program.py 12.3 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time

from collections import OrderedDict

import paddle.fluid as fluid

from ppcls.optimizer import LearningRateBuilder
from ppcls.optimizer import OptimizerBuilder
from ppcls.modeling import architectures
from ppcls.modeling.loss import CELoss
from ppcls.modeling.loss import MixCELoss
littletomatodonkey's avatar
littletomatodonkey 已提交
31
from ppcls.modeling.loss import JSDivLoss
W
WuHaobo 已提交
32 33 34 35
from ppcls.modeling.loss import GoogLeNetLoss
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger

W
WuHaobo 已提交
36
from paddle.fluid.dygraph.base import to_variable
W
WuHaobo 已提交
37 38 39 40
from paddle.fluid.incubate.fleet.collective import fleet
from paddle.fluid.incubate.fleet.collective import DistributedStrategy


W
WuHaobo 已提交
41
def create_dataloader():
W
WuHaobo 已提交
42 43 44 45 46 47 48 49 50 51
    """
    Create a dataloader with model input variables

    Args:
        feeds(dict): dict of model input variables

    Returns:
        dataloader(fluid dataloader):
    """
    trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
littletomatodonkey's avatar
littletomatodonkey 已提交
52
    capacity = 64 if trainer_num == 1 else 8
W
WuHaobo 已提交
53
    dataloader = fluid.io.DataLoader.from_generator(
54
        capacity=capacity, use_double_buffer=True, iterable=True)
W
WuHaobo 已提交
55 56 57 58

    return dataloader


W
WuHaobo 已提交
59
def create_model(architecture, classes_num):
W
WuHaobo 已提交
60 61 62 63
    """
    Create a model

    Args:
64 65
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
66 67 68 69 70 71
        image(variable): model input variable
        classes_num(int): num of classes

    Returns:
        out(variable): model output variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
72
    name = architecture["name"]
littletomatodonkey's avatar
littletomatodonkey 已提交
73
    params = architecture.get("params", {})
W
WuHaobo 已提交
74
    return architectures.__dict__[name](class_dim=classes_num, **params)
W
WuHaobo 已提交
75 76


77 78
def create_loss(feeds,
                out,
W
WuHaobo 已提交
79 80 81
                architecture,
                classes_num=1000,
                epsilon=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
82 83
                use_mix=False,
                use_distillation=False):
W
WuHaobo 已提交
84 85 86 87 88 89 90 91 92 93 94
    """
    Create a loss for optimization, such as:
        1. CrossEnotry loss
        2. CrossEnotry loss with label smoothing
        3. CrossEnotry loss with mix(mixup, cutmix, fmix)
        4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix)
        5. GoogLeNet loss

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables
95 96
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
97 98
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
99
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
100 101 102 103

    Returns:
        loss(variable): loss variable
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
104
    if architecture["name"] == "GoogLeNet":
W
WuHaobo 已提交
105 106
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon)
107
        return loss(out[0], out[1], out[2], feeds["label"])
W
WuHaobo 已提交
108

littletomatodonkey's avatar
littletomatodonkey 已提交
109
    if use_distillation:
110 111
        assert len(out) == 2, ("distillation output length must be 2, "
                               "but got {}".format(len(out)))
littletomatodonkey's avatar
littletomatodonkey 已提交
112 113 114 115
        loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon)
        return loss(out[1], out[0])

    if use_mix:
W
WuHaobo 已提交
116
        loss = MixCELoss(class_dim=classes_num, epsilon=epsilon)
117 118 119 120
        feed_y_a = feeds['y_a']
        feed_y_b = feeds['y_b']
        feed_lam = feeds['lam']
        return loss(out, feed_y_a, feed_y_b, feed_lam)
W
WuHaobo 已提交
121 122
    else:
        loss = CELoss(class_dim=classes_num, epsilon=epsilon)
123
        return loss(out, feeds["label"])
W
WuHaobo 已提交
124 125


W
WuHaobo 已提交
126
def create_metric(out,
W
WuHaobo 已提交
127
                  label,
W
WuHaobo 已提交
128 129 130
                  architecture,
                  topk=5,
                  classes_num=1000,
littletomatodonkey's avatar
littletomatodonkey 已提交
131
                  use_distillation=False):
W
WuHaobo 已提交
132 133 134 135 136 137 138 139 140 141 142 143
    """
    Create measures of model accuracy, such as top1 and top5

    Args:
        out(variable): model output variable
        feeds(dict): dict of model input variables(included label)
        topk(int): usually top5
        classes_num(int): num of classes

    Returns:
        fetchs(dict): dict of measures
    """
W
WuHaobo 已提交
144 145 146 147 148 149 150 151 152
    if architecture["name"] == "GoogLeNet":
        assert len(out) == 3, "GoogLeNet should have 3 outputs"
        softmax_out = out[0]
    else:
        # just need student label to get metrics
        if use_distillation:
            out = out[1]
        softmax_out = fluid.layers.softmax(out, use_cudnn=False)

W
WuHaobo 已提交
153
    fetchs = OrderedDict()
W
WuHaobo 已提交
154
    # set top1 to fetchs
W
WuHaobo 已提交
155 156
    top1 = fluid.layers.accuracy(softmax_out, label=label, k=1)
    fetchs['top1'] = top1
W
WuHaobo 已提交
157
    # set topk to fetchs
W
WuHaobo 已提交
158
    k = min(topk, classes_num)
W
WuHaobo 已提交
159
    topk = fluid.layers.accuracy(softmax_out, label=label, k=k)
W
WuHaobo 已提交
160
    topk_name = 'top{}'.format(k)
W
WuHaobo 已提交
161
    fetchs[topk_name] = topk
W
WuHaobo 已提交
162 163 164 165

    return fetchs


littletomatodonkey's avatar
littletomatodonkey 已提交
166
def create_fetchs(feeds, net, config, mode="train"):
W
WuHaobo 已提交
167 168
    """
    Create fetchs as model outputs(included loss and measures),
littletomatodonkey's avatar
littletomatodonkey 已提交
169
    will call create_loss and create_metric(if use_mix).
W
WuHaobo 已提交
170 171 172

    Args:
        out(variable): model output variable
W
WuHaobo 已提交
173 174
        feeds(dict): dict of model input variables.
            If use mix_up, it will not include label.
175 176
        architecture(dict): architecture information,
            name(such as ResNet50) is needed
W
WuHaobo 已提交
177 178 179
        topk(int): usually top5
        classes_num(int): num of classes
        epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0
littletomatodonkey's avatar
littletomatodonkey 已提交
180
        use_mix(bool): whether to use mix(include mixup, cutmix, fmix)
W
WuHaobo 已提交
181 182 183 184

    Returns:
        fetchs(dict): dict of model outputs(included loss and measures)
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
185 186 187 188 189 190 191 192 193
    architecture = config.ARCHITECTURE
    topk = config.topk
    classes_num = config.classes_num
    epsilon = config.get('ls_epsilon')
    use_mix = config.get('use_mix') and mode == 'train'
    use_distillation = config.get('use_distillation')

    out = net(feeds["image"])

W
WuHaobo 已提交
194
    fetchs = OrderedDict()
195 196
    fetchs['loss'] = create_loss(feeds, out, architecture, classes_num,
                                 epsilon, use_mix, use_distillation)
littletomatodonkey's avatar
littletomatodonkey 已提交
197
    if not use_mix:
198 199
        metric = create_metric(out, feeds["label"], architecture, topk,
                               classes_num, use_distillation)
W
WuHaobo 已提交
200 201 202 203 204
        fetchs.update(metric)

    return fetchs


W
WuHaobo 已提交
205
def create_optimizer(config, parameter_list=None):
W
WuHaobo 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    """
    Create an optimizer using config, usually including
    learning rate and regularization.

    Args:
        config(dict):  such as
        {
            'LEARNING_RATE':
                {'function': 'Cosine',
                 'params': {'lr': 0.1}
                },
            'OPTIMIZER':
                {'function': 'Momentum',
                 'params':{'momentum': 0.9},
                 'regularizer':
                    {'function': 'L2', 'factor': 0.0001}
                }
        }

    Returns:
        an optimizer instance
    """
    # create learning_rate instance
    lr_config = config['LEARNING_RATE']
    lr_config['params'].update({
        'epochs': config['epochs'],
        'step_each_epoch':
        config['total_images'] // config['TRAIN']['batch_size'],
    })
    lr = LearningRateBuilder(**lr_config)()

    # create optimizer instance
    opt_config = config['OPTIMIZER']
    opt = OptimizerBuilder(**opt_config)
W
WuHaobo 已提交
240
    return opt(lr, parameter_list)
W
WuHaobo 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266


def dist_optimizer(config, optimizer):
    """
    Create a distributed optimizer based on a normal optimizer

    Args:
        config(dict):
        optimizer(): a normal optimizer

    Returns:
        optimizer: a distributed optimizer
    """
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_threads = 3
    exec_strategy.num_iteration_per_drop_scope = 10

    dist_strategy = DistributedStrategy()
    dist_strategy.nccl_comm_num = 1
    dist_strategy.fuse_all_reduce_ops = True
    dist_strategy.exec_strategy = exec_strategy
    optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy)

    return optimizer


267 268 269 270 271 272 273 274 275 276 277 278 279
def mixed_precision_optimizer(config, optimizer):
    use_fp16 = config.get('use_fp16', False)
    amp_scale_loss = config.get('amp_scale_loss', 1.0)
    use_dynamic_loss_scaling = config.get('use_dynamic_loss_scaling', False)
    if use_fp16:
        optimizer = fluid.contrib.mixed_precision.decorate(
            optimizer,
            init_loss_scaling=amp_scale_loss,
            use_dynamic_loss_scaling=use_dynamic_loss_scaling)

    return optimizer


280
def create_feeds(batch, use_mix):
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
281
    image = to_variable(batch[0].numpy().astype("float32"))
282 283 284 285 286 287 288 289 290 291 292
    if use_mix:
        y_a = to_variable(batch[1].numpy().astype("int64").reshape(-1, 1))
        y_b = to_variable(batch[2].numpy().astype("int64").reshape(-1, 1))
        lam = to_variable(batch[3].numpy().astype("float32").reshape(-1, 1))
        feeds = {"image": image, "y_a": y_a, "y_b": y_b, "lam": lam}
    else:
        label = to_variable(batch[1].numpy().astype('int64').reshape(-1, 1))
        feeds = {"image": image, "label": label}
    return feeds


W
WuHaobo 已提交
293
def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
W
WuHaobo 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306
    """
    Feed data to the model and fetch the measures and loss

    Args:
        dataloader(fluid dataloader):
        exe():
        program():
        fetchs(dict): dict of measures and the loss
        epoch(int): epoch of training or validation
        model(str): log only

    Returns:
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    use_mix = config.get("use_mix", False) and mode == "train"
    if use_mix:
        metric_list = OrderedDict([
            ("loss", AverageMeter('loss', '7.4f')),
            ("lr", AverageMeter(
                'lr', 'f', need_avg=False)),
            ("batch_time", AverageMeter('elapse', '.3f')),
        ])
    else:
        topk_name = 'top{}'.format(config.topk)
        metric_list = OrderedDict([
            ("loss", AverageMeter('loss', '7.4f')),
            ("top1", AverageMeter('top1', '.4f')),
            (topk_name, AverageMeter(topk_name, '.4f')),
            ("lr", AverageMeter(
                'lr', 'f', need_avg=False)),
            ("batch_time", AverageMeter('elapse', '.3f')),
        ])
W
WuHaobo 已提交
325

W
WuHaobo 已提交
326
    tic = time.time()
327
    for idx, batch in enumerate(dataloader()):
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
328
        batch_size = len(batch[0])
littletomatodonkey's avatar
littletomatodonkey 已提交
329
        feeds = create_feeds(batch, use_mix)
littletomatodonkey's avatar
littletomatodonkey 已提交
330
        fetchs = create_fetchs(feeds, net, config, mode)
W
WuHaobo 已提交
331
        if mode == 'train':
332 333 334 335 336 337 338
            if config["use_data_parallel"]:
                avg_loss = net.scale_loss(fetchs['loss'])
                avg_loss.backward()
                net.apply_collective_grads()
            else:
                avg_loss = fetchs['loss']
                avg_loss.backward()
W
WuHaobo 已提交
339 340 341 342

            optimizer.minimize(avg_loss)
            net.clear_gradients()
            metric_list['lr'].update(
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
343
                optimizer._global_learning_rate().numpy()[0], batch_size)
W
WuHaobo 已提交
344 345

        for name, fetch in fetchs.items():
littletomatodonkey's avatar
fix bs  
littletomatodonkey 已提交
346
            metric_list[name].update(fetch.numpy()[0], batch_size)
W
WuHaobo 已提交
347
        metric_list['batch_time'].update(time.time() - tic)
W
WuHaobo 已提交
348
        tic = time.time()
W
WuHaobo 已提交
349 350

        fetchs_str = ' '.join([str(m.value) for m in metric_list.values()])
W
WuHaobo 已提交
351
        if mode == 'eval':
W
WuHaobo 已提交
352 353
            logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx, fetchs_str))
        else:
S
shippingwang 已提交
354 355 356
            epoch_str = "epoch:{:<3d}".format(epoch)
            step_str = "{:s} step:{:<4d}".format(mode, idx)

W
WuHaobo 已提交
357
            logger.info("{:s} {:s} {:s}s".format(
358 359 360 361
                logger.coloring(epoch_str, "HEADER")
                if idx == 0 else epoch_str,
                logger.coloring(step_str, "PURPLE"),
                logger.coloring(fetchs_str, 'OKGREEN')))
S
refine  
shippingwang 已提交
362

363 364
    end_str = ' '.join([str(m.mean) for m in metric_list.values()] +
                       [metric_list['batch_time'].total])
W
WuHaobo 已提交
365
    if mode == 'eval':
S
refine  
shippingwang 已提交
366
        logger.info("END {:s} {:s}s".format(mode, end_str))
W
WuHaobo 已提交
367
    else:
S
shippingwang 已提交
368 369
        end_epoch_str = "END epoch:{:<3d}".format(epoch)

W
WuHaobo 已提交
370
        logger.info("{:s} {:s} {:s}s".format(
371 372 373
            logger.coloring(end_epoch_str, "RED"),
            logger.coloring(mode, "PURPLE"),
            logger.coloring(end_str, "OKGREEN")))
littletomatodonkey's avatar
littletomatodonkey 已提交
374

W
WuHaobo 已提交
375
    # return top1_acc in order to save the best model
W
WuHaobo 已提交
376
    if mode == 'valid':
377
        return metric_list['top1'].avg