paddleclas.py 30.3 KB
Newer Older
G
gaotingquan 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
C
chenziheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
16
from typing import Union, Generator
T
Tingquan Gao 已提交
17 18
import argparse
import shutil
T
Tingquan Gao 已提交
19
import textwrap
T
Tingquan Gao 已提交
20 21 22
import tarfile
import requests
from functools import partial
T
Tingquan Gao 已提交
23
from difflib import SequenceMatcher
C
chenziheng 已提交
24 25 26 27

import cv2
import numpy as np
from tqdm import tqdm
T
Tingquan Gao 已提交
28
from prettytable import PrettyTable
29
import paddle
T
Tingquan Gao 已提交
30

31 32
from .ppcls.arch import backbone
from .ppcls.utils import logger
33

34
from .deploy.python.predict_cls import ClsPredictor
H
HydrogenSulfate 已提交
35
from .deploy.python.predict_system import SystemPredictor
36 37
from .deploy.utils.get_image_list import get_image_list
from .deploy.utils import config
T
Tingquan Gao 已提交
38

39 40 41
# for the PaddleClas Project
from . import deploy
from . import ppcls
T
Tingquan Gao 已提交
42

43
# for building model with loading pretrained weights from backbone
G
gaotingquan 已提交
44
logger.init_logger()
45

T
Tingquan Gao 已提交
46
__all__ = ["PaddleClas"]
T
Tingquan Gao 已提交
47

C
chenziheng 已提交
48
BASE_DIR = os.path.expanduser("~/.paddleclas/")
T
Tingquan Gao 已提交
49 50
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model")
BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images")
51 52
IMN_MODEL_BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar"
IMN_MODEL_SERIES = {
T
Tingquan Gao 已提交
53
    "AlexNet": ["AlexNet"],
54 55
    "ConvNeXt": ["ConvNeXt_tiny"],
    "CSPNet": ["CSPDarkNet53"],
G
gaotingquan 已提交
56 57 58 59 60
    "CSWinTransformer": [
        "CSWinTransformer_tiny_224", "CSWinTransformer_small_224",
        "CSWinTransformer_base_224", "CSWinTransformer_base_384",
        "CSWinTransformer_large_224", "CSWinTransformer_large_384"
    ],
T
Tingquan Gao 已提交
61 62
    "DarkNet": ["DarkNet53"],
    "DeiT": [
T
Tingquan Gao 已提交
63 64 65 66
        "DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384",
        "DeiT_base_patch16_224", "DeiT_base_patch16_384",
        "DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224",
        "DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224"
T
Tingquan Gao 已提交
67 68 69 70 71
    ],
    "DenseNet": [
        "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
        "DenseNet264"
    ],
72 73 74 75
    "DLA": [
        "DLA46_c", "DLA60x_c", "DLA34", "DLA60", "DLA60x", "DLA102", "DLA102x",
        "DLA102x2", "DLA169"
    ],
T
Tingquan Gao 已提交
76 77 78 79 80 81
    "DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"],
    "EfficientNet": [
        "EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1",
        "EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5",
        "EfficientNetB6", "EfficientNetB7"
    ],
G
gaotingquan 已提交
82
    "ESNet": ["ESNet_x0_25", "ESNet_x0_5", "ESNet_x0_75", "ESNet_x1_0"],
T
Tingquan Gao 已提交
83 84
    "GhostNet":
    ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"],
85
    "HarDNet": ["HarDNet39_ds", "HarDNet68_ds", "HarDNet68", "HarDNet85"],
T
Tingquan Gao 已提交
86 87 88 89 90 91
    "HRNet": [
        "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C",
        "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld",
        "HRNet_W48_C_ssld"
    ],
    "Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"],
G
gaotingquan 已提交
92 93
    "LeViT":
    ["LeViT_128S", "LeViT_128", "LeViT_192", "LeViT_256", "LeViT_384"],
G
gaotingquan 已提交
94
    "MixNet": ["MixNet_S", "MixNet_M", "MixNet_L"],
T
Tingquan Gao 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    "MobileNetV1": [
        "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75",
        "MobileNetV1", "MobileNetV1_ssld"
    ],
    "MobileNetV2": [
        "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
        "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0",
        "MobileNetV2_ssld"
    ],
    "MobileNetV3": [
        "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
        "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
        "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
        "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
        "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25",
        "MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld"
    ],
G
gaotingquan 已提交
112
    "MobileViT": ["MobileViT_XXS", "MobileViT_XS", "MobileViT_S"],
113
    "PeleeNet": ["PeleeNet"],
G
gaotingquan 已提交
114 115 116 117 118 119
    "PPHGNet": [
        "PPHGNet_tiny",
        "PPHGNet_small",
        "PPHGNet_tiny_ssld",
        "PPHGNet_small_ssld",
    ],
G
gaotingquan 已提交
120 121 122 123
    "PPLCNet": [
        "PPLCNet_x0_25", "PPLCNet_x0_35", "PPLCNet_x0_5", "PPLCNet_x0_75",
        "PPLCNet_x1_0", "PPLCNet_x1_5", "PPLCNet_x2_0", "PPLCNet_x2_5"
    ],
G
gaotingquan 已提交
124
    "PPLCNetV2": ["PPLCNetV2_base"],
G
gaotingquan 已提交
125 126 127 128
    "PVTV2": [
        "PVT_V2_B0", "PVT_V2_B1", "PVT_V2_B2", "PVT_V2_B2_Linear", "PVT_V2_B3",
        "PVT_V2_B4", "PVT_V2_B5"
    ],
129
    "RedNet": ["RedNet26", "RedNet38", "RedNet50", "RedNet101", "RedNet152"],
T
Tingquan Gao 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    "RegNet": ["RegNetX_4GF"],
    "Res2Net": [
        "Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s",
        "Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s",
        "Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld",
        "Res2Net200_vd_26w_4s_ssld"
    ],
    "ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"],
    "ResNet": [
        "ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50",
        "ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101",
        "ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd",
        "ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2",
        "ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy"
    ],
    "ResNeXt": [
        "ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d",
        "ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d",
        "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl",
        "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
        "Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d",
        "ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d",
        "ResNeXt152_vd_64x4d"
    ],
154 155
    "ReXNet":
    ["ReXNet_1_0", "ReXNet_1_3", "ReXNet_1_5", "ReXNet_2_0", "ReXNet_3_0"],
T
Tingquan Gao 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    "SENet": [
        "SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd",
        "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d",
        "SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d"
    ],
    "ShuffleNetV2": [
        "ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33",
        "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5",
        "ShuffleNetV2_x2_0"
    ],
    "SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"],
    "SwinTransformer": [
        "SwinTransformer_large_patch4_window7_224_22kto1k",
        "SwinTransformer_large_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window7_224_22kto1k",
        "SwinTransformer_base_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window12_384",
        "SwinTransformer_base_patch4_window7_224",
        "SwinTransformer_small_patch4_window7_224",
        "SwinTransformer_tiny_patch4_window7_224"
    ],
G
gaotingquan 已提交
177 178 179 180
    "Twins": [
        "pcpvt_small", "pcpvt_base", "pcpvt_large", "alt_gvt_small",
        "alt_gvt_base", "alt_gvt_large"
    ],
G
gaotingquan 已提交
181
    "TNT": ["TNT_small"],
182
    "VAN": ["VAN_B0"],
T
Tingquan Gao 已提交
183 184 185 186 187 188 189 190 191 192
    "VGG": ["VGG11", "VGG13", "VGG16", "VGG19"],
    "VisionTransformer": [
        "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
        "ViT_large_patch16_224", "ViT_large_patch16_384",
        "ViT_large_patch32_384", "ViT_small_patch16_224"
    ],
    "Xception": [
        "Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab",
        "Xception71"
    ]
C
chenziheng 已提交
193 194
}

G
gaotingquan 已提交
195
PULC_MODEL_BASE_DOWNLOAD_URL = "https://paddleclas.bj.bcebos.com/models/PULC/inference/{}_infer.tar"
196
PULC_MODELS = [
G
gaotingquan 已提交
197 198 199
    "car_exists", "language_classification", "person_attribute",
    "person_exists", "safety_helmet", "text_image_orientation",
    "textline_orientation", "traffic_sign", "vehicle_attribute"
200 201
]

H
HydrogenSulfate 已提交
202 203 204 205 206 207 208 209
SHITU_MODEL_BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/{}_infer.tar"
SHITU_MODELS = [
    # "picodet_PPLCNet_x2_5_mainbody_lite_v1.0",  # ShiTuV1(V2)_mainbody_det
    # "general_PPLCNet_x2_5_lite_v1.0"  # ShiTuV1_general_rec
    # "PP-ShiTuV2/general_PPLCNetV2_base_pretrained_v1.0",  # ShiTuV2_general_rec TODO(hesensen): add lite model
    "PP-ShiTuV2"
]

C
chenziheng 已提交
210

T
Tingquan Gao 已提交
211 212
class ImageTypeError(Exception):
    """ImageTypeError.
T
Tingquan Gao 已提交
213 214
    """

T
Tingquan Gao 已提交
215
    def __init__(self, message=""):
T
Tingquan Gao 已提交
216 217 218
        super().__init__(message)


T
Tingquan Gao 已提交
219 220 221 222 223 224 225 226
class InputModelError(Exception):
    """InputModelError.
    """

    def __init__(self, message=""):
        super().__init__(message)


227 228
def init_config(model_type, model_name, inference_model_dir, **kwargs):

H
HydrogenSulfate 已提交
229 230 231 232 233 234 235
    if model_type == "pulc":
        cfg_path = f"deploy/configs/PULC/{model_name}/inference_{model_name}.yaml"
    elif model_type == "shitu":
        cfg_path = "deploy/configs/inference_general.yaml"
    else:
        cfg_path = "deploy/configs/inference_cls.yaml"

236
    __dir__ = os.path.dirname(__file__)
G
gaotingquan 已提交
237
    cfg_path = os.path.join(__dir__, cfg_path)
238
    cfg = config.get_config(cfg_path, show=False)
H
HydrogenSulfate 已提交
239 240 241 242 243 244 245 246
    if cfg.Global.get("inference_model_dir"):
        cfg.Global.inference_model_dir = inference_model_dir
    else:
        cfg.Global.rec_inference_model_dir = os.path.join(
            inference_model_dir,
            "PP-ShiTuV2/general_PPLCNetV2_base_pretrained_v1.0")
        cfg.Global.det_inference_model_dir = os.path.join(
            inference_model_dir, "picodet_PPLCNet_x2_5_mainbody_lite_v1.0")
247 248 249

    if "batch_size" in kwargs and kwargs["batch_size"]:
        cfg.Global.batch_size = kwargs["batch_size"]
250

251 252
    if "use_gpu" in kwargs and kwargs["use_gpu"]:
        cfg.Global.use_gpu = kwargs["use_gpu"]
253 254 255 256
    if cfg.Global.use_gpu and not paddle.device.is_compiled_with_cuda():
        msg = "The current running environment does not support the use of GPU. CPU has been used instead."
        logger.warning(msg)
        cfg.Global.use_gpu = False
257 258 259

    if "infer_imgs" in kwargs and kwargs["infer_imgs"]:
        cfg.Global.infer_imgs = kwargs["infer_imgs"]
H
HydrogenSulfate 已提交
260 261 262 263
    if "index_dir" in kwargs and kwargs["index_dir"]:
        cfg.IndexProcess.index_dir = kwargs["index_dir"]
    if "data_file" in kwargs and kwargs["data_file"]:
        cfg.IndexProcess.data_file = kwargs["data_file"]
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    if "enable_mkldnn" in kwargs and kwargs["enable_mkldnn"]:
        cfg.Global.enable_mkldnn = kwargs["enable_mkldnn"]
    if "cpu_num_threads" in kwargs and kwargs["cpu_num_threads"]:
        cfg.Global.cpu_num_threads = kwargs["cpu_num_threads"]
    if "use_fp16" in kwargs and kwargs["use_fp16"]:
        cfg.Global.use_fp16 = kwargs["use_fp16"]
    if "use_tensorrt" in kwargs and kwargs["use_tensorrt"]:
        cfg.Global.use_tensorrt = kwargs["use_tensorrt"]
    if "gpu_mem" in kwargs and kwargs["gpu_mem"]:
        cfg.Global.gpu_mem = kwargs["gpu_mem"]
    if "resize_short" in kwargs and kwargs["resize_short"]:
        cfg.PreProcess.transform_ops[0]["ResizeImage"][
            "resize_short"] = kwargs["resize_short"]
    if "crop_size" in kwargs and kwargs["crop_size"]:
        cfg.PreProcess.transform_ops[1]["CropImage"]["size"] = kwargs[
            "crop_size"]

    # TODO(gaotingquan): not robust
    if "thresh" in kwargs and kwargs[
            "thresh"] and "ThreshOutput" in cfg.PostProcess:
        cfg.PostProcess.ThreshOutput.thresh = kwargs["thresh"]
H
HydrogenSulfate 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    if cfg.get("PostProcess"):
        if "Topk" in cfg.PostProcess:
            if "topk" in kwargs and kwargs["topk"]:
                cfg.PostProcess.Topk.topk = kwargs["topk"]
            if "class_id_map_file" in kwargs and kwargs["class_id_map_file"]:
                cfg.PostProcess.Topk.class_id_map_file = kwargs[
                    "class_id_map_file"]
            else:
                class_id_map_file_path = os.path.relpath(
                    cfg.PostProcess.Topk.class_id_map_file, "../")
                cfg.PostProcess.Topk.class_id_map_file = os.path.join(
                    __dir__, class_id_map_file_path)
        if "VehicleAttribute" in cfg.PostProcess:
            if "color_threshold" in kwargs and kwargs["color_threshold"]:
                cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
                    "color_threshold"]
            if "type_threshold" in kwargs and kwargs["type_threshold"]:
                cfg.PostProcess.VehicleAttribute.type_threshold = kwargs[
                    "type_threshold"]
304 305 306

    if "save_dir" in kwargs and kwargs["save_dir"]:
        cfg.PostProcess.SavePreLabel.save_dir = kwargs["save_dir"]
T
Tingquan Gao 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

    return cfg


def args_cfg():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--infer_imgs",
        type=str,
        required=True,
        help="The image(s) to be predicted.")
    parser.add_argument(
        "--model_name", type=str, help="The model name to be used.")
    parser.add_argument(
        "--inference_model_dir",
        type=str,
        help="The directory of model files. Valid when model_name not specifed."
    )
H
HydrogenSulfate 已提交
328 329 330 331 332 333 334
    parser.add_argument(
        "--index_dir",
        type=str,
        required=False,
        help="The index directory path.")
    parser.add_argument(
        "--data_file", type=str, required=False, help="The label file path.")
335 336 337 338 339
    parser.add_argument("--use_gpu", type=str2bool, help="Whether use GPU.")
    parser.add_argument(
        "--gpu_mem",
        type=int,
        help="The memory size of GPU allocated to predict.")
T
Tingquan Gao 已提交
340 341 342 343 344
    parser.add_argument(
        "--enable_mkldnn",
        type=str2bool,
        help="Whether use MKLDNN. Valid when use_gpu is False")
    parser.add_argument(
345 346 347 348 349 350
        "--cpu_num_threads",
        type=int,
        help="The threads number when predicting on CPU.")
    parser.add_argument(
        "--use_tensorrt",
        type=str2bool,
G
gaotingquan 已提交
351
        help="Whether use TensorRT to accelerate.")
352 353
    parser.add_argument(
        "--use_fp16", type=str2bool, help="Whether use FP16 to predict.")
354
    parser.add_argument("--batch_size", type=int, help="Batch size.")
T
Tingquan Gao 已提交
355 356 357
    parser.add_argument(
        "--topk",
        type=int,
358 359
        help="Return topk score(s) and corresponding results when Topk postprocess is used."
    )
T
Tingquan Gao 已提交
360 361 362 363
    parser.add_argument(
        "--class_id_map_file",
        type=str,
        help="The path of file that map class_id and label.")
364 365 366 367 368 369
    parser.add_argument(
        "--threshold",
        type=float,
        help="The threshold of ThreshOutput when postprocess is used.")
    parser.add_argument("--color_threshold", type=float, help="")
    parser.add_argument("--type_threshold", type=float, help="")
T
Tingquan Gao 已提交
370 371 372 373
    parser.add_argument(
        "--save_dir",
        type=str,
        help="The directory to save prediction results as pre-label.")
G
gaotingquan 已提交
374
    parser.add_argument(
375 376
        "--resize_short", type=int, help="Resize according to short size.")
    parser.add_argument("--crop_size", type=int, help="Centor crop size.")
T
Tingquan Gao 已提交
377 378 379

    args = parser.parse_args()
    return vars(args)
T
Tingquan Gao 已提交
380 381


T
Tingquan Gao 已提交
382
def print_info():
T
Tingquan Gao 已提交
383 384
    """Print list of supported models in formatted.
    """
385 386
    imn_table = PrettyTable(["IMN Model Series", "Model Name"])
    pulc_table = PrettyTable(["PULC Models"])
H
HydrogenSulfate 已提交
387
    shitu_table = PrettyTable(["PP-ShiTu Models"])
T
Tingquan Gao 已提交
388 389
    try:
        sz = os.get_terminal_size()
390 391 392
        total_width = sz.columns
        first_width = 30
        second_width = total_width - first_width if total_width > 50 else 10
T
Tingquan Gao 已提交
393
    except OSError:
394
        total_width = 100
395 396 397 398 399 400 401 402 403 404 405
        second_width = 100
    for series in IMN_MODEL_SERIES:
        names = textwrap.fill(
            "  ".join(IMN_MODEL_SERIES[series]), width=second_width)
        imn_table.add_row([series, names])

    table_width = len(str(imn_table).split("\n")[0])
    pulc_table.add_row([
        textwrap.fill(
            "  ".join(PULC_MODELS), width=total_width).center(table_width - 4)
    ])
H
HydrogenSulfate 已提交
406 407 408 409
    shitu_table.add_row([
        textwrap.fill(
            "  ".join(SHITU_MODELS), width=total_width).center(table_width - 4)
    ])
410 411 412 413 414

    print("{}".format("-" * table_width))
    print("Models supported by PaddleClas".center(table_width))
    print(imn_table)
    print(pulc_table)
H
HydrogenSulfate 已提交
415
    print(shitu_table)
416 417 418 419 420
    print("Powered by PaddlePaddle!".rjust(table_width))
    print("{}".format("-" * table_width))


def get_imn_model_names():
T
Tingquan Gao 已提交
421 422
    """Get the model names list.
    """
T
Tingquan Gao 已提交
423
    model_names = []
424 425
    for series in IMN_MODEL_SERIES:
        model_names += (IMN_MODEL_SERIES[series])
T
Tingquan Gao 已提交
426 427 428
    return model_names


429
def similar_model_names(name="", names=[], thresh=0.1, topk=5):
T
Tingquan Gao 已提交
430
    """Find the most similar topk model names.
T
Tingquan Gao 已提交
431 432 433
    """
    scores = []
    for idx, n in enumerate(names):
T
Tingquan Gao 已提交
434
        if n.startswith("__"):
T
Tingquan Gao 已提交
435 436 437 438 439 440 441 442 443
            continue
        score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
        if score > thresh:
            scores.append((idx, score))
    scores.sort(key=lambda x: x[1], reverse=True)
    similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
    return similar_names


C
chenziheng 已提交
444
def download_with_progressbar(url, save_path):
T
Tingquan Gao 已提交
445 446 447 448
    """Download from url with progressbar.
    """
    if os.path.isfile(save_path):
        os.remove(save_path)
C
chenziheng 已提交
449
    response = requests.get(url, stream=True)
T
Tingquan Gao 已提交
450
    total_size_in_bytes = int(response.headers.get("content-length", 0))
C
chenziheng 已提交
451
    block_size = 1024  # 1 Kibibyte
T
Tingquan Gao 已提交
452 453
    progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
    with open(save_path, "wb") as file:
C
chenziheng 已提交
454 455 456 457
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
T
Tingquan Gao 已提交
458 459
    if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile(
            save_path):
T
Tingquan Gao 已提交
460
        raise Exception(
T
Tingquan Gao 已提交
461
            f"Something went wrong while downloading file from {url}")
C
chenziheng 已提交
462 463


464
def check_model_file(model_type, model_name):
465
    """Check the model files exist and download and untar when no exist.
T
Tingquan Gao 已提交
466
    """
467 468 469 470
    if model_type == "pulc":
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "PULC", model_name)
        url = PULC_MODEL_BASE_DOWNLOAD_URL.format(model_name)
H
HydrogenSulfate 已提交
471 472 473 474
    elif model_type == "shitu":
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "PP-ShiTu", model_name)
        url = SHITU_MODEL_BASE_DOWNLOAD_URL.format(model_name)
475 476 477 478
    else:
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "IMN", model_name)
        url = IMN_MODEL_BASE_DOWNLOAD_URL.format(model_name)
T
Tingquan Gao 已提交
479

C
chenziheng 已提交
480
    tar_file_name_list = [
T
Tingquan Gao 已提交
481
        "inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel"
C
chenziheng 已提交
482
    ]
T
Tingquan Gao 已提交
483 484 485 486 487
    model_file_path = storage_directory("inference.pdmodel")
    params_file_path = storage_directory("inference.pdiparams")
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        tmp_path = storage_directory(url.split("/")[-1])
G
gaotingquan 已提交
488
        logger.info(f"download {url} to {tmp_path}")
T
Tingquan Gao 已提交
489
        os.makedirs(storage_directory(), exist_ok=True)
C
chenziheng 已提交
490
        download_with_progressbar(url, tmp_path)
T
Tingquan Gao 已提交
491
        with tarfile.open(tmp_path, "r") as tarObj:
C
chenziheng 已提交
492 493 494 495 496 497 498 499
            for member in tarObj.getmembers():
                filename = None
                for tar_file_name in tar_file_name_list:
                    if tar_file_name in member.name:
                        filename = tar_file_name
                if filename is None:
                    continue
                file = tarObj.extractfile(member)
T
Tingquan Gao 已提交
500
                with open(storage_directory(filename), "wb") as f:
C
chenziheng 已提交
501 502
                    f.write(file.read())
        os.remove(tmp_path)
T
Tingquan Gao 已提交
503 504 505 506 507
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        raise Exception(
            f"Something went wrong while praparing the model[{model_name}] files!"
        )
C
chenziheng 已提交
508

T
Tingquan Gao 已提交
509
    return storage_directory()
C
chenziheng 已提交
510

T
Tingquan Gao 已提交
511

C
chenziheng 已提交
512
class PaddleClas(object):
T
Tingquan Gao 已提交
513 514 515 516 517 518
    """PaddleClas.
    """

    def __init__(self,
                 model_name: str=None,
                 inference_model_dir: str=None,
T
Tingquan Gao 已提交
519
                 **kwargs):
T
Tingquan Gao 已提交
520
        """Init PaddleClas with config.
T
Tingquan Gao 已提交
521

T
Tingquan Gao 已提交
522
        Args:
523 524 525 526 527
            model_name (str, optional): The model name supported by PaddleClas. If specified, override config. Defaults to None.
            inference_model_dir (str, optional): The directory that contained model file and params file to be used. If specified, override config. Defaults to None.
            use_gpu (bool, optional): Whether use GPU. If specified, override config. Defaults to True.
            batch_size (int, optional): The batch size to pridict. If specified, override config. Defaults to 1.
            topk (int, optional): Return the top k prediction results with the highest score. Defaults to 5.
T
Tingquan Gao 已提交
528 529
        """
        super().__init__()
530

531 532 533 534
        self.model_type, inference_model_dir = self._check_input_model(
            model_name, inference_model_dir)
        self._config = init_config(self.model_type, model_name,
                                   inference_model_dir, **kwargs)
H
HydrogenSulfate 已提交
535 536 537 538
        if self.model_type == "shitu":
            self.predictor = SystemPredictor(self._config)
        else:
            self.predictor = ClsPredictor(self._config)
T
Tingquan Gao 已提交
539 540 541

    def get_config(self):
        """Get the config.
C
chenziheng 已提交
542
        """
T
Tingquan Gao 已提交
543 544
        return self._config

545
    def _check_input_model(self, model_name, inference_model_dir):
T
Tingquan Gao 已提交
546 547
        """Check input model name or model files.
        """
548 549
        all_imn_model_names = get_imn_model_names()
        all_pulc_model_names = PULC_MODELS
H
HydrogenSulfate 已提交
550
        all_shitu_model_names = SHITU_MODELS
551 552 553 554 555 556 557 558

        if model_name:
            if model_name in all_imn_model_names:
                inference_model_dir = check_model_file("imn", model_name)
                return "imn", inference_model_dir
            elif model_name in all_pulc_model_names:
                inference_model_dir = check_model_file("pulc", model_name)
                return "pulc", inference_model_dir
H
HydrogenSulfate 已提交
559 560 561 562 563 564 565 566 567
            elif model_name in all_shitu_model_names:
                inference_model_dir = check_model_file(
                    "shitu",
                    "PP-ShiTuV2/general_PPLCNetV2_base_pretrained_v1.0")
                inference_model_dir = check_model_file(
                    "shitu", "picodet_PPLCNet_x2_5_mainbody_lite_v1.0")
                inference_model_dir = os.path.abspath(
                    os.path.dirname(inference_model_dir))
                return "shitu", inference_model_dir
568 569 570 571 572 573 574 575
            else:
                similar_imn_names = similar_model_names(model_name,
                                                        all_imn_model_names)
                similar_pulc_names = similar_model_names(model_name,
                                                         all_pulc_model_names)
                similar_names_str = ", ".join(similar_imn_names +
                                              similar_pulc_names)
                err = f"{model_name} is not provided by PaddleClas. \nMaybe you want the : [{similar_names_str}]. \nIf you want to use your own model, please specify inference_model_dir!"
T
Tingquan Gao 已提交
576
                raise InputModelError(err)
577
        elif inference_model_dir:
T
Tingquan Gao 已提交
578 579 580 581 582 583 584 585
            model_file_path = os.path.join(inference_model_dir,
                                           "inference.pdmodel")
            params_file_path = os.path.join(inference_model_dir,
                                            "inference.pdiparams")
            if not os.path.isfile(model_file_path) or not os.path.isfile(
                    params_file_path):
                err = f"There is no model file or params file in this directory: {inference_model_dir}"
                raise InputModelError(err)
586
            return "custom", inference_model_dir
T
Tingquan Gao 已提交
587
        else:
H
HydrogenSulfate 已提交
588
            err = "Please specify the model name supported by PaddleClas or directory contained model files(inference.pdmodel, inference.pdiparams)."
T
Tingquan Gao 已提交
589
            raise InputModelError(err)
590
        return None
T
Tingquan Gao 已提交
591

H
HydrogenSulfate 已提交
592 593 594
    def predict_cls(self,
                    input_data: Union[str, np.array],
                    print_pred: bool=False) -> Generator[list, None, None]:
T
Tingquan Gao 已提交
595 596
        """Predict input_data.

C
chenziheng 已提交
597
        Args:
G
gaotingquan 已提交
598
            input_data (Union[str, np.array]):
599 600
                When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
                When the type is np.array, it is the image data whose channel order is RGB.
G
gaotingquan 已提交
601
            print_pred (bool, optional): Whether print the prediction result. Defaults to False.
T
Tingquan Gao 已提交
602 603 604 605 606

        Raises:
            ImageTypeError: Illegal input_data.

        Yields:
G
gaotingquan 已提交
607 608 609
            Generator[list, None, None]:
                The prediction result(s) of input_data by batch_size. For every one image,
                prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
G
gaotingquan 已提交
610
                The format of batch prediction result(s) is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
C
chenziheng 已提交
611
        """
612

T
Tingquan Gao 已提交
613
        if isinstance(input_data, np.ndarray):
H
HydrogenSulfate 已提交
614
            yield self.predictor.predict(input_data)
T
Tingquan Gao 已提交
615
        elif isinstance(input_data, str):
T
Tingquan Gao 已提交
616
            if input_data.startswith("http") or input_data.startswith("https"):
T
Tingquan Gao 已提交
617 618 619 620 621
                image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
                if not os.path.exists(image_storage_dir()):
                    os.makedirs(image_storage_dir())
                image_save_path = image_storage_dir("tmp.jpg")
                download_with_progressbar(input_data, image_save_path)
G
gaotingquan 已提交
622
                logger.info(
T
Tingquan Gao 已提交
623 624
                    f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
                )
625
                input_data = image_save_path
T
Tingquan Gao 已提交
626 627 628 629 630
            image_list = get_image_list(input_data)

            batch_size = self._config.Global.get("batch_size", 1)

            img_list = []
T
Tingquan Gao 已提交
631 632
            img_path_list = []
            cnt = 0
633
            for idx_img, img_path in enumerate(image_list):
T
Tingquan Gao 已提交
634 635
                img = cv2.imread(img_path)
                if img is None:
G
gaotingquan 已提交
636
                    logger.warning(
T
Tingquan Gao 已提交
637 638
                        f"Image file failed to read and has been skipped. The path: {img_path}"
                    )
T
Tingquan Gao 已提交
639
                    continue
640
                img = img[:, :, ::-1]
T
Tingquan Gao 已提交
641 642 643 644
                img_list.append(img)
                img_path_list.append(img_path)
                cnt += 1

645
                if cnt % batch_size == 0 or (idx_img + 1) == len(image_list):
H
HydrogenSulfate 已提交
646
                    preds = self.predictor.predict(img_list)
G
gaotingquan 已提交
647

648 649 650 651
                    if preds:
                        for idx_pred, pred in enumerate(preds):
                            pred["filename"] = img_path_list[idx_pred]
                            if print_pred:
G
gaotingquan 已提交
652
                                logger.info(", ".join(
653
                                    [f"{k}: {pred[k]}" for k in pred]))
T
Tingquan Gao 已提交
654

T
Tingquan Gao 已提交
655
                    img_list = []
T
Tingquan Gao 已提交
656
                    img_path_list = []
T
Tingquan Gao 已提交
657
                    yield preds
C
chenziheng 已提交
658
        else:
T
Tingquan Gao 已提交
659 660 661
            err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            raise ImageTypeError(err)
        return
C
chenziheng 已提交
662

H
HydrogenSulfate 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
    def predict_shitu(self,
                      input_data: Union[str, np.array],
                      print_pred: bool=False) -> Generator[list, None, None]:
        """Predict input_data.
        Args:
            input_data (Union[str, np.array]):
                When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
                When the type is np.array, it is the image data whose channel order is RGB.
            print_pred (bool, optional): Whether print the prediction result. Defaults to False.

        Raises:
            ImageTypeError: Illegal input_data.

        Yields:
            Generator[list, None, None]:
                The prediction result(s) of input_data by batch_size. For every one image,
                prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
                The format of batch prediction result(s) is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
        """
        if isinstance(input_data, np.ndarray):
            yield self.predictor.predict(input_data)
        elif isinstance(input_data, str):
            if input_data.startswith("http") or input_data.startswith("https"):
                image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
                if not os.path.exists(image_storage_dir()):
                    os.makedirs(image_storage_dir())
                image_save_path = image_storage_dir("tmp.jpg")
                download_with_progressbar(input_data, image_save_path)
                logger.info(
                    f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
                )
                input_data = image_save_path
            image_list = get_image_list(input_data)

            cnt = 0
            for idx_img, img_path in enumerate(image_list):
                img = cv2.imread(img_path)
                if img is None:
                    logger.warning(
                        f"Image file failed to read and has been skipped. The path: {img_path}"
                    )
                    continue
                img = img[:, :, ::-1]
                cnt += 1

                preds = self.predictor.predict(
                    img)  # [dict1, dict2, ..., dictn]
                if preds:
                    if print_pred:
                        logger.info(f"{preds}, filename: {img_path}")

                yield preds
        else:
            err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            raise ImageTypeError(err)
        return

    def predict(self,
                input_data: Union[str, np.array],
                print_pred: bool=False,
                predict_type="cls"):
        if predict_type == "cls":
            return self.predict_cls(input_data, print_pred)
        elif predict_type == "shitu":
            assert not isinstance(input_data, (
                list, tuple
            )), "PP-ShiTu predictor only support single image as input now."
            return self.predict_shitu(input_data, print_pred)
        else:
            raise ModuleNotFoundError

C
chenziheng 已提交
734

T
Tingquan Gao 已提交
735
# for CLI
C
chenziheng 已提交
736
def main():
T
Tingquan Gao 已提交
737 738
    """Function API used for commad line.
    """
739
    print_info()
T
Tingquan Gao 已提交
740
    cfg = args_cfg()
T
Tingquan Gao 已提交
741
    clas_engine = PaddleClas(**cfg)
H
HydrogenSulfate 已提交
742 743 744 745
    res = clas_engine.predict(
        cfg["infer_imgs"],
        print_pred=True,
        predict_type="cls" if "PP-ShiTu" not in cfg["model_name"] else "shitu")
T
Tingquan Gao 已提交
746 747
    for _ in res:
        pass
G
gaotingquan 已提交
748
    logger.info("Predict complete!")
T
Tingquan Gao 已提交
749
    return
C
chenziheng 已提交
750 751


T
Tingquan Gao 已提交
752
if __name__ == "__main__":
C
chenziheng 已提交
753
    main()