paddleclas.py 30.2 KB
Newer Older
G
gaotingquan 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
C
chenziheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
16
from typing import Union, Generator
T
Tingquan Gao 已提交
17 18
import argparse
import shutil
T
Tingquan Gao 已提交
19
import textwrap
T
Tingquan Gao 已提交
20 21 22
import tarfile
import requests
from functools import partial
T
Tingquan Gao 已提交
23
from difflib import SequenceMatcher
C
chenziheng 已提交
24 25 26 27

import cv2
import numpy as np
from tqdm import tqdm
T
Tingquan Gao 已提交
28
from prettytable import PrettyTable
29
import paddle
T
Tingquan Gao 已提交
30

31 32
from .ppcls.arch import backbone
from .ppcls.utils import logger
33

34
from .deploy.python.predict_cls import ClsPredictor
H
HydrogenSulfate 已提交
35
from .deploy.python.predict_system import SystemPredictor
36 37
from .deploy.utils.get_image_list import get_image_list
from .deploy.utils import config
T
Tingquan Gao 已提交
38

39 40 41
# for the PaddleClas Project
from . import deploy
from . import ppcls
T
Tingquan Gao 已提交
42

43
# for building model with loading pretrained weights from backbone
G
gaotingquan 已提交
44
logger.init_logger()
45

T
Tingquan Gao 已提交
46
__all__ = ["PaddleClas"]
T
Tingquan Gao 已提交
47

C
chenziheng 已提交
48
BASE_DIR = os.path.expanduser("~/.paddleclas/")
T
Tingquan Gao 已提交
49 50
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model")
BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images")
51 52
IMN_MODEL_BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar"
IMN_MODEL_SERIES = {
T
Tingquan Gao 已提交
53
    "AlexNet": ["AlexNet"],
G
gaotingquan 已提交
54 55 56 57 58
    "CSWinTransformer": [
        "CSWinTransformer_tiny_224", "CSWinTransformer_small_224",
        "CSWinTransformer_base_224", "CSWinTransformer_base_384",
        "CSWinTransformer_large_224", "CSWinTransformer_large_384"
    ],
T
Tingquan Gao 已提交
59 60
    "DarkNet": ["DarkNet53"],
    "DeiT": [
T
Tingquan Gao 已提交
61 62 63 64
        "DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384",
        "DeiT_base_patch16_224", "DeiT_base_patch16_384",
        "DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224",
        "DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224"
T
Tingquan Gao 已提交
65 66 67 68 69
    ],
    "DenseNet": [
        "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
        "DenseNet264"
    ],
70 71 72 73
    "DLA": [
        "DLA46_c", "DLA60x_c", "DLA34", "DLA60", "DLA60x", "DLA102", "DLA102x",
        "DLA102x2", "DLA169"
    ],
T
Tingquan Gao 已提交
74 75 76 77 78 79
    "DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"],
    "EfficientNet": [
        "EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1",
        "EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5",
        "EfficientNetB6", "EfficientNetB7"
    ],
G
gaotingquan 已提交
80
    "ESNet": ["ESNet_x0_25", "ESNet_x0_5", "ESNet_x0_75", "ESNet_x1_0"],
T
Tingquan Gao 已提交
81 82
    "GhostNet":
    ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"],
83
    "HarDNet": ["HarDNet39_ds", "HarDNet68_ds", "HarDNet68", "HarDNet85"],
T
Tingquan Gao 已提交
84 85 86 87 88 89
    "HRNet": [
        "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C",
        "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld",
        "HRNet_W48_C_ssld"
    ],
    "Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"],
G
gaotingquan 已提交
90 91
    "LeViT":
    ["LeViT_128S", "LeViT_128", "LeViT_192", "LeViT_256", "LeViT_384"],
G
gaotingquan 已提交
92
    "MixNet": ["MixNet_S", "MixNet_M", "MixNet_L"],
T
Tingquan Gao 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    "MobileNetV1": [
        "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75",
        "MobileNetV1", "MobileNetV1_ssld"
    ],
    "MobileNetV2": [
        "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
        "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0",
        "MobileNetV2_ssld"
    ],
    "MobileNetV3": [
        "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
        "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
        "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
        "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
        "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25",
        "MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld"
    ],
G
gaotingquan 已提交
110
    "MobileViT": ["MobileViT_XXS", "MobileViT_XS", "MobileViT_S"],
G
gaotingquan 已提交
111 112 113 114 115 116
    "PPHGNet": [
        "PPHGNet_tiny",
        "PPHGNet_small",
        "PPHGNet_tiny_ssld",
        "PPHGNet_small_ssld",
    ],
G
gaotingquan 已提交
117 118 119 120
    "PPLCNet": [
        "PPLCNet_x0_25", "PPLCNet_x0_35", "PPLCNet_x0_5", "PPLCNet_x0_75",
        "PPLCNet_x1_0", "PPLCNet_x1_5", "PPLCNet_x2_0", "PPLCNet_x2_5"
    ],
G
gaotingquan 已提交
121
    "PPLCNetV2": ["PPLCNetV2_base"],
G
gaotingquan 已提交
122 123 124 125
    "PVTV2": [
        "PVT_V2_B0", "PVT_V2_B1", "PVT_V2_B2", "PVT_V2_B2_Linear", "PVT_V2_B3",
        "PVT_V2_B4", "PVT_V2_B5"
    ],
126
    "RedNet": ["RedNet26", "RedNet38", "RedNet50", "RedNet101", "RedNet152"],
T
Tingquan Gao 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    "RegNet": ["RegNetX_4GF"],
    "Res2Net": [
        "Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s",
        "Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s",
        "Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld",
        "Res2Net200_vd_26w_4s_ssld"
    ],
    "ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"],
    "ResNet": [
        "ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50",
        "ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101",
        "ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd",
        "ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2",
        "ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy"
    ],
    "ResNeXt": [
        "ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d",
        "ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d",
        "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl",
        "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
        "Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d",
        "ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d",
        "ResNeXt152_vd_64x4d"
    ],
151 152
    "ReXNet":
    ["ReXNet_1_0", "ReXNet_1_3", "ReXNet_1_5", "ReXNet_2_0", "ReXNet_3_0"],
T
Tingquan Gao 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    "SENet": [
        "SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd",
        "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d",
        "SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d"
    ],
    "ShuffleNetV2": [
        "ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33",
        "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5",
        "ShuffleNetV2_x2_0"
    ],
    "SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"],
    "SwinTransformer": [
        "SwinTransformer_large_patch4_window7_224_22kto1k",
        "SwinTransformer_large_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window7_224_22kto1k",
        "SwinTransformer_base_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window12_384",
        "SwinTransformer_base_patch4_window7_224",
        "SwinTransformer_small_patch4_window7_224",
        "SwinTransformer_tiny_patch4_window7_224"
    ],
G
gaotingquan 已提交
174 175 176 177
    "Twins": [
        "pcpvt_small", "pcpvt_base", "pcpvt_large", "alt_gvt_small",
        "alt_gvt_base", "alt_gvt_large"
    ],
G
gaotingquan 已提交
178
    "TNT": ["TNT_small"],
T
Tingquan Gao 已提交
179 180 181 182 183 184 185 186 187 188
    "VGG": ["VGG11", "VGG13", "VGG16", "VGG19"],
    "VisionTransformer": [
        "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
        "ViT_large_patch16_224", "ViT_large_patch16_384",
        "ViT_large_patch32_384", "ViT_small_patch16_224"
    ],
    "Xception": [
        "Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab",
        "Xception71"
    ]
C
chenziheng 已提交
189 190
}

G
gaotingquan 已提交
191
PULC_MODEL_BASE_DOWNLOAD_URL = "https://paddleclas.bj.bcebos.com/models/PULC/inference/{}_infer.tar"
192
PULC_MODELS = [
G
gaotingquan 已提交
193 194 195
    "car_exists", "language_classification", "person_attribute",
    "person_exists", "safety_helmet", "text_image_orientation",
    "textline_orientation", "traffic_sign", "vehicle_attribute"
196 197
]

H
HydrogenSulfate 已提交
198 199 200 201 202 203 204 205
SHITU_MODEL_BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/{}_infer.tar"
SHITU_MODELS = [
    # "picodet_PPLCNet_x2_5_mainbody_lite_v1.0",  # ShiTuV1(V2)_mainbody_det
    # "general_PPLCNet_x2_5_lite_v1.0"  # ShiTuV1_general_rec
    # "PP-ShiTuV2/general_PPLCNetV2_base_pretrained_v1.0",  # ShiTuV2_general_rec TODO(hesensen): add lite model
    "PP-ShiTuV2"
]

C
chenziheng 已提交
206

T
Tingquan Gao 已提交
207 208
class ImageTypeError(Exception):
    """ImageTypeError.
T
Tingquan Gao 已提交
209 210
    """

T
Tingquan Gao 已提交
211
    def __init__(self, message=""):
T
Tingquan Gao 已提交
212 213 214
        super().__init__(message)


T
Tingquan Gao 已提交
215 216 217 218 219 220 221 222
class InputModelError(Exception):
    """InputModelError.
    """

    def __init__(self, message=""):
        super().__init__(message)


223 224
def init_config(model_type, model_name, inference_model_dir, **kwargs):

H
HydrogenSulfate 已提交
225 226 227 228 229 230 231
    if model_type == "pulc":
        cfg_path = f"deploy/configs/PULC/{model_name}/inference_{model_name}.yaml"
    elif model_type == "shitu":
        cfg_path = "deploy/configs/inference_general.yaml"
    else:
        cfg_path = "deploy/configs/inference_cls.yaml"

232
    __dir__ = os.path.dirname(__file__)
G
gaotingquan 已提交
233
    cfg_path = os.path.join(__dir__, cfg_path)
234
    cfg = config.get_config(cfg_path, show=False)
H
HydrogenSulfate 已提交
235 236 237 238 239 240 241 242
    if cfg.Global.get("inference_model_dir"):
        cfg.Global.inference_model_dir = inference_model_dir
    else:
        cfg.Global.rec_inference_model_dir = os.path.join(
            inference_model_dir,
            "PP-ShiTuV2/general_PPLCNetV2_base_pretrained_v1.0")
        cfg.Global.det_inference_model_dir = os.path.join(
            inference_model_dir, "picodet_PPLCNet_x2_5_mainbody_lite_v1.0")
243 244 245

    if "batch_size" in kwargs and kwargs["batch_size"]:
        cfg.Global.batch_size = kwargs["batch_size"]
246

247 248
    if "use_gpu" in kwargs and kwargs["use_gpu"]:
        cfg.Global.use_gpu = kwargs["use_gpu"]
249 250 251 252
    if cfg.Global.use_gpu and not paddle.device.is_compiled_with_cuda():
        msg = "The current running environment does not support the use of GPU. CPU has been used instead."
        logger.warning(msg)
        cfg.Global.use_gpu = False
253 254 255

    if "infer_imgs" in kwargs and kwargs["infer_imgs"]:
        cfg.Global.infer_imgs = kwargs["infer_imgs"]
H
HydrogenSulfate 已提交
256 257 258 259
    if "index_dir" in kwargs and kwargs["index_dir"]:
        cfg.IndexProcess.index_dir = kwargs["index_dir"]
    if "data_file" in kwargs and kwargs["data_file"]:
        cfg.IndexProcess.data_file = kwargs["data_file"]
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    if "enable_mkldnn" in kwargs and kwargs["enable_mkldnn"]:
        cfg.Global.enable_mkldnn = kwargs["enable_mkldnn"]
    if "cpu_num_threads" in kwargs and kwargs["cpu_num_threads"]:
        cfg.Global.cpu_num_threads = kwargs["cpu_num_threads"]
    if "use_fp16" in kwargs and kwargs["use_fp16"]:
        cfg.Global.use_fp16 = kwargs["use_fp16"]
    if "use_tensorrt" in kwargs and kwargs["use_tensorrt"]:
        cfg.Global.use_tensorrt = kwargs["use_tensorrt"]
    if "gpu_mem" in kwargs and kwargs["gpu_mem"]:
        cfg.Global.gpu_mem = kwargs["gpu_mem"]
    if "resize_short" in kwargs and kwargs["resize_short"]:
        cfg.PreProcess.transform_ops[0]["ResizeImage"][
            "resize_short"] = kwargs["resize_short"]
    if "crop_size" in kwargs and kwargs["crop_size"]:
        cfg.PreProcess.transform_ops[1]["CropImage"]["size"] = kwargs[
            "crop_size"]

    # TODO(gaotingquan): not robust
    if "thresh" in kwargs and kwargs[
            "thresh"] and "ThreshOutput" in cfg.PostProcess:
        cfg.PostProcess.ThreshOutput.thresh = kwargs["thresh"]
H
HydrogenSulfate 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    if cfg.get("PostProcess"):
        if "Topk" in cfg.PostProcess:
            if "topk" in kwargs and kwargs["topk"]:
                cfg.PostProcess.Topk.topk = kwargs["topk"]
            if "class_id_map_file" in kwargs and kwargs["class_id_map_file"]:
                cfg.PostProcess.Topk.class_id_map_file = kwargs[
                    "class_id_map_file"]
            else:
                class_id_map_file_path = os.path.relpath(
                    cfg.PostProcess.Topk.class_id_map_file, "../")
                cfg.PostProcess.Topk.class_id_map_file = os.path.join(
                    __dir__, class_id_map_file_path)
        if "VehicleAttribute" in cfg.PostProcess:
            if "color_threshold" in kwargs and kwargs["color_threshold"]:
                cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
                    "color_threshold"]
            if "type_threshold" in kwargs and kwargs["type_threshold"]:
                cfg.PostProcess.VehicleAttribute.type_threshold = kwargs[
                    "type_threshold"]
300 301 302

    if "save_dir" in kwargs and kwargs["save_dir"]:
        cfg.PostProcess.SavePreLabel.save_dir = kwargs["save_dir"]
T
Tingquan Gao 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

    return cfg


def args_cfg():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--infer_imgs",
        type=str,
        required=True,
        help="The image(s) to be predicted.")
    parser.add_argument(
        "--model_name", type=str, help="The model name to be used.")
    parser.add_argument(
        "--inference_model_dir",
        type=str,
        help="The directory of model files. Valid when model_name not specifed."
    )
H
HydrogenSulfate 已提交
324 325 326 327 328 329 330
    parser.add_argument(
        "--index_dir",
        type=str,
        required=False,
        help="The index directory path.")
    parser.add_argument(
        "--data_file", type=str, required=False, help="The label file path.")
331 332 333 334 335
    parser.add_argument("--use_gpu", type=str2bool, help="Whether use GPU.")
    parser.add_argument(
        "--gpu_mem",
        type=int,
        help="The memory size of GPU allocated to predict.")
T
Tingquan Gao 已提交
336 337 338 339 340
    parser.add_argument(
        "--enable_mkldnn",
        type=str2bool,
        help="Whether use MKLDNN. Valid when use_gpu is False")
    parser.add_argument(
341 342 343 344 345 346
        "--cpu_num_threads",
        type=int,
        help="The threads number when predicting on CPU.")
    parser.add_argument(
        "--use_tensorrt",
        type=str2bool,
G
gaotingquan 已提交
347
        help="Whether use TensorRT to accelerate.")
348 349
    parser.add_argument(
        "--use_fp16", type=str2bool, help="Whether use FP16 to predict.")
350
    parser.add_argument("--batch_size", type=int, help="Batch size.")
T
Tingquan Gao 已提交
351 352 353
    parser.add_argument(
        "--topk",
        type=int,
354 355
        help="Return topk score(s) and corresponding results when Topk postprocess is used."
    )
T
Tingquan Gao 已提交
356 357 358 359
    parser.add_argument(
        "--class_id_map_file",
        type=str,
        help="The path of file that map class_id and label.")
360 361 362 363 364 365
    parser.add_argument(
        "--threshold",
        type=float,
        help="The threshold of ThreshOutput when postprocess is used.")
    parser.add_argument("--color_threshold", type=float, help="")
    parser.add_argument("--type_threshold", type=float, help="")
T
Tingquan Gao 已提交
366 367 368 369
    parser.add_argument(
        "--save_dir",
        type=str,
        help="The directory to save prediction results as pre-label.")
G
gaotingquan 已提交
370
    parser.add_argument(
371 372
        "--resize_short", type=int, help="Resize according to short size.")
    parser.add_argument("--crop_size", type=int, help="Centor crop size.")
T
Tingquan Gao 已提交
373 374 375

    args = parser.parse_args()
    return vars(args)
T
Tingquan Gao 已提交
376 377


T
Tingquan Gao 已提交
378
def print_info():
T
Tingquan Gao 已提交
379 380
    """Print list of supported models in formatted.
    """
381 382
    imn_table = PrettyTable(["IMN Model Series", "Model Name"])
    pulc_table = PrettyTable(["PULC Models"])
H
HydrogenSulfate 已提交
383
    shitu_table = PrettyTable(["PP-ShiTu Models"])
T
Tingquan Gao 已提交
384 385
    try:
        sz = os.get_terminal_size()
386 387 388
        total_width = sz.columns
        first_width = 30
        second_width = total_width - first_width if total_width > 50 else 10
T
Tingquan Gao 已提交
389
    except OSError:
390
        total_width = 100
391 392 393 394 395 396 397 398 399 400 401
        second_width = 100
    for series in IMN_MODEL_SERIES:
        names = textwrap.fill(
            "  ".join(IMN_MODEL_SERIES[series]), width=second_width)
        imn_table.add_row([series, names])

    table_width = len(str(imn_table).split("\n")[0])
    pulc_table.add_row([
        textwrap.fill(
            "  ".join(PULC_MODELS), width=total_width).center(table_width - 4)
    ])
H
HydrogenSulfate 已提交
402 403 404 405
    shitu_table.add_row([
        textwrap.fill(
            "  ".join(SHITU_MODELS), width=total_width).center(table_width - 4)
    ])
406 407 408 409 410

    print("{}".format("-" * table_width))
    print("Models supported by PaddleClas".center(table_width))
    print(imn_table)
    print(pulc_table)
H
HydrogenSulfate 已提交
411
    print(shitu_table)
412 413 414 415 416
    print("Powered by PaddlePaddle!".rjust(table_width))
    print("{}".format("-" * table_width))


def get_imn_model_names():
T
Tingquan Gao 已提交
417 418
    """Get the model names list.
    """
T
Tingquan Gao 已提交
419
    model_names = []
420 421
    for series in IMN_MODEL_SERIES:
        model_names += (IMN_MODEL_SERIES[series])
T
Tingquan Gao 已提交
422 423 424
    return model_names


425
def similar_model_names(name="", names=[], thresh=0.1, topk=5):
T
Tingquan Gao 已提交
426
    """Find the most similar topk model names.
T
Tingquan Gao 已提交
427 428 429
    """
    scores = []
    for idx, n in enumerate(names):
T
Tingquan Gao 已提交
430
        if n.startswith("__"):
T
Tingquan Gao 已提交
431 432 433 434 435 436 437 438 439
            continue
        score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
        if score > thresh:
            scores.append((idx, score))
    scores.sort(key=lambda x: x[1], reverse=True)
    similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
    return similar_names


C
chenziheng 已提交
440
def download_with_progressbar(url, save_path):
T
Tingquan Gao 已提交
441 442 443 444
    """Download from url with progressbar.
    """
    if os.path.isfile(save_path):
        os.remove(save_path)
C
chenziheng 已提交
445
    response = requests.get(url, stream=True)
T
Tingquan Gao 已提交
446
    total_size_in_bytes = int(response.headers.get("content-length", 0))
C
chenziheng 已提交
447
    block_size = 1024  # 1 Kibibyte
T
Tingquan Gao 已提交
448 449
    progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
    with open(save_path, "wb") as file:
C
chenziheng 已提交
450 451 452 453
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
T
Tingquan Gao 已提交
454 455
    if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile(
            save_path):
T
Tingquan Gao 已提交
456
        raise Exception(
T
Tingquan Gao 已提交
457
            f"Something went wrong while downloading file from {url}")
C
chenziheng 已提交
458 459


460
def check_model_file(model_type, model_name):
461
    """Check the model files exist and download and untar when no exist.
T
Tingquan Gao 已提交
462
    """
463 464 465 466
    if model_type == "pulc":
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "PULC", model_name)
        url = PULC_MODEL_BASE_DOWNLOAD_URL.format(model_name)
H
HydrogenSulfate 已提交
467 468 469 470
    elif model_type == "shitu":
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "PP-ShiTu", model_name)
        url = SHITU_MODEL_BASE_DOWNLOAD_URL.format(model_name)
471 472 473 474
    else:
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "IMN", model_name)
        url = IMN_MODEL_BASE_DOWNLOAD_URL.format(model_name)
T
Tingquan Gao 已提交
475

C
chenziheng 已提交
476
    tar_file_name_list = [
T
Tingquan Gao 已提交
477
        "inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel"
C
chenziheng 已提交
478
    ]
T
Tingquan Gao 已提交
479 480 481 482 483
    model_file_path = storage_directory("inference.pdmodel")
    params_file_path = storage_directory("inference.pdiparams")
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        tmp_path = storage_directory(url.split("/")[-1])
G
gaotingquan 已提交
484
        logger.info(f"download {url} to {tmp_path}")
T
Tingquan Gao 已提交
485
        os.makedirs(storage_directory(), exist_ok=True)
C
chenziheng 已提交
486
        download_with_progressbar(url, tmp_path)
T
Tingquan Gao 已提交
487
        with tarfile.open(tmp_path, "r") as tarObj:
C
chenziheng 已提交
488 489 490 491 492 493 494 495
            for member in tarObj.getmembers():
                filename = None
                for tar_file_name in tar_file_name_list:
                    if tar_file_name in member.name:
                        filename = tar_file_name
                if filename is None:
                    continue
                file = tarObj.extractfile(member)
T
Tingquan Gao 已提交
496
                with open(storage_directory(filename), "wb") as f:
C
chenziheng 已提交
497 498
                    f.write(file.read())
        os.remove(tmp_path)
T
Tingquan Gao 已提交
499 500 501 502 503
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        raise Exception(
            f"Something went wrong while praparing the model[{model_name}] files!"
        )
C
chenziheng 已提交
504

T
Tingquan Gao 已提交
505
    return storage_directory()
C
chenziheng 已提交
506

T
Tingquan Gao 已提交
507

C
chenziheng 已提交
508
class PaddleClas(object):
T
Tingquan Gao 已提交
509 510 511 512 513 514
    """PaddleClas.
    """

    def __init__(self,
                 model_name: str=None,
                 inference_model_dir: str=None,
T
Tingquan Gao 已提交
515
                 **kwargs):
T
Tingquan Gao 已提交
516
        """Init PaddleClas with config.
T
Tingquan Gao 已提交
517

T
Tingquan Gao 已提交
518
        Args:
519 520 521 522 523
            model_name (str, optional): The model name supported by PaddleClas. If specified, override config. Defaults to None.
            inference_model_dir (str, optional): The directory that contained model file and params file to be used. If specified, override config. Defaults to None.
            use_gpu (bool, optional): Whether use GPU. If specified, override config. Defaults to True.
            batch_size (int, optional): The batch size to pridict. If specified, override config. Defaults to 1.
            topk (int, optional): Return the top k prediction results with the highest score. Defaults to 5.
T
Tingquan Gao 已提交
524 525
        """
        super().__init__()
526

527 528 529 530
        self.model_type, inference_model_dir = self._check_input_model(
            model_name, inference_model_dir)
        self._config = init_config(self.model_type, model_name,
                                   inference_model_dir, **kwargs)
H
HydrogenSulfate 已提交
531 532 533 534
        if self.model_type == "shitu":
            self.predictor = SystemPredictor(self._config)
        else:
            self.predictor = ClsPredictor(self._config)
T
Tingquan Gao 已提交
535 536 537

    def get_config(self):
        """Get the config.
C
chenziheng 已提交
538
        """
T
Tingquan Gao 已提交
539 540
        return self._config

541
    def _check_input_model(self, model_name, inference_model_dir):
T
Tingquan Gao 已提交
542 543
        """Check input model name or model files.
        """
544 545
        all_imn_model_names = get_imn_model_names()
        all_pulc_model_names = PULC_MODELS
H
HydrogenSulfate 已提交
546
        all_shitu_model_names = SHITU_MODELS
547 548 549 550 551 552 553 554

        if model_name:
            if model_name in all_imn_model_names:
                inference_model_dir = check_model_file("imn", model_name)
                return "imn", inference_model_dir
            elif model_name in all_pulc_model_names:
                inference_model_dir = check_model_file("pulc", model_name)
                return "pulc", inference_model_dir
H
HydrogenSulfate 已提交
555 556 557 558 559 560 561 562 563
            elif model_name in all_shitu_model_names:
                inference_model_dir = check_model_file(
                    "shitu",
                    "PP-ShiTuV2/general_PPLCNetV2_base_pretrained_v1.0")
                inference_model_dir = check_model_file(
                    "shitu", "picodet_PPLCNet_x2_5_mainbody_lite_v1.0")
                inference_model_dir = os.path.abspath(
                    os.path.dirname(inference_model_dir))
                return "shitu", inference_model_dir
564 565 566 567 568 569 570 571
            else:
                similar_imn_names = similar_model_names(model_name,
                                                        all_imn_model_names)
                similar_pulc_names = similar_model_names(model_name,
                                                         all_pulc_model_names)
                similar_names_str = ", ".join(similar_imn_names +
                                              similar_pulc_names)
                err = f"{model_name} is not provided by PaddleClas. \nMaybe you want the : [{similar_names_str}]. \nIf you want to use your own model, please specify inference_model_dir!"
T
Tingquan Gao 已提交
572
                raise InputModelError(err)
573
        elif inference_model_dir:
T
Tingquan Gao 已提交
574 575 576 577 578 579 580 581
            model_file_path = os.path.join(inference_model_dir,
                                           "inference.pdmodel")
            params_file_path = os.path.join(inference_model_dir,
                                            "inference.pdiparams")
            if not os.path.isfile(model_file_path) or not os.path.isfile(
                    params_file_path):
                err = f"There is no model file or params file in this directory: {inference_model_dir}"
                raise InputModelError(err)
582
            return "custom", inference_model_dir
T
Tingquan Gao 已提交
583
        else:
H
HydrogenSulfate 已提交
584
            err = "Please specify the model name supported by PaddleClas or directory contained model files(inference.pdmodel, inference.pdiparams)."
T
Tingquan Gao 已提交
585
            raise InputModelError(err)
586
        return None
T
Tingquan Gao 已提交
587

H
HydrogenSulfate 已提交
588 589 590
    def predict_cls(self,
                    input_data: Union[str, np.array],
                    print_pred: bool=False) -> Generator[list, None, None]:
T
Tingquan Gao 已提交
591 592
        """Predict input_data.

C
chenziheng 已提交
593
        Args:
G
gaotingquan 已提交
594
            input_data (Union[str, np.array]):
595 596
                When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
                When the type is np.array, it is the image data whose channel order is RGB.
G
gaotingquan 已提交
597
            print_pred (bool, optional): Whether print the prediction result. Defaults to False.
T
Tingquan Gao 已提交
598 599 600 601 602

        Raises:
            ImageTypeError: Illegal input_data.

        Yields:
G
gaotingquan 已提交
603 604 605
            Generator[list, None, None]:
                The prediction result(s) of input_data by batch_size. For every one image,
                prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
G
gaotingquan 已提交
606
                The format of batch prediction result(s) is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
C
chenziheng 已提交
607
        """
608

T
Tingquan Gao 已提交
609
        if isinstance(input_data, np.ndarray):
H
HydrogenSulfate 已提交
610
            yield self.predictor.predict(input_data)
T
Tingquan Gao 已提交
611
        elif isinstance(input_data, str):
T
Tingquan Gao 已提交
612
            if input_data.startswith("http") or input_data.startswith("https"):
T
Tingquan Gao 已提交
613 614 615 616 617
                image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
                if not os.path.exists(image_storage_dir()):
                    os.makedirs(image_storage_dir())
                image_save_path = image_storage_dir("tmp.jpg")
                download_with_progressbar(input_data, image_save_path)
G
gaotingquan 已提交
618
                logger.info(
T
Tingquan Gao 已提交
619 620
                    f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
                )
621
                input_data = image_save_path
T
Tingquan Gao 已提交
622 623 624 625 626
            image_list = get_image_list(input_data)

            batch_size = self._config.Global.get("batch_size", 1)

            img_list = []
T
Tingquan Gao 已提交
627 628
            img_path_list = []
            cnt = 0
629
            for idx_img, img_path in enumerate(image_list):
T
Tingquan Gao 已提交
630 631
                img = cv2.imread(img_path)
                if img is None:
G
gaotingquan 已提交
632
                    logger.warning(
T
Tingquan Gao 已提交
633 634
                        f"Image file failed to read and has been skipped. The path: {img_path}"
                    )
T
Tingquan Gao 已提交
635
                    continue
636
                img = img[:, :, ::-1]
T
Tingquan Gao 已提交
637 638 639 640
                img_list.append(img)
                img_path_list.append(img_path)
                cnt += 1

641
                if cnt % batch_size == 0 or (idx_img + 1) == len(image_list):
H
HydrogenSulfate 已提交
642
                    preds = self.predictor.predict(img_list)
G
gaotingquan 已提交
643

644 645 646 647
                    if preds:
                        for idx_pred, pred in enumerate(preds):
                            pred["filename"] = img_path_list[idx_pred]
                            if print_pred:
G
gaotingquan 已提交
648
                                logger.info(", ".join(
649
                                    [f"{k}: {pred[k]}" for k in pred]))
T
Tingquan Gao 已提交
650

T
Tingquan Gao 已提交
651
                    img_list = []
T
Tingquan Gao 已提交
652
                    img_path_list = []
T
Tingquan Gao 已提交
653
                    yield preds
C
chenziheng 已提交
654
        else:
T
Tingquan Gao 已提交
655 656 657
            err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            raise ImageTypeError(err)
        return
C
chenziheng 已提交
658

H
HydrogenSulfate 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
    def predict_shitu(self,
                      input_data: Union[str, np.array],
                      print_pred: bool=False) -> Generator[list, None, None]:
        """Predict input_data.
        Args:
            input_data (Union[str, np.array]):
                When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
                When the type is np.array, it is the image data whose channel order is RGB.
            print_pred (bool, optional): Whether print the prediction result. Defaults to False.

        Raises:
            ImageTypeError: Illegal input_data.

        Yields:
            Generator[list, None, None]:
                The prediction result(s) of input_data by batch_size. For every one image,
                prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
                The format of batch prediction result(s) is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
        """
        if isinstance(input_data, np.ndarray):
            yield self.predictor.predict(input_data)
        elif isinstance(input_data, str):
            if input_data.startswith("http") or input_data.startswith("https"):
                image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
                if not os.path.exists(image_storage_dir()):
                    os.makedirs(image_storage_dir())
                image_save_path = image_storage_dir("tmp.jpg")
                download_with_progressbar(input_data, image_save_path)
                logger.info(
                    f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
                )
                input_data = image_save_path
            image_list = get_image_list(input_data)

            cnt = 0
            for idx_img, img_path in enumerate(image_list):
                img = cv2.imread(img_path)
                if img is None:
                    logger.warning(
                        f"Image file failed to read and has been skipped. The path: {img_path}"
                    )
                    continue
                img = img[:, :, ::-1]
                cnt += 1

                preds = self.predictor.predict(
                    img)  # [dict1, dict2, ..., dictn]
                if preds:
                    if print_pred:
                        logger.info(f"{preds}, filename: {img_path}")

                yield preds
        else:
            err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            raise ImageTypeError(err)
        return

    def predict(self,
                input_data: Union[str, np.array],
                print_pred: bool=False,
                predict_type="cls"):
        if predict_type == "cls":
            return self.predict_cls(input_data, print_pred)
        elif predict_type == "shitu":
            assert not isinstance(input_data, (
                list, tuple
            )), "PP-ShiTu predictor only support single image as input now."
            return self.predict_shitu(input_data, print_pred)
        else:
            raise ModuleNotFoundError

C
chenziheng 已提交
730

T
Tingquan Gao 已提交
731
# for CLI
C
chenziheng 已提交
732
def main():
T
Tingquan Gao 已提交
733 734
    """Function API used for commad line.
    """
735
    print_info()
T
Tingquan Gao 已提交
736
    cfg = args_cfg()
T
Tingquan Gao 已提交
737
    clas_engine = PaddleClas(**cfg)
H
HydrogenSulfate 已提交
738 739 740 741
    res = clas_engine.predict(
        cfg["infer_imgs"],
        print_pred=True,
        predict_type="cls" if "PP-ShiTu" not in cfg["model_name"] else "shitu")
T
Tingquan Gao 已提交
742 743
    for _ in res:
        pass
G
gaotingquan 已提交
744
    logger.info("Predict complete!")
T
Tingquan Gao 已提交
745
    return
C
chenziheng 已提交
746 747


T
Tingquan Gao 已提交
748
if __name__ == "__main__":
C
chenziheng 已提交
749
    main()