engine.py 21.2 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

D
dongshuilong 已提交
17
import os
D
dongshuilong 已提交
18 19 20
import paddle
import paddle.distributed as dist
from visualdl import LogWriter
D
dongshuilong 已提交
21
from paddle import nn
D
dongshuilong 已提交
22 23
import numpy as np
import random
D
dongshuilong 已提交
24

25
from ppcls.utils.misc import AverageMeter
D
dongshuilong 已提交
26 27 28
from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.utils.config import print_config
29
from ppcls.data import build_dataloader
W
dbg  
weishengyu 已提交
30
from ppcls.arch import build_model, RecModel, DistillationModel, TheseusLayer
31 32 33 34
from ppcls.loss import build_loss
from ppcls.metric import build_metrics
from ppcls.optimizer import build_optimizer
from ppcls.utils.ema import ExponentialMovingAverage
D
dongshuilong 已提交
35
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
36
from ppcls.utils.save_load import init_model
37
from ppcls.utils import save_load
D
dongshuilong 已提交
38 39 40 41

from ppcls.data.utils.get_image_list import get_image_list
from ppcls.data.postprocess import build_postprocess
from ppcls.data import create_operators
42
from .train import build_train_epoch_func
43
from .evaluation import build_eval_func
44
from ppcls.engine.train.utils import type_name
D
dongshuilong 已提交
45
from ppcls.engine import evaluation
D
dongshuilong 已提交
46 47 48
from ppcls.arch.gears.identity_head import IdentityHead


D
dongshuilong 已提交
49
class Engine(object):
D
dongshuilong 已提交
50
    def __init__(self, config, mode="train"):
D
dongshuilong 已提交
51
        assert mode in ["train", "eval", "infer", "export"]
D
dongshuilong 已提交
52 53
        self.mode = mode
        self.config = config
D
dongshuilong 已提交
54

T
Tingquan Gao 已提交
55 56 57
        # set seed
        self._init_seed()

D
dongshuilong 已提交
58
        # init logger
59
        init_logger(self.config, mode=mode)
D
dongshuilong 已提交
60

61 62 63 64 65 66 67
        # for visualdl
        self.vdl_writer = self._init_vdl()

        # init train_func and eval_func
        self.train_epoch_func = build_train_epoch_func(self.config)
        self.eval_func = build_eval_func(self.config)

D
dongshuilong 已提交
68
        # set device
69
        self._init_device()
D
dongshuilong 已提交
70

71 72 73 74 75
        # gradient accumulation
        self.update_freq = self.config["Global"].get("update_freq", 1)

        # build dataloader
        self.use_dali = self.config["Global"].get("use_dali", False)
76
        self.dataloader_dict = build_dataloader(self)
77 78 79 80 81 82 83 84

        # build loss
        self.train_loss_func, self.unlabel_train_loss_func, self.eval_loss_func = build_loss(
            self.config, self.mode)

        # build metric
        self.train_metric_func, self.eval_metric_func = build_metrics(self)

D
dongshuilong 已提交
85
        # build model
littletomatodonkey's avatar
littletomatodonkey 已提交
86
        self.model = build_model(self.config, self.mode)
D
dongshuilong 已提交
87

T
Tingquan Gao 已提交
88 89 90
        # load_pretrain
        self._init_pretrained()

91 92 93 94 95
        # build optimizer
        self.optimizer, self.lr_sch = build_optimizer(self)

        # AMP training and evaluating
        self._init_amp()
96 97

        # for distributed
G
gaotingquan 已提交
98
        self._init_dist()
D
dongshuilong 已提交
99

T
Tingquan Gao 已提交
100
        print_config(config)
101

102 103 104 105 106 107 108 109 110
    def train(self):
        assert self.mode == "train"
        print_batch_step = self.config['Global']['print_batch_step']
        save_interval = self.config["Global"]["save_interval"]
        best_metric = {
            "metric": -1.0,
            "epoch": 0,
        }

111 112 113 114 115 116 117 118 119 120
        # build EMA model
        self.ema = "EMA" in self.config and self.mode == "train"
        if self.ema:
            self.model_ema = ExponentialMovingAverage(
                self.model, self.config['EMA'].get("decay", 0.9999))
            best_metric_ema = 0.0
            ema_module = self.model_ema.module
        else:
            ema_module = None

121 122 123 124 125 126 127 128 129 130 131
        # key:
        # val: metrics list word
        self.output_info = dict()
        self.time_info = {
            "batch_cost": AverageMeter(
                "batch_cost", '.5f', postfix=" s,"),
            "reader_cost": AverageMeter(
                "reader_cost", ".5f", postfix=" s,"),
        }
        # global iter counter
        self.global_step = 0
132 133 134 135 136 137 138 139 140 141 142

        if self.config.Global.checkpoints is not None:
            metric_info = init_model(self.config.Global, self.model,
                                     self.optimizer, self.train_loss_func,
                                     ema_module)
            if metric_info is not None:
                best_metric.update(metric_info)

        for epoch_id in range(best_metric["epoch"] + 1,
                              self.config["Global"]["epochs"] + 1):
            acc = 0.0
143 144 145 146 147
            # for one epoch train
            self.train_epoch_func(self, epoch_id, print_batch_step)

            metric_msg = ", ".join(
                [self.output_info[key].avg_info for key in self.output_info])
148 149
            logger.info("[Train][Epoch {}/{}][Avg]{}".format(
                epoch_id, self.config["Global"]["epochs"], metric_msg))
150 151
            self.output_info.clear()

152 153 154
            # eval model and save model if possible
            start_eval_epoch = self.config["Global"].get("start_eval_epoch",
                                                         0) - 1
155 156
            if self.config["Global"][
                    "eval_during_train"] and epoch_id % self.config["Global"][
157
                        "eval_interval"] == 0 and epoch_id > start_eval_epoch:
158 159 160 161 162 163 164 165 166 167 168
                acc = self.eval(epoch_id)

                # step lr (by epoch) according to given metric, such as acc
                for i in range(len(self.lr_sch)):
                    if getattr(self.lr_sch[i], "by_epoch", False) and \
                            type_name(self.lr_sch[i]) == "ReduceOnPlateau":
                        self.lr_sch[i].step(acc)

                if acc > best_metric["metric"]:
                    best_metric["metric"] = acc
                    best_metric["epoch"] = epoch_id
169 170 171
                    save_load.save_model(
                        self.model,
                        self.optimizer,
172
                        best_metric,
173 174 175
                        self.output_dir,
                        ema=ema_module,
                        model_name=self.config["Arch"]["name"],
176
                        prefix="best_model",
177
                        loss=self.train_loss_func,
178 179 180 181 182 183 184 185 186 187 188
                        save_student_model=True)
                logger.info("[Eval][Epoch {}][best metric: {}]".format(
                    epoch_id, best_metric["metric"]))
                logger.scaler(
                    name="eval_acc",
                    value=acc,
                    step=epoch_id,
                    writer=self.vdl_writer)

                self.model.train()

189 190
                if self.ema:
                    ori_model, self.model = self.model, ema_module
191 192
                    acc_ema = self.eval(epoch_id)
                    self.model = ori_model
193
                    ema_module.eval()
194 195 196

                    if acc_ema > best_metric_ema:
                        best_metric_ema = acc_ema
197 198 199 200 201 202 203 204 205 206
                        save_load.save_model(
                            self.model,
                            self.optimizer,
                            {"metric": acc_ema,
                             "epoch": epoch_id},
                            self.output_dir,
                            ema=ema_module,
                            model_name=self.config["Arch"]["name"],
                            prefix="best_model_ema",
                            loss=self.train_loss_func)
207 208 209 210 211 212 213 214 215 216
                    logger.info("[Eval][Epoch {}][best metric ema: {}]".format(
                        epoch_id, best_metric_ema))
                    logger.scaler(
                        name="eval_acc_ema",
                        value=acc_ema,
                        step=epoch_id,
                        writer=self.vdl_writer)

            # save model
            if save_interval > 0 and epoch_id % save_interval == 0:
217 218 219 220 221 222 223 224 225
                save_load.save_model(
                    self.model,
                    self.optimizer, {"metric": acc,
                                     "epoch": epoch_id},
                    self.output_dir,
                    ema=ema_module,
                    model_name=self.config["Arch"]["name"],
                    prefix="epoch_{}".format(epoch_id),
                    loss=self.train_loss_func)
226
            # save the latest model
227 228 229 230 231 232 233 234 235
            save_load.save_model(
                self.model,
                self.optimizer, {"metric": acc,
                                 "epoch": epoch_id},
                self.output_dir,
                ema=ema_module,
                model_name=self.config["Arch"]["name"],
                prefix="latest",
                loss=self.train_loss_func)
236 237 238 239 240 241 242 243 244 245 246 247

        if self.vdl_writer is not None:
            self.vdl_writer.close()

    @paddle.no_grad()
    def eval(self, epoch_id=0):
        assert self.mode in ["train", "eval"]
        self.model.eval()
        eval_result = self.eval_func(self, epoch_id)
        self.model.train()
        return eval_result

D
dongshuilong 已提交
248 249 250
    @paddle.no_grad()
    def infer(self):
        assert self.mode == "infer" and self.eval_mode == "classification"
G
gaotingquan 已提交
251 252 253 254 255 256

        self.preprocess_func = create_operators(self.config["Infer"][
            "transforms"])
        self.postprocess_func = build_postprocess(self.config["Infer"][
            "PostProcess"])

257 258
        total_trainer = dist.get_world_size()
        local_rank = dist.get_rank()
D
dongshuilong 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        image_list = get_image_list(self.config["Infer"]["infer_imgs"])
        # data split
        image_list = image_list[local_rank::total_trainer]

        batch_size = self.config["Infer"]["batch_size"]
        self.model.eval()
        batch_data = []
        image_file_list = []
        for idx, image_file in enumerate(image_list):
            with open(image_file, 'rb') as f:
                x = f.read()
            for process in self.preprocess_func:
                x = process(x)
            batch_data.append(x)
            image_file_list.append(image_file)
            if len(batch_data) >= batch_size or idx == len(image_list) - 1:
                batch_tensor = paddle.to_tensor(batch_data)
276 277 278 279 280 281 282 283 284 285

                if self.amp and self.amp_eval:
                    with paddle.amp.auto_cast(
                            custom_black_list={
                                "flatten_contiguous_range", "greater_than"
                            },
                            level=self.amp_level):
                        out = self.model(batch_tensor)
                else:
                    out = self.model(batch_tensor)
G
gaotingquan 已提交
286

D
dongshuilong 已提交
287 288
                if isinstance(out, list):
                    out = out[0]
littletomatodonkey's avatar
littletomatodonkey 已提交
289 290
                if isinstance(out, dict) and "Student" in out:
                    out = out["Student"]
291 292 293
                if isinstance(out, dict) and "logits" in out:
                    out = out["logits"]
                if isinstance(out, dict) and "output" in out:
W
dbg  
weishengyu 已提交
294
                    out = out["output"]
D
dongshuilong 已提交
295 296 297 298 299 300 301
                result = self.postprocess_func(out, image_file_list)
                print(result)
                batch_data.clear()
                image_file_list.clear()

    def export(self):
        assert self.mode == "export"
Z
zhiboniu 已提交
302 303
        use_multilabel = self.config["Global"].get(
            "use_multilabel",
C
cuicheng01 已提交
304
            False) or "ATTRMetric" in self.config["Metric"]["Eval"][0]
C
cuicheng01 已提交
305
        model = ExportModel(self.config["Arch"], self.model, use_multilabel)
306 307 308 309 310 311 312 313 314
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
D
dongshuilong 已提交
315 316

        model.eval()
G
gaotingquan 已提交
317

318
        # for re-parameterization nets
H
HydrogenSulfate 已提交
319
        for layer in self.model.sublayers():
320 321 322
            if hasattr(layer, "re_parameterize") and not getattr(layer,
                                                                 "is_repped"):
                layer.re_parameterize()
G
gaotingquan 已提交
323

D
dongshuilong 已提交
324 325
        save_path = os.path.join(self.config["Global"]["save_inference_dir"],
                                 "inference")
littletomatodonkey's avatar
littletomatodonkey 已提交
326 327 328 329 330 331 332 333 334 335 336 337

        model = paddle.jit.to_static(
            model,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None] + self.config["Global"]["image_shape"],
                    dtype='float32')
            ])
        if hasattr(model.base_model,
                   "quanter") and model.base_model.quanter is not None:
            model.base_model.quanter.save_quantized_model(model,
                                                          save_path + "_int8")
D
dongshuilong 已提交
338 339
        else:
            paddle.jit.save(model, save_path)
G
gaotingquan 已提交
340 341 342
        logger.info(
            f"Export succeeded! The inference model exported has been saved in \"{self.config['Global']['save_inference_dir']}\"."
        )
D
dongshuilong 已提交
343

344 345 346 347 348 349 350 351 352
    def _init_vdl(self):
        if self.config['Global'][
                'use_visualdl'] and mode == "train" and dist.get_rank() == 0:
            vdl_writer_path = os.path.join(self.output_dir, "vdl")
            if not os.path.exists(vdl_writer_path):
                os.makedirs(vdl_writer_path)
            return LogWriter(logdir=vdl_writer_path)
        return None

G
gaotingquan 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    def _init_seed(self):
        seed = self.config["Global"].get("seed", False)
        if dist.get_world_size() != 1:
            # if self.config["Global"]["distributed"]:
            # set different seed in different GPU manually in distributed environment
            if not seed:
                logger.warning(
                    "The random seed cannot be None in a distributed environment. Global.seed has been set to 42 by default"
                )
                self.config["Global"]["seed"] = seed = 42
            logger.info(
                f"Set random seed to ({int(seed)} + $PADDLE_TRAINER_ID) for different trainer"
            )
            dist_seed = int(seed) + dist.get_rank()
            paddle.seed(dist_seed)
            np.random.seed(dist_seed)
            random.seed(dist_seed)
        elif seed or seed == 0:
            assert isinstance(seed, int), "The 'seed' must be a integer!"
            paddle.seed(seed)
            np.random.seed(seed)
            random.seed(seed)

    def _init_device(self):
        device = self.config["Global"]["device"]
        assert device in ["cpu", "gpu", "xpu", "npu", "mlu", "ascend"]
        logger.info('train with paddle {} and device {}'.format(
            paddle.__version__, device))
381
        paddle.set_device(device)
G
gaotingquan 已提交
382 383 384 385 386

    def _init_pretrained(self):
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
T
Tingquan Gao 已提交
387
                    [self.model, getattr(self, 'train_loss_func', None)],
G
gaotingquan 已提交
388 389 390
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
T
Tingquan Gao 已提交
391
                    [self.model, getattr(self, 'train_loss_func', None)],
G
gaotingquan 已提交
392 393 394
                    self.config["Global"]["pretrained_model"])

    def _init_amp(self):
395 396 397 398
        self.amp = "AMP" in self.config and self.config["AMP"] is not None
        self.amp_eval = False
        # for amp
        if self.amp:
G
gaotingquan 已提交
399 400 401 402 403 404 405
            AMP_RELATED_FLAGS_SETTING = {'FLAGS_max_inplace_grad_add': 8, }
            if paddle.is_compiled_with_cuda():
                AMP_RELATED_FLAGS_SETTING.update({
                    'FLAGS_cudnn_batchnorm_spatial_persistent': 1
                })
            paddle.set_flags(AMP_RELATED_FLAGS_SETTING)

406 407 408 409 410 411 412 413 414
            self.scale_loss = self.config["AMP"].get("scale_loss", 1.0)
            self.use_dynamic_loss_scaling = self.config["AMP"].get(
                "use_dynamic_loss_scaling", False)
            self.scaler = paddle.amp.GradScaler(
                init_loss_scaling=self.scale_loss,
                use_dynamic_loss_scaling=self.use_dynamic_loss_scaling)

            self.amp_level = self.config['AMP'].get("level", "O1")
            if self.amp_level not in ["O1", "O2"]:
G
gaotingquan 已提交
415 416 417
                msg = "[Parameter Error]: The optimize level of AMP only support 'O1' and 'O2'. The level has been set 'O1'."
                logger.warning(msg)
                self.config['AMP']["level"] = "O1"
418
                self.amp_level = "O1"
G
gaotingquan 已提交
419

420
            self.amp_eval = self.config["AMP"].get("use_fp16_test", False)
G
gaotingquan 已提交
421 422 423
            # TODO(gaotingquan): Paddle not yet support FP32 evaluation when training with AMPO2
            if self.mode == "train" and self.config["Global"].get(
                    "eval_during_train",
424
                    True) and self.amp_level == "O2" and self.amp_eval == False:
G
gaotingquan 已提交
425 426 427
                msg = "PaddlePaddle only support FP16 evaluation when training with AMP O2 now. "
                logger.warning(msg)
                self.config["AMP"]["use_fp16_test"] = True
428 429
                self.amp_eval = True

430
            # TODO(gaotingquan): to compatible with different versions of Paddle
431 432
            paddle_version = paddle.__version__[:3]
            # paddle version < 2.3.0 and not develop
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
            if paddle_version not in ["2.3", "0.0"]:
                if self.mode == "train":
                    self.model, self.optimizer = paddle.amp.decorate(
                        models=self.model,
                        optimizers=self.optimizer,
                        level=self.amp_level,
                        save_dtype='float32')
                elif self.amp_eval:
                    if self.amp_level == "O2":
                        msg = "The PaddlePaddle that installed not support FP16 evaluation in AMP O2. Please use PaddlePaddle version >= 2.3.0. Use FP32 evaluation instead and please notice the Eval Dataset output_fp16 should be 'False'."
                        logger.warning(msg)
                        self.amp_eval = False
                    else:
                        self.model, self.optimizer = paddle.amp.decorate(
                            models=self.model,
                            level=self.amp_level,
                            save_dtype='float32')
            # paddle version >= 2.3.0 or develop
            else:
                if self.mode == "train" or self.amp_eval:
                    self.model = paddle.amp.decorate(
                        models=self.model,
                        level=self.amp_level,
                        save_dtype='float32')
457 458 459 460 461 462 463

            if self.mode == "train" and len(self.train_loss_func.parameters(
            )) > 0:
                self.train_loss_func = paddle.amp.decorate(
                    models=self.train_loss_func,
                    level=self.amp_level,
                    save_dtype='float32')
G
gaotingquan 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

    def _init_dist(self):
        # check the gpu num
        world_size = dist.get_world_size()
        self.config["Global"]["distributed"] = world_size != 1
        # TODO(gaotingquan):
        if self.mode == "train":
            std_gpu_num = 8 if isinstance(
                self.config["Optimizer"],
                dict) and self.config["Optimizer"]["name"] == "AdamW" else 4
            if world_size != std_gpu_num:
                msg = f"The training strategy provided by PaddleClas is based on {std_gpu_num} gpus. But the number of gpu is {world_size} in current training. Please modify the stategy (learning rate, batch size and so on) if use this config to train."
                logger.warning(msg)

        if self.config["Global"]["distributed"]:
            dist.init_parallel_env()
            self.model = paddle.DataParallel(self.model)
T
Tingquan Gao 已提交
481
            if self.mode == 'train' and len(self.train_loss_func.parameters(
G
gaotingquan 已提交
482
            )) > 0:
T
Tingquan Gao 已提交
483 484
                self.train_loss_func = paddle.DataParallel(
                    self.train_loss_func)
G
gaotingquan 已提交
485

D
dongshuilong 已提交
486

W
dbg  
weishengyu 已提交
487
class ExportModel(TheseusLayer):
D
dongshuilong 已提交
488 489 490 491
    """
    ExportModel: add softmax onto the model
    """

C
cuicheng01 已提交
492
    def __init__(self, config, model, use_multilabel):
D
dongshuilong 已提交
493 494 495 496 497 498 499 500 501 502 503 504
        super().__init__()
        self.base_model = model
        # we should choose a final model to export
        if isinstance(self.base_model, DistillationModel):
            self.infer_model_name = config["infer_model_name"]
        else:
            self.infer_model_name = None

        self.infer_output_key = config.get("infer_output_key", None)
        if self.infer_output_key == "features" and isinstance(self.base_model,
                                                              RecModel):
            self.base_model.head = IdentityHead()
C
cuicheng01 已提交
505 506
        if use_multilabel:
            self.out_act = nn.Sigmoid()
D
dongshuilong 已提交
507
        else:
C
cuicheng01 已提交
508 509 510 511
            if config.get("infer_add_softmax", True):
                self.out_act = nn.Softmax(axis=-1)
            else:
                self.out_act = None
D
dongshuilong 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

    def eval(self):
        self.training = False
        for layer in self.sublayers():
            layer.training = False
            layer.eval()

    def forward(self, x):
        x = self.base_model(x)
        if isinstance(x, list):
            x = x[0]
        if self.infer_model_name is not None:
            x = x[self.infer_model_name]
        if self.infer_output_key is not None:
            x = x[self.infer_output_key]
C
cuicheng01 已提交
527
        if self.out_act is not None:
wc晨曦's avatar
wc晨曦 已提交
528 529
            if isinstance(x, dict):
                x = x["logits"]
C
cuicheng01 已提交
530
            x = self.out_act(x)
D
dongshuilong 已提交
531
        return x