engine.py 12.3 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

D
dongshuilong 已提交
17
import os
D
dongshuilong 已提交
18 19 20
import paddle
import paddle.distributed as dist
from visualdl import LogWriter
D
dongshuilong 已提交
21
from paddle import nn
D
dongshuilong 已提交
22 23
import numpy as np
import random
D
dongshuilong 已提交
24

G
gaotingquan 已提交
25
from ..utils.amp import AMPForwardDecorator
D
dongshuilong 已提交
26 27 28
from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.utils.config import print_config
W
dbg  
weishengyu 已提交
29
from ppcls.arch import build_model, RecModel, DistillationModel, TheseusLayer
D
dongshuilong 已提交
30 31 32 33 34
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

from ppcls.data.utils.get_image_list import get_image_list
from ppcls.data.postprocess import build_postprocess
from ppcls.data import create_operators
35
from .train import build_train_func
36
from .evaluation import build_eval_func
D
dongshuilong 已提交
37
from ppcls.engine import evaluation
D
dongshuilong 已提交
38 39 40
from ppcls.arch.gears.identity_head import IdentityHead


D
dongshuilong 已提交
41
class Engine(object):
D
dongshuilong 已提交
42
    def __init__(self, config, mode="train"):
D
dongshuilong 已提交
43
        assert mode in ["train", "eval", "infer", "export"]
D
dongshuilong 已提交
44 45
        self.mode = mode
        self.config = config
G
gaotingquan 已提交
46 47
        self.eval_mode = self.config["Global"].get("eval_mode",
                                                   "classification")
D
dongshuilong 已提交
48

D
dongshuilong 已提交
49
        # init logger
50 51
        log_file = os.path.join(self.config['Global']['output_dir'],
                                self.config["Arch"]["name"], f"{mode}.log")
G
gaotingquan 已提交
52
        init_logger(log_file=log_file)
D
dongshuilong 已提交
53

G
debug  
gaotingquan 已提交
54 55 56
        # set seed
        self._init_seed()

D
dongshuilong 已提交
57
        # set device
58
        self._init_device()
D
dongshuilong 已提交
59 60

        # build model
littletomatodonkey's avatar
littletomatodonkey 已提交
61
        self.model = build_model(self.config, self.mode)
D
dongshuilong 已提交
62

63 64 65 66 67
        # init train_func and eval_func
        self.eval = build_eval_func(
            self.config, mode=self.mode, model=self.model)
        self.train = build_train_func(
            self.config, mode=self.mode, model=self.model, eval_func=self.eval)
68

G
debug  
gaotingquan 已提交
69 70 71 72 73
        # load_pretrain
        self._init_pretrained()

        self._init_amp()

74
        # for distributed
G
gaotingquan 已提交
75
        self._init_dist()
D
dongshuilong 已提交
76

G
gaotingquan 已提交
77
        print_config(self.config)
78

D
dongshuilong 已提交
79 80 81
    @paddle.no_grad()
    def infer(self):
        assert self.mode == "infer" and self.eval_mode == "classification"
G
gaotingquan 已提交
82 83 84 85 86 87

        self.preprocess_func = create_operators(self.config["Infer"][
            "transforms"])
        self.postprocess_func = build_postprocess(self.config["Infer"][
            "PostProcess"])

88 89
        total_trainer = dist.get_world_size()
        local_rank = dist.get_rank()
D
dongshuilong 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        image_list = get_image_list(self.config["Infer"]["infer_imgs"])
        # data split
        image_list = image_list[local_rank::total_trainer]

        batch_size = self.config["Infer"]["batch_size"]
        self.model.eval()
        batch_data = []
        image_file_list = []
        for idx, image_file in enumerate(image_list):
            with open(image_file, 'rb') as f:
                x = f.read()
            for process in self.preprocess_func:
                x = process(x)
            batch_data.append(x)
            image_file_list.append(image_file)
            if len(batch_data) >= batch_size or idx == len(image_list) - 1:
                batch_tensor = paddle.to_tensor(batch_data)
107
                out = self.model(batch_tensor)
G
gaotingquan 已提交
108

D
dongshuilong 已提交
109 110
                if isinstance(out, list):
                    out = out[0]
littletomatodonkey's avatar
littletomatodonkey 已提交
111 112
                if isinstance(out, dict) and "Student" in out:
                    out = out["Student"]
113 114 115
                if isinstance(out, dict) and "logits" in out:
                    out = out["logits"]
                if isinstance(out, dict) and "output" in out:
W
dbg  
weishengyu 已提交
116
                    out = out["output"]
D
dongshuilong 已提交
117 118 119 120 121 122 123
                result = self.postprocess_func(out, image_file_list)
                print(result)
                batch_data.clear()
                image_file_list.clear()

    def export(self):
        assert self.mode == "export"
Z
zhiboniu 已提交
124 125
        use_multilabel = self.config["Global"].get(
            "use_multilabel",
C
cuicheng01 已提交
126
            False) or "ATTRMetric" in self.config["Metric"]["Eval"][0]
C
cuicheng01 已提交
127
        model = ExportModel(self.config["Arch"], self.model, use_multilabel)
128 129 130 131 132 133 134 135 136
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
D
dongshuilong 已提交
137 138

        model.eval()
G
gaotingquan 已提交
139

140
        # for re-parameterization nets
H
HydrogenSulfate 已提交
141
        for layer in self.model.sublayers():
142 143 144
            if hasattr(layer, "re_parameterize") and not getattr(layer,
                                                                 "is_repped"):
                layer.re_parameterize()
G
gaotingquan 已提交
145

D
dongshuilong 已提交
146 147
        save_path = os.path.join(self.config["Global"]["save_inference_dir"],
                                 "inference")
littletomatodonkey's avatar
littletomatodonkey 已提交
148 149 150 151 152 153 154 155 156 157 158 159

        model = paddle.jit.to_static(
            model,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None] + self.config["Global"]["image_shape"],
                    dtype='float32')
            ])
        if hasattr(model.base_model,
                   "quanter") and model.base_model.quanter is not None:
            model.base_model.quanter.save_quantized_model(model,
                                                          save_path + "_int8")
D
dongshuilong 已提交
160 161
        else:
            paddle.jit.save(model, save_path)
G
gaotingquan 已提交
162 163 164
        logger.info(
            f"Export succeeded! The inference model exported has been saved in \"{self.config['Global']['save_inference_dir']}\"."
        )
D
dongshuilong 已提交
165

G
gaotingquan 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    def _init_seed(self):
        seed = self.config["Global"].get("seed", False)
        if dist.get_world_size() != 1:
            # if self.config["Global"]["distributed"]:
            # set different seed in different GPU manually in distributed environment
            if not seed:
                logger.warning(
                    "The random seed cannot be None in a distributed environment. Global.seed has been set to 42 by default"
                )
                self.config["Global"]["seed"] = seed = 42
            logger.info(
                f"Set random seed to ({int(seed)} + $PADDLE_TRAINER_ID) for different trainer"
            )
            dist_seed = int(seed) + dist.get_rank()
            paddle.seed(dist_seed)
            np.random.seed(dist_seed)
            random.seed(dist_seed)
        elif seed or seed == 0:
            assert isinstance(seed, int), "The 'seed' must be a integer!"
            paddle.seed(seed)
            np.random.seed(seed)
            random.seed(seed)

    def _init_device(self):
        device = self.config["Global"]["device"]
        assert device in ["cpu", "gpu", "xpu", "npu", "mlu", "ascend"]
        logger.info('train with paddle {} and device {}'.format(
            paddle.__version__, device))
194
        paddle.set_device(device)
G
gaotingquan 已提交
195 196 197 198 199

    def _init_pretrained(self):
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
G
debug  
gaotingquan 已提交
200
                    [self.model, getattr(self.train, "loss_func", None)],
G
gaotingquan 已提交
201 202 203
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
G
debug  
gaotingquan 已提交
204
                    [self.model, getattr(self.train, "loss_func", None)],
G
gaotingquan 已提交
205 206 207
                    self.config["Global"]["pretrained_model"])

    def _init_amp(self):
208 209 210 211 212 213 214 215
        if "AMP" in self.config and self.config["AMP"] is not None:
            paddle_version = paddle.__version__[:3]
            # paddle version < 2.3.0 and not develop
            if paddle_version not in ["2.3", "2.4", "0.0"]:
                msg = "When using AMP, PaddleClas release/2.6 and later version only support PaddlePaddle version >= 2.3.0."
                logger.error(msg)
                raise Exception(msg)

G
gaotingquan 已提交
216 217 218 219 220 221 222
            AMP_RELATED_FLAGS_SETTING = {'FLAGS_max_inplace_grad_add': 8, }
            if paddle.is_compiled_with_cuda():
                AMP_RELATED_FLAGS_SETTING.update({
                    'FLAGS_cudnn_batchnorm_spatial_persistent': 1
                })
            paddle.set_flags(AMP_RELATED_FLAGS_SETTING)

223 224
            amp_level = self.config['AMP'].get("level", "O1").upper()
            if amp_level not in ["O1", "O2"]:
G
gaotingquan 已提交
225 226 227
                msg = "[Parameter Error]: The optimize level of AMP only support 'O1' and 'O2'. The level has been set 'O1'."
                logger.warning(msg)
                self.config['AMP']["level"] = "O1"
228
                amp_level = "O1"
G
gaotingquan 已提交
229

230
            amp_eval = self.config["AMP"].get("use_fp16_test", False)
G
gaotingquan 已提交
231 232 233
            # TODO(gaotingquan): Paddle not yet support FP32 evaluation when training with AMPO2
            if self.mode == "train" and self.config["Global"].get(
                    "eval_during_train",
234
                    True) and amp_level == "O2" and amp_eval == False:
G
gaotingquan 已提交
235 236 237
                msg = "PaddlePaddle only support FP16 evaluation when training with AMP O2 now. "
                logger.warning(msg)
                self.config["AMP"]["use_fp16_test"] = True
238
                amp_eval = True
G
gaotingquan 已提交
239

240 241 242
            if self.mode == "train" or amp_eval:
                AMPForwardDecorator.amp_level = amp_level
                AMPForwardDecorator.amp_eval = amp_eval
G
gaotingquan 已提交
243

G
gaotingquan 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    def _init_dist(self):
        # check the gpu num
        world_size = dist.get_world_size()
        self.config["Global"]["distributed"] = world_size != 1
        # TODO(gaotingquan):
        if self.mode == "train":
            std_gpu_num = 8 if isinstance(
                self.config["Optimizer"],
                dict) and self.config["Optimizer"]["name"] == "AdamW" else 4
            if world_size != std_gpu_num:
                msg = f"The training strategy provided by PaddleClas is based on {std_gpu_num} gpus. But the number of gpu is {world_size} in current training. Please modify the stategy (learning rate, batch size and so on) if use this config to train."
                logger.warning(msg)

        if self.config["Global"]["distributed"]:
            dist.init_parallel_env()
            self.model = paddle.DataParallel(self.model)
G
debug  
gaotingquan 已提交
260
            if self.mode == 'train' and len(self.train.loss_func.parameters(
G
gaotingquan 已提交
261
            )) > 0:
G
debug  
gaotingquan 已提交
262 263
                self.train.loss_func = paddle.DataParallel(
                    self.train.loss_func)
G
gaotingquan 已提交
264

D
dongshuilong 已提交
265

W
dbg  
weishengyu 已提交
266
class ExportModel(TheseusLayer):
D
dongshuilong 已提交
267 268 269 270
    """
    ExportModel: add softmax onto the model
    """

C
cuicheng01 已提交
271
    def __init__(self, config, model, use_multilabel):
D
dongshuilong 已提交
272 273 274 275 276 277 278 279 280 281 282 283
        super().__init__()
        self.base_model = model
        # we should choose a final model to export
        if isinstance(self.base_model, DistillationModel):
            self.infer_model_name = config["infer_model_name"]
        else:
            self.infer_model_name = None

        self.infer_output_key = config.get("infer_output_key", None)
        if self.infer_output_key == "features" and isinstance(self.base_model,
                                                              RecModel):
            self.base_model.head = IdentityHead()
C
cuicheng01 已提交
284 285
        if use_multilabel:
            self.out_act = nn.Sigmoid()
D
dongshuilong 已提交
286
        else:
C
cuicheng01 已提交
287 288 289 290
            if config.get("infer_add_softmax", True):
                self.out_act = nn.Softmax(axis=-1)
            else:
                self.out_act = None
D
dongshuilong 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

    def eval(self):
        self.training = False
        for layer in self.sublayers():
            layer.training = False
            layer.eval()

    def forward(self, x):
        x = self.base_model(x)
        if isinstance(x, list):
            x = x[0]
        if self.infer_model_name is not None:
            x = x[self.infer_model_name]
        if self.infer_output_key is not None:
            x = x[self.infer_output_key]
C
cuicheng01 已提交
306
        if self.out_act is not None:
wc晨曦's avatar
wc晨曦 已提交
307 308
            if isinstance(x, dict):
                x = x["logits"]
C
cuicheng01 已提交
309
            x = self.out_act(x)
D
dongshuilong 已提交
310
        return x