paddleclas.py 33.0 KB
Newer Older
G
gaotingquan 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
C
chenziheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
16
from typing import Union, Generator
T
Tingquan Gao 已提交
17 18
import argparse
import shutil
T
Tingquan Gao 已提交
19
import textwrap
T
Tingquan Gao 已提交
20 21 22
import tarfile
import requests
from functools import partial
T
Tingquan Gao 已提交
23
from difflib import SequenceMatcher
C
chenziheng 已提交
24 25 26 27

import cv2
import numpy as np
from tqdm import tqdm
T
Tingquan Gao 已提交
28
from prettytable import PrettyTable
29
import paddle
T
Tingquan Gao 已提交
30

31 32
from .ppcls.arch import backbone
from .ppcls.utils import logger
33

34
from .deploy.python.predict_cls import ClsPredictor
H
HydrogenSulfate 已提交
35
from .deploy.python.predict_system import SystemPredictor
悟、's avatar
悟、 已提交
36
from .deploy.python.build_gallery import GalleryBuilder
37 38
from .deploy.utils.get_image_list import get_image_list
from .deploy.utils import config
T
Tingquan Gao 已提交
39

40 41 42
# for the PaddleClas Project
from . import deploy
from . import ppcls
T
Tingquan Gao 已提交
43

44
# for building model with loading pretrained weights from backbone
G
gaotingquan 已提交
45
logger.init_logger()
46

T
Tingquan Gao 已提交
47
__all__ = ["PaddleClas"]
T
Tingquan Gao 已提交
48

C
chenziheng 已提交
49
BASE_DIR = os.path.expanduser("~/.paddleclas/")
T
Tingquan Gao 已提交
50 51
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model")
BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images")
52 53
IMN_MODEL_BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar"
IMN_MODEL_SERIES = {
T
Tingquan Gao 已提交
54
    "AlexNet": ["AlexNet"],
55 56
    "ConvNeXt": ["ConvNeXt_tiny"],
    "CSPNet": ["CSPDarkNet53"],
G
gaotingquan 已提交
57 58 59 60 61
    "CSWinTransformer": [
        "CSWinTransformer_tiny_224", "CSWinTransformer_small_224",
        "CSWinTransformer_base_224", "CSWinTransformer_base_384",
        "CSWinTransformer_large_224", "CSWinTransformer_large_384"
    ],
T
Tingquan Gao 已提交
62 63
    "DarkNet": ["DarkNet53"],
    "DeiT": [
T
Tingquan Gao 已提交
64 65 66 67
        "DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384",
        "DeiT_base_patch16_224", "DeiT_base_patch16_384",
        "DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224",
        "DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224"
T
Tingquan Gao 已提交
68 69 70 71 72
    ],
    "DenseNet": [
        "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
        "DenseNet264"
    ],
73 74 75 76
    "DLA": [
        "DLA46_c", "DLA60x_c", "DLA34", "DLA60", "DLA60x", "DLA102", "DLA102x",
        "DLA102x2", "DLA169"
    ],
T
Tingquan Gao 已提交
77 78 79 80 81 82
    "DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"],
    "EfficientNet": [
        "EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1",
        "EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5",
        "EfficientNetB6", "EfficientNetB7"
    ],
G
gaotingquan 已提交
83
    "ESNet": ["ESNet_x0_25", "ESNet_x0_5", "ESNet_x0_75", "ESNet_x1_0"],
T
Tingquan Gao 已提交
84 85
    "GhostNet":
    ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"],
86
    "HarDNet": ["HarDNet39_ds", "HarDNet68_ds", "HarDNet68", "HarDNet85"],
T
Tingquan Gao 已提交
87 88 89 90 91 92
    "HRNet": [
        "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C",
        "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld",
        "HRNet_W48_C_ssld"
    ],
    "Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"],
G
gaotingquan 已提交
93 94
    "LeViT":
    ["LeViT_128S", "LeViT_128", "LeViT_192", "LeViT_256", "LeViT_384"],
G
gaotingquan 已提交
95
    "MixNet": ["MixNet_S", "MixNet_M", "MixNet_L"],
T
Tingquan Gao 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    "MobileNetV1": [
        "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75",
        "MobileNetV1", "MobileNetV1_ssld"
    ],
    "MobileNetV2": [
        "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
        "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0",
        "MobileNetV2_ssld"
    ],
    "MobileNetV3": [
        "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
        "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
        "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
        "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
        "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25",
        "MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld"
    ],
G
gaotingquan 已提交
113
    "MobileViT": ["MobileViT_XXS", "MobileViT_XS", "MobileViT_S"],
114
    "PeleeNet": ["PeleeNet"],
G
gaotingquan 已提交
115 116 117 118 119 120
    "PPHGNet": [
        "PPHGNet_tiny",
        "PPHGNet_small",
        "PPHGNet_tiny_ssld",
        "PPHGNet_small_ssld",
    ],
G
gaotingquan 已提交
121 122 123 124
    "PPLCNet": [
        "PPLCNet_x0_25", "PPLCNet_x0_35", "PPLCNet_x0_5", "PPLCNet_x0_75",
        "PPLCNet_x1_0", "PPLCNet_x1_5", "PPLCNet_x2_0", "PPLCNet_x2_5"
    ],
G
gaotingquan 已提交
125
    "PPLCNetV2": ["PPLCNetV2_base"],
G
gaotingquan 已提交
126 127 128 129
    "PVTV2": [
        "PVT_V2_B0", "PVT_V2_B1", "PVT_V2_B2", "PVT_V2_B2_Linear", "PVT_V2_B3",
        "PVT_V2_B4", "PVT_V2_B5"
    ],
130
    "RedNet": ["RedNet26", "RedNet38", "RedNet50", "RedNet101", "RedNet152"],
T
Tingquan Gao 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    "RegNet": ["RegNetX_4GF"],
    "Res2Net": [
        "Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s",
        "Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s",
        "Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld",
        "Res2Net200_vd_26w_4s_ssld"
    ],
    "ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"],
    "ResNet": [
        "ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50",
        "ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101",
        "ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd",
        "ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2",
        "ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy"
    ],
    "ResNeXt": [
        "ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d",
        "ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d",
        "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl",
        "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
        "Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d",
        "ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d",
        "ResNeXt152_vd_64x4d"
    ],
155 156
    "ReXNet":
    ["ReXNet_1_0", "ReXNet_1_3", "ReXNet_1_5", "ReXNet_2_0", "ReXNet_3_0"],
T
Tingquan Gao 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    "SENet": [
        "SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd",
        "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d",
        "SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d"
    ],
    "ShuffleNetV2": [
        "ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33",
        "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5",
        "ShuffleNetV2_x2_0"
    ],
    "SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"],
    "SwinTransformer": [
        "SwinTransformer_large_patch4_window7_224_22kto1k",
        "SwinTransformer_large_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window7_224_22kto1k",
        "SwinTransformer_base_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window12_384",
        "SwinTransformer_base_patch4_window7_224",
        "SwinTransformer_small_patch4_window7_224",
        "SwinTransformer_tiny_patch4_window7_224"
    ],
G
gaotingquan 已提交
178 179 180 181
    "Twins": [
        "pcpvt_small", "pcpvt_base", "pcpvt_large", "alt_gvt_small",
        "alt_gvt_base", "alt_gvt_large"
    ],
G
gaotingquan 已提交
182
    "TNT": ["TNT_small"],
183
    "VAN": ["VAN_B0"],
T
Tingquan Gao 已提交
184 185 186 187 188 189 190 191 192 193
    "VGG": ["VGG11", "VGG13", "VGG16", "VGG19"],
    "VisionTransformer": [
        "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
        "ViT_large_patch16_224", "ViT_large_patch16_384",
        "ViT_large_patch32_384", "ViT_small_patch16_224"
    ],
    "Xception": [
        "Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab",
        "Xception71"
    ]
C
chenziheng 已提交
194 195
}

G
gaotingquan 已提交
196
PULC_MODEL_BASE_DOWNLOAD_URL = "https://paddleclas.bj.bcebos.com/models/PULC/inference/{}_infer.tar"
197
PULC_MODELS = [
G
gaotingquan 已提交
198 199
    "car_exists", "language_classification", "person_attribute",
    "person_exists", "safety_helmet", "text_image_orientation",
C
cuicheng01 已提交
200 201
    "textline_orientation", "traffic_sign", "vehicle_attribute",
    "table_attribute"
202 203
]

H
HydrogenSulfate 已提交
204 205 206 207 208 209 210 211
SHITU_MODEL_BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/{}_infer.tar"
SHITU_MODELS = [
    # "picodet_PPLCNet_x2_5_mainbody_lite_v1.0",  # ShiTuV1(V2)_mainbody_det
    # "general_PPLCNet_x2_5_lite_v1.0"  # ShiTuV1_general_rec
    # "PP-ShiTuV2/general_PPLCNetV2_base_pretrained_v1.0",  # ShiTuV2_general_rec TODO(hesensen): add lite model
    "PP-ShiTuV2"
]

C
chenziheng 已提交
212

T
Tingquan Gao 已提交
213 214
class ImageTypeError(Exception):
    """ImageTypeError.
T
Tingquan Gao 已提交
215 216
    """

T
Tingquan Gao 已提交
217
    def __init__(self, message=""):
T
Tingquan Gao 已提交
218 219 220
        super().__init__(message)


T
Tingquan Gao 已提交
221 222 223 224 225 226 227 228
class InputModelError(Exception):
    """InputModelError.
    """

    def __init__(self, message=""):
        super().__init__(message)


229 230
def init_config(model_type, model_name, inference_model_dir, **kwargs):

悟、's avatar
悟、 已提交
231 232 233
    if kwargs.get("build_gallery", False):
        cfg_path = "deploy/configs/inference_general.yaml"
    elif model_type == "pulc":
H
HydrogenSulfate 已提交
234 235 236 237 238 239
        cfg_path = f"deploy/configs/PULC/{model_name}/inference_{model_name}.yaml"
    elif model_type == "shitu":
        cfg_path = "deploy/configs/inference_general.yaml"
    else:
        cfg_path = "deploy/configs/inference_cls.yaml"

240
    __dir__ = os.path.dirname(__file__)
G
gaotingquan 已提交
241
    cfg_path = os.path.join(__dir__, cfg_path)
悟、's avatar
悟、 已提交
242 243
    cfg = config.get_config(
        cfg_path, overrides=kwargs.get("override", None), show=False)
H
HydrogenSulfate 已提交
244 245 246 247 248 249 250 251
    if cfg.Global.get("inference_model_dir"):
        cfg.Global.inference_model_dir = inference_model_dir
    else:
        cfg.Global.rec_inference_model_dir = os.path.join(
            inference_model_dir,
            "PP-ShiTuV2/general_PPLCNetV2_base_pretrained_v1.0")
        cfg.Global.det_inference_model_dir = os.path.join(
            inference_model_dir, "picodet_PPLCNet_x2_5_mainbody_lite_v1.0")
252 253 254

    if "batch_size" in kwargs and kwargs["batch_size"]:
        cfg.Global.batch_size = kwargs["batch_size"]
255

256 257
    if "use_gpu" in kwargs and kwargs["use_gpu"]:
        cfg.Global.use_gpu = kwargs["use_gpu"]
258 259 260 261
    if cfg.Global.use_gpu and not paddle.device.is_compiled_with_cuda():
        msg = "The current running environment does not support the use of GPU. CPU has been used instead."
        logger.warning(msg)
        cfg.Global.use_gpu = False
262 263 264

    if "infer_imgs" in kwargs and kwargs["infer_imgs"]:
        cfg.Global.infer_imgs = kwargs["infer_imgs"]
H
HydrogenSulfate 已提交
265 266 267 268
    if "index_dir" in kwargs and kwargs["index_dir"]:
        cfg.IndexProcess.index_dir = kwargs["index_dir"]
    if "data_file" in kwargs and kwargs["data_file"]:
        cfg.IndexProcess.data_file = kwargs["data_file"]
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    if "enable_mkldnn" in kwargs and kwargs["enable_mkldnn"]:
        cfg.Global.enable_mkldnn = kwargs["enable_mkldnn"]
    if "cpu_num_threads" in kwargs and kwargs["cpu_num_threads"]:
        cfg.Global.cpu_num_threads = kwargs["cpu_num_threads"]
    if "use_fp16" in kwargs and kwargs["use_fp16"]:
        cfg.Global.use_fp16 = kwargs["use_fp16"]
    if "use_tensorrt" in kwargs and kwargs["use_tensorrt"]:
        cfg.Global.use_tensorrt = kwargs["use_tensorrt"]
    if "gpu_mem" in kwargs and kwargs["gpu_mem"]:
        cfg.Global.gpu_mem = kwargs["gpu_mem"]
    if "resize_short" in kwargs and kwargs["resize_short"]:
        cfg.PreProcess.transform_ops[0]["ResizeImage"][
            "resize_short"] = kwargs["resize_short"]
    if "crop_size" in kwargs and kwargs["crop_size"]:
        cfg.PreProcess.transform_ops[1]["CropImage"]["size"] = kwargs[
            "crop_size"]

    # TODO(gaotingquan): not robust
    if "thresh" in kwargs and kwargs[
            "thresh"] and "ThreshOutput" in cfg.PostProcess:
        cfg.PostProcess.ThreshOutput.thresh = kwargs["thresh"]
290

H
HydrogenSulfate 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    if cfg.get("PostProcess"):
        if "Topk" in cfg.PostProcess:
            if "topk" in kwargs and kwargs["topk"]:
                cfg.PostProcess.Topk.topk = kwargs["topk"]
            if "class_id_map_file" in kwargs and kwargs["class_id_map_file"]:
                cfg.PostProcess.Topk.class_id_map_file = kwargs[
                    "class_id_map_file"]
            else:
                class_id_map_file_path = os.path.relpath(
                    cfg.PostProcess.Topk.class_id_map_file, "../")
                cfg.PostProcess.Topk.class_id_map_file = os.path.join(
                    __dir__, class_id_map_file_path)
        if "VehicleAttribute" in cfg.PostProcess:
            if "color_threshold" in kwargs and kwargs["color_threshold"]:
                cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
                    "color_threshold"]
            if "type_threshold" in kwargs and kwargs["type_threshold"]:
                cfg.PostProcess.VehicleAttribute.type_threshold = kwargs[
                    "type_threshold"]
310 311 312 313 314 315 316 317 318 319 320 321 322
        if "TableAttribute" in cfg.PostProcess:
            if "source_threshold" in kwargs and kwargs["source_threshold"]:
                cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
                    "source_threshold"]
            if "number_threshold" in kwargs and kwargs["number_threshold"]:
                cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
                    "number_threshold"]
            if "color_threshold" in kwargs and kwargs["color_threshold"]:
                cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
                    "color_threshold"]
            if "clarity_threshold" in kwargs and kwargs["clarity_threshold"]:
                cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
                    "clarity_threshold"]
323 324
            if "obstruction_threshold" in kwargs and kwargs[
                    "obstruction_threshold"]:
325 326 327 328 329
                cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
                    "obstruction_threshold"]
            if "angle_threshold" in kwargs and kwargs["angle_threshold"]:
                cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
                    "angle_threshold"]
330 331
    if "save_dir" in kwargs and kwargs["save_dir"]:
        cfg.PostProcess.SavePreLabel.save_dir = kwargs["save_dir"]
T
Tingquan Gao 已提交
332 333 334 335 336 337 338 339 340 341 342 343

    return cfg


def args_cfg():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--infer_imgs",
        type=str,
悟、's avatar
悟、 已提交
344
        required=False,
T
Tingquan Gao 已提交
345 346 347
        help="The image(s) to be predicted.")
    parser.add_argument(
        "--model_name", type=str, help="The model name to be used.")
悟、's avatar
悟、 已提交
348 349 350 351 352
    parser.add_argument(
        "--predict_type",
        type=str,
        default="cls",
        help="The predict type to be selected.")
T
Tingquan Gao 已提交
353 354 355 356 357
    parser.add_argument(
        "--inference_model_dir",
        type=str,
        help="The directory of model files. Valid when model_name not specifed."
    )
H
HydrogenSulfate 已提交
358 359 360 361 362 363 364
    parser.add_argument(
        "--index_dir",
        type=str,
        required=False,
        help="The index directory path.")
    parser.add_argument(
        "--data_file", type=str, required=False, help="The label file path.")
365 366 367 368 369
    parser.add_argument("--use_gpu", type=str2bool, help="Whether use GPU.")
    parser.add_argument(
        "--gpu_mem",
        type=int,
        help="The memory size of GPU allocated to predict.")
T
Tingquan Gao 已提交
370 371 372 373 374
    parser.add_argument(
        "--enable_mkldnn",
        type=str2bool,
        help="Whether use MKLDNN. Valid when use_gpu is False")
    parser.add_argument(
375 376 377 378 379 380
        "--cpu_num_threads",
        type=int,
        help="The threads number when predicting on CPU.")
    parser.add_argument(
        "--use_tensorrt",
        type=str2bool,
G
gaotingquan 已提交
381
        help="Whether use TensorRT to accelerate.")
382 383
    parser.add_argument(
        "--use_fp16", type=str2bool, help="Whether use FP16 to predict.")
384
    parser.add_argument("--batch_size", type=int, help="Batch size.")
T
Tingquan Gao 已提交
385 386 387
    parser.add_argument(
        "--topk",
        type=int,
388 389
        help="Return topk score(s) and corresponding results when Topk postprocess is used."
    )
T
Tingquan Gao 已提交
390 391 392 393
    parser.add_argument(
        "--class_id_map_file",
        type=str,
        help="The path of file that map class_id and label.")
394 395 396 397 398 399
    parser.add_argument(
        "--threshold",
        type=float,
        help="The threshold of ThreshOutput when postprocess is used.")
    parser.add_argument("--color_threshold", type=float, help="")
    parser.add_argument("--type_threshold", type=float, help="")
T
Tingquan Gao 已提交
400 401 402 403
    parser.add_argument(
        "--save_dir",
        type=str,
        help="The directory to save prediction results as pre-label.")
G
gaotingquan 已提交
404
    parser.add_argument(
405 406
        "--resize_short", type=int, help="Resize according to short size.")
    parser.add_argument("--crop_size", type=int, help="Centor crop size.")
悟、's avatar
悟、 已提交
407 408 409 410 411 412 413 414 415 416 417
    parser.add_argument(
        "--build_gallery",
        type=str2bool,
        default=False,
        help="Whether build gallery.")
    parser.add_argument(
        '-o',
        '--override',
        action='append',
        default=[],
        help='config options to be overridden')
T
Tingquan Gao 已提交
418 419
    args = parser.parse_args()
    return vars(args)
T
Tingquan Gao 已提交
420 421


T
Tingquan Gao 已提交
422
def print_info():
T
Tingquan Gao 已提交
423 424
    """Print list of supported models in formatted.
    """
425 426
    imn_table = PrettyTable(["IMN Model Series", "Model Name"])
    pulc_table = PrettyTable(["PULC Models"])
H
HydrogenSulfate 已提交
427
    shitu_table = PrettyTable(["PP-ShiTu Models"])
T
Tingquan Gao 已提交
428 429
    try:
        sz = os.get_terminal_size()
430 431 432
        total_width = sz.columns
        first_width = 30
        second_width = total_width - first_width if total_width > 50 else 10
T
Tingquan Gao 已提交
433
    except OSError:
434
        total_width = 100
435 436 437 438 439 440 441 442 443 444 445
        second_width = 100
    for series in IMN_MODEL_SERIES:
        names = textwrap.fill(
            "  ".join(IMN_MODEL_SERIES[series]), width=second_width)
        imn_table.add_row([series, names])

    table_width = len(str(imn_table).split("\n")[0])
    pulc_table.add_row([
        textwrap.fill(
            "  ".join(PULC_MODELS), width=total_width).center(table_width - 4)
    ])
H
HydrogenSulfate 已提交
446 447 448 449
    shitu_table.add_row([
        textwrap.fill(
            "  ".join(SHITU_MODELS), width=total_width).center(table_width - 4)
    ])
450 451 452 453 454

    print("{}".format("-" * table_width))
    print("Models supported by PaddleClas".center(table_width))
    print(imn_table)
    print(pulc_table)
H
HydrogenSulfate 已提交
455
    print(shitu_table)
456 457 458 459 460
    print("Powered by PaddlePaddle!".rjust(table_width))
    print("{}".format("-" * table_width))


def get_imn_model_names():
T
Tingquan Gao 已提交
461 462
    """Get the model names list.
    """
T
Tingquan Gao 已提交
463
    model_names = []
464 465
    for series in IMN_MODEL_SERIES:
        model_names += (IMN_MODEL_SERIES[series])
T
Tingquan Gao 已提交
466 467 468
    return model_names


469
def similar_model_names(name="", names=[], thresh=0.1, topk=5):
T
Tingquan Gao 已提交
470
    """Find the most similar topk model names.
T
Tingquan Gao 已提交
471 472 473
    """
    scores = []
    for idx, n in enumerate(names):
T
Tingquan Gao 已提交
474
        if n.startswith("__"):
T
Tingquan Gao 已提交
475 476 477 478 479 480 481 482 483
            continue
        score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
        if score > thresh:
            scores.append((idx, score))
    scores.sort(key=lambda x: x[1], reverse=True)
    similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
    return similar_names


C
chenziheng 已提交
484
def download_with_progressbar(url, save_path):
T
Tingquan Gao 已提交
485 486 487 488
    """Download from url with progressbar.
    """
    if os.path.isfile(save_path):
        os.remove(save_path)
C
chenziheng 已提交
489
    response = requests.get(url, stream=True)
T
Tingquan Gao 已提交
490
    total_size_in_bytes = int(response.headers.get("content-length", 0))
C
chenziheng 已提交
491
    block_size = 1024  # 1 Kibibyte
T
Tingquan Gao 已提交
492 493
    progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
    with open(save_path, "wb") as file:
C
chenziheng 已提交
494 495 496 497
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
T
Tingquan Gao 已提交
498 499
    if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile(
            save_path):
T
Tingquan Gao 已提交
500
        raise Exception(
T
Tingquan Gao 已提交
501
            f"Something went wrong while downloading file from {url}")
C
chenziheng 已提交
502 503


504
def check_model_file(model_type, model_name):
505
    """Check the model files exist and download and untar when no exist.
T
Tingquan Gao 已提交
506
    """
507 508 509 510
    if model_type == "pulc":
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "PULC", model_name)
        url = PULC_MODEL_BASE_DOWNLOAD_URL.format(model_name)
H
HydrogenSulfate 已提交
511 512 513 514
    elif model_type == "shitu":
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "PP-ShiTu", model_name)
        url = SHITU_MODEL_BASE_DOWNLOAD_URL.format(model_name)
515 516 517 518
    else:
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "IMN", model_name)
        url = IMN_MODEL_BASE_DOWNLOAD_URL.format(model_name)
T
Tingquan Gao 已提交
519

C
chenziheng 已提交
520
    tar_file_name_list = [
T
Tingquan Gao 已提交
521
        "inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel"
C
chenziheng 已提交
522
    ]
T
Tingquan Gao 已提交
523 524 525 526 527
    model_file_path = storage_directory("inference.pdmodel")
    params_file_path = storage_directory("inference.pdiparams")
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        tmp_path = storage_directory(url.split("/")[-1])
G
gaotingquan 已提交
528
        logger.info(f"download {url} to {tmp_path}")
T
Tingquan Gao 已提交
529
        os.makedirs(storage_directory(), exist_ok=True)
C
chenziheng 已提交
530
        download_with_progressbar(url, tmp_path)
T
Tingquan Gao 已提交
531
        with tarfile.open(tmp_path, "r") as tarObj:
C
chenziheng 已提交
532 533 534 535 536 537 538 539
            for member in tarObj.getmembers():
                filename = None
                for tar_file_name in tar_file_name_list:
                    if tar_file_name in member.name:
                        filename = tar_file_name
                if filename is None:
                    continue
                file = tarObj.extractfile(member)
T
Tingquan Gao 已提交
540
                with open(storage_directory(filename), "wb") as f:
C
chenziheng 已提交
541 542
                    f.write(file.read())
        os.remove(tmp_path)
T
Tingquan Gao 已提交
543 544 545 546 547
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        raise Exception(
            f"Something went wrong while praparing the model[{model_name}] files!"
        )
C
chenziheng 已提交
548

T
Tingquan Gao 已提交
549
    return storage_directory()
C
chenziheng 已提交
550

T
Tingquan Gao 已提交
551

C
chenziheng 已提交
552
class PaddleClas(object):
T
Tingquan Gao 已提交
553 554 555 556 557 558
    """PaddleClas.
    """

    def __init__(self,
                 model_name: str=None,
                 inference_model_dir: str=None,
T
Tingquan Gao 已提交
559
                 **kwargs):
T
Tingquan Gao 已提交
560
        """Init PaddleClas with config.
T
Tingquan Gao 已提交
561

T
Tingquan Gao 已提交
562
        Args:
563 564 565 566 567
            model_name (str, optional): The model name supported by PaddleClas. If specified, override config. Defaults to None.
            inference_model_dir (str, optional): The directory that contained model file and params file to be used. If specified, override config. Defaults to None.
            use_gpu (bool, optional): Whether use GPU. If specified, override config. Defaults to True.
            batch_size (int, optional): The batch size to pridict. If specified, override config. Defaults to 1.
            topk (int, optional): Return the top k prediction results with the highest score. Defaults to 5.
T
Tingquan Gao 已提交
568 569
        """
        super().__init__()
570

悟、's avatar
悟、 已提交
571 572 573 574 575 576 577 578 579 580 581
        if kwargs.get("build_gallery", False):
            self.model_type, inference_model_dir = self._check_input_model(
                model_name
                if model_name else "PP-ShiTuV2", inference_model_dir)
            self._config = init_config(self.model_type, model_name
                                       if model_name else "PP-ShiTuV2",
                                       inference_model_dir, **kwargs)

            logger.info("Building Gallery...")
            GalleryBuilder(self._config)

H
HydrogenSulfate 已提交
582
        else:
悟、's avatar
悟、 已提交
583 584 585 586 587 588 589 590 591
            self.model_type, inference_model_dir = self._check_input_model(
                model_name, inference_model_dir)
            self._config = init_config(self.model_type, model_name,
                                       inference_model_dir, **kwargs)

            if self.model_type == "shitu":
                self.predictor = SystemPredictor(self._config)
            else:
                self.predictor = ClsPredictor(self._config)
T
Tingquan Gao 已提交
592 593 594

    def get_config(self):
        """Get the config.
C
chenziheng 已提交
595
        """
T
Tingquan Gao 已提交
596 597
        return self._config

598
    def _check_input_model(self, model_name, inference_model_dir):
T
Tingquan Gao 已提交
599 600
        """Check input model name or model files.
        """
601 602
        all_imn_model_names = get_imn_model_names()
        all_pulc_model_names = PULC_MODELS
H
HydrogenSulfate 已提交
603
        all_shitu_model_names = SHITU_MODELS
604 605 606 607 608 609 610 611

        if model_name:
            if model_name in all_imn_model_names:
                inference_model_dir = check_model_file("imn", model_name)
                return "imn", inference_model_dir
            elif model_name in all_pulc_model_names:
                inference_model_dir = check_model_file("pulc", model_name)
                return "pulc", inference_model_dir
H
HydrogenSulfate 已提交
612 613 614 615 616 617 618 619 620
            elif model_name in all_shitu_model_names:
                inference_model_dir = check_model_file(
                    "shitu",
                    "PP-ShiTuV2/general_PPLCNetV2_base_pretrained_v1.0")
                inference_model_dir = check_model_file(
                    "shitu", "picodet_PPLCNet_x2_5_mainbody_lite_v1.0")
                inference_model_dir = os.path.abspath(
                    os.path.dirname(inference_model_dir))
                return "shitu", inference_model_dir
621 622 623 624 625 626 627 628
            else:
                similar_imn_names = similar_model_names(model_name,
                                                        all_imn_model_names)
                similar_pulc_names = similar_model_names(model_name,
                                                         all_pulc_model_names)
                similar_names_str = ", ".join(similar_imn_names +
                                              similar_pulc_names)
                err = f"{model_name} is not provided by PaddleClas. \nMaybe you want the : [{similar_names_str}]. \nIf you want to use your own model, please specify inference_model_dir!"
T
Tingquan Gao 已提交
629
                raise InputModelError(err)
630
        elif inference_model_dir:
T
Tingquan Gao 已提交
631 632 633 634 635 636 637 638
            model_file_path = os.path.join(inference_model_dir,
                                           "inference.pdmodel")
            params_file_path = os.path.join(inference_model_dir,
                                            "inference.pdiparams")
            if not os.path.isfile(model_file_path) or not os.path.isfile(
                    params_file_path):
                err = f"There is no model file or params file in this directory: {inference_model_dir}"
                raise InputModelError(err)
639
            return "custom", inference_model_dir
T
Tingquan Gao 已提交
640
        else:
H
HydrogenSulfate 已提交
641
            err = "Please specify the model name supported by PaddleClas or directory contained model files(inference.pdmodel, inference.pdiparams)."
T
Tingquan Gao 已提交
642
            raise InputModelError(err)
643
        return None
T
Tingquan Gao 已提交
644

H
HydrogenSulfate 已提交
645 646 647
    def predict_cls(self,
                    input_data: Union[str, np.array],
                    print_pred: bool=False) -> Generator[list, None, None]:
T
Tingquan Gao 已提交
648 649
        """Predict input_data.

C
chenziheng 已提交
650
        Args:
G
gaotingquan 已提交
651
            input_data (Union[str, np.array]):
652 653
                When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
                When the type is np.array, it is the image data whose channel order is RGB.
G
gaotingquan 已提交
654
            print_pred (bool, optional): Whether print the prediction result. Defaults to False.
T
Tingquan Gao 已提交
655 656 657 658 659

        Raises:
            ImageTypeError: Illegal input_data.

        Yields:
G
gaotingquan 已提交
660 661 662
            Generator[list, None, None]:
                The prediction result(s) of input_data by batch_size. For every one image,
                prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
G
gaotingquan 已提交
663
                The format of batch prediction result(s) is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
C
chenziheng 已提交
664
        """
665

T
Tingquan Gao 已提交
666
        if isinstance(input_data, np.ndarray):
H
HydrogenSulfate 已提交
667
            yield self.predictor.predict(input_data)
T
Tingquan Gao 已提交
668
        elif isinstance(input_data, str):
T
Tingquan Gao 已提交
669
            if input_data.startswith("http") or input_data.startswith("https"):
T
Tingquan Gao 已提交
670 671 672 673 674
                image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
                if not os.path.exists(image_storage_dir()):
                    os.makedirs(image_storage_dir())
                image_save_path = image_storage_dir("tmp.jpg")
                download_with_progressbar(input_data, image_save_path)
G
gaotingquan 已提交
675
                logger.info(
T
Tingquan Gao 已提交
676 677
                    f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
                )
678
                input_data = image_save_path
T
Tingquan Gao 已提交
679 680 681 682 683
            image_list = get_image_list(input_data)

            batch_size = self._config.Global.get("batch_size", 1)

            img_list = []
T
Tingquan Gao 已提交
684 685
            img_path_list = []
            cnt = 0
686
            for idx_img, img_path in enumerate(image_list):
T
Tingquan Gao 已提交
687 688
                img = cv2.imread(img_path)
                if img is None:
G
gaotingquan 已提交
689
                    logger.warning(
T
Tingquan Gao 已提交
690 691
                        f"Image file failed to read and has been skipped. The path: {img_path}"
                    )
T
Tingquan Gao 已提交
692
                    continue
693
                img = img[:, :, ::-1]
T
Tingquan Gao 已提交
694 695 696 697
                img_list.append(img)
                img_path_list.append(img_path)
                cnt += 1

698
                if cnt % batch_size == 0 or (idx_img + 1) == len(image_list):
H
HydrogenSulfate 已提交
699
                    preds = self.predictor.predict(img_list)
G
gaotingquan 已提交
700

701 702 703 704
                    if preds:
                        for idx_pred, pred in enumerate(preds):
                            pred["filename"] = img_path_list[idx_pred]
                            if print_pred:
G
gaotingquan 已提交
705
                                logger.info(", ".join(
706
                                    [f"{k}: {pred[k]}" for k in pred]))
T
Tingquan Gao 已提交
707

T
Tingquan Gao 已提交
708
                    img_list = []
T
Tingquan Gao 已提交
709
                    img_path_list = []
T
Tingquan Gao 已提交
710
                    yield preds
C
chenziheng 已提交
711
        else:
T
Tingquan Gao 已提交
712 713 714
            err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            raise ImageTypeError(err)
        return
C
chenziheng 已提交
715

H
HydrogenSulfate 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
    def predict_shitu(self,
                      input_data: Union[str, np.array],
                      print_pred: bool=False) -> Generator[list, None, None]:
        """Predict input_data.
        Args:
            input_data (Union[str, np.array]):
                When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
                When the type is np.array, it is the image data whose channel order is RGB.
            print_pred (bool, optional): Whether print the prediction result. Defaults to False.

        Raises:
            ImageTypeError: Illegal input_data.

        Yields:
            Generator[list, None, None]:
                The prediction result(s) of input_data by batch_size. For every one image,
                prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
                The format of batch prediction result(s) is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
        """
悟、's avatar
悟、 已提交
735 736 737
        if input_data == None and self._config.Global.infer_imgs:
            input_data = self._config.Global.infer_imgs

H
HydrogenSulfate 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
        if isinstance(input_data, np.ndarray):
            yield self.predictor.predict(input_data)
        elif isinstance(input_data, str):
            if input_data.startswith("http") or input_data.startswith("https"):
                image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
                if not os.path.exists(image_storage_dir()):
                    os.makedirs(image_storage_dir())
                image_save_path = image_storage_dir("tmp.jpg")
                download_with_progressbar(input_data, image_save_path)
                logger.info(
                    f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
                )
                input_data = image_save_path
            image_list = get_image_list(input_data)

            cnt = 0
            for idx_img, img_path in enumerate(image_list):
                img = cv2.imread(img_path)
                if img is None:
                    logger.warning(
                        f"Image file failed to read and has been skipped. The path: {img_path}"
                    )
                    continue
                img = img[:, :, ::-1]
                cnt += 1

                preds = self.predictor.predict(
                    img)  # [dict1, dict2, ..., dictn]
                if preds:
                    if print_pred:
                        logger.info(f"{preds}, filename: {img_path}")

                yield preds
        else:
            err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            raise ImageTypeError(err)
        return

    def predict(self,
                input_data: Union[str, np.array],
                print_pred: bool=False,
                predict_type="cls"):
悟、's avatar
悟、 已提交
780 781
        assert predict_type in ["cls", "shitu"
                                ], "Predict type should be 'cls' or 'shitu'."
H
HydrogenSulfate 已提交
782 783 784 785 786 787 788 789 790 791
        if predict_type == "cls":
            return self.predict_cls(input_data, print_pred)
        elif predict_type == "shitu":
            assert not isinstance(input_data, (
                list, tuple
            )), "PP-ShiTu predictor only support single image as input now."
            return self.predict_shitu(input_data, print_pred)
        else:
            raise ModuleNotFoundError

C
chenziheng 已提交
792

T
Tingquan Gao 已提交
793
# for CLI
C
chenziheng 已提交
794
def main():
T
Tingquan Gao 已提交
795 796
    """Function API used for commad line.
    """
797
    print_info()
T
Tingquan Gao 已提交
798
    cfg = args_cfg()
T
Tingquan Gao 已提交
799
    clas_engine = PaddleClas(**cfg)
悟、's avatar
悟、 已提交
800 801 802 803 804 805 806 807
    if cfg["build_gallery"] == False:
        res = clas_engine.predict(
            cfg["infer_imgs"],
            print_pred=True,
            predict_type=cfg["predict_type"])
        for _ in res:
            pass
        logger.info("Predict complete!")
T
Tingquan Gao 已提交
808
    return
C
chenziheng 已提交
809 810


T
Tingquan Gao 已提交
811
if __name__ == "__main__":
C
chenziheng 已提交
812
    main()