number of gallery samples is quite small, got {}'.
format(num_g))
indices = paddle.argsort(
similarities_matrix, axis=1, descending=True).numpy()
all_cmc, _, _ = get_metrics(indices, num_q, num_g, q_pids, g_pids,
self.max_rank)
for k in self.topk:
metric_dict["recall{}".format(k)] = all_cmc[k - 1]
return metric_dict
def get_metrics(indices, num_q, num_g, q_pids, g_pids, max_rank=50):
all_cmc = []
all_AP = []
all_INP = []
num_valid_q = 0
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
for q_idx in range(num_q):
q_pid = q_pids[q_idx]
order = indices[q_idx]
remove = g_pids[order] == q_pid
keep = np.invert(remove)
raw_cmc = matches[q_idx][keep]
if not np.any(raw_cmc):
continue
cmc = raw_cmc.cumsum()
pos_idx = np.where(raw_cmc == 1)
max_pos_idx = np.max(pos_idx)
inp = cmc[max_pos_idx] / (max_pos_idx + 1.0)
all_INP.append(inp)
cmc[cmc > 1] = 1
all_cmc.append(cmc[:max_rank])
num_valid_q += 1.
num_rel = raw_cmc.sum()
tmp_cmc = raw_cmc.cumsum()
tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)]
tmp_cmc = np.asarray(tmp_cmc) * raw_cmc
AP = tmp_cmc.sum() / num_rel
all_AP.append(AP)
assert num_valid_q > 0, 'Error: all query identities do not appear in gallery'
all_cmc = np.asarray(all_cmc).astype(np.float32)
all_cmc = all_cmc.sum(0) / num_valid_q
return all_cmc, all_AP, all_INP
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册