engine.py 20.0 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

D
dongshuilong 已提交
17
import os
D
dongshuilong 已提交
18 19 20
import paddle
import paddle.distributed as dist
from visualdl import LogWriter
D
dongshuilong 已提交
21
from paddle import nn
D
dongshuilong 已提交
22 23
import numpy as np
import random
D
dongshuilong 已提交
24

25
from ppcls.utils.misc import AverageMeter
D
dongshuilong 已提交
26 27 28
from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.utils.config import print_config
29
from ppcls.data import build_dataloader
W
dbg  
weishengyu 已提交
30
from ppcls.arch import build_model, RecModel, DistillationModel, TheseusLayer
31 32 33 34
from ppcls.loss import build_loss
from ppcls.metric import build_metrics
from ppcls.optimizer import build_optimizer
from ppcls.utils.ema import ExponentialMovingAverage
D
dongshuilong 已提交
35
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
36 37
from ppcls.utils.save_load import init_model
from ppcls.utils.model_saver import ModelSaver
D
dongshuilong 已提交
38 39 40 41

from ppcls.data.utils.get_image_list import get_image_list
from ppcls.data.postprocess import build_postprocess
from ppcls.data import create_operators
42
from .train import build_train_epoch_func
43
from .evaluation import build_eval_func
44
from ppcls.engine.train.utils import type_name
D
dongshuilong 已提交
45
from ppcls.engine import evaluation
D
dongshuilong 已提交
46 47 48
from ppcls.arch.gears.identity_head import IdentityHead


D
dongshuilong 已提交
49
class Engine(object):
D
dongshuilong 已提交
50
    def __init__(self, config, mode="train"):
D
dongshuilong 已提交
51
        assert mode in ["train", "eval", "infer", "export"]
D
dongshuilong 已提交
52 53
        self.mode = mode
        self.config = config
D
dongshuilong 已提交
54

T
Tingquan Gao 已提交
55 56 57
        # set seed
        self._init_seed()

D
dongshuilong 已提交
58
        # init logger
59 60 61
        self.output_dir = self.config['Global']['output_dir']
        log_file = os.path.join(self.output_dir, self.config["Arch"]["name"],
                                f"{mode}.log")
G
gaotingquan 已提交
62
        init_logger(log_file=log_file)
D
dongshuilong 已提交
63

64 65 66 67 68 69 70
        # for visualdl
        self.vdl_writer = self._init_vdl()

        # init train_func and eval_func
        self.train_epoch_func = build_train_epoch_func(self.config)
        self.eval_func = build_eval_func(self.config)

D
dongshuilong 已提交
71
        # set device
72
        self._init_device()
D
dongshuilong 已提交
73

74 75 76 77 78 79 80 81 82 83 84 85 86 87
        # gradient accumulation
        self.update_freq = self.config["Global"].get("update_freq", 1)

        # build dataloader
        self.use_dali = self.config["Global"].get("use_dali", False)
        self.dataloader_dict = build_dataloader(self.config, mode)

        # build loss
        self.train_loss_func, self.unlabel_train_loss_func, self.eval_loss_func = build_loss(
            self.config, self.mode)

        # build metric
        self.train_metric_func, self.eval_metric_func = build_metrics(self)

D
dongshuilong 已提交
88
        # build model
littletomatodonkey's avatar
littletomatodonkey 已提交
89
        self.model = build_model(self.config, self.mode)
D
dongshuilong 已提交
90

T
Tingquan Gao 已提交
91 92 93
        # load_pretrain
        self._init_pretrained()

94 95 96 97 98
        # build optimizer
        self.optimizer, self.lr_sch = build_optimizer(self)

        # AMP training and evaluating
        self._init_amp()
99 100

        # for distributed
G
gaotingquan 已提交
101
        self._init_dist()
D
dongshuilong 已提交
102

T
Tingquan Gao 已提交
103
        print_config(config)
104

105 106 107 108
    def train(self):
        assert self.mode == "train"
        print_batch_step = self.config['Global']['print_batch_step']
        save_interval = self.config["Global"]["save_interval"]
109 110
        start_eval_epoch = self.config["Global"].get("start_eval_epoch", 0) - 1
        epochs = self.config["Global"]["epochs"]
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

        best_metric = {
            "metric": -1.0,
            "epoch": 0,
        }

        # key:
        # val: metrics list word
        self.output_info = dict()
        self.time_info = {
            "batch_cost": AverageMeter(
                "batch_cost", '.5f', postfix=" s,"),
            "reader_cost": AverageMeter(
                "reader_cost", ".5f", postfix=" s,"),
        }

        # build EMA model
        self.model_ema = self._build_ema_model()
        # TODO: mv best_metric_ema to best_metric dict
        best_metric_ema = 0

132 133 134 135 136 137 138 139
        # build model saver
        model_saver = ModelSaver(
            self,
            net_name="model",
            loss_name="train_loss_func",
            opt_name="optimizer",
            model_ema_name="model_ema")

140 141 142 143
        self._init_checkpoints(best_metric)

        # global iter counter
        self.global_step = 0
144
        for epoch_id in range(best_metric["epoch"] + 1, epochs + 1):
145 146 147 148 149
            # for one epoch train
            self.train_epoch_func(self, epoch_id, print_batch_step)

            metric_msg = ", ".join(
                [self.output_info[key].avg_info for key in self.output_info])
150 151
            logger.info("[Train][Epoch {}/{}][Avg]{}".format(epoch_id, epochs,
                                                             metric_msg))
152 153 154 155 156
            self.output_info.clear()

            acc = 0.0
            if self.config["Global"][
                    "eval_during_train"] and epoch_id % self.config["Global"][
157
                        "eval_interval"] == 0 and epoch_id > start_eval_epoch:
158 159 160 161 162 163 164 165 166 167 168
                acc = self.eval(epoch_id)

                # step lr (by epoch) according to given metric, such as acc
                for i in range(len(self.lr_sch)):
                    if getattr(self.lr_sch[i], "by_epoch", False) and \
                            type_name(self.lr_sch[i]) == "ReduceOnPlateau":
                        self.lr_sch[i].step(acc)

                if acc > best_metric["metric"]:
                    best_metric["metric"] = acc
                    best_metric["epoch"] = epoch_id
169
                    model_saver.save(
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
                        best_metric,
                        prefix="best_model",
                        save_student_model=True)

                logger.info("[Eval][Epoch {}][best metric: {}]".format(
                    epoch_id, best_metric["metric"]))
                logger.scaler(
                    name="eval_acc",
                    value=acc,
                    step=epoch_id,
                    writer=self.vdl_writer)

                self.model.train()

                if self.model_ema:
                    ori_model, self.model = self.model, self.model_ema.module
                    acc_ema = self.eval(epoch_id)
                    self.model = ori_model
                    self.model_ema.module.eval()

                    if acc_ema > best_metric_ema:
                        best_metric_ema = acc_ema
192
                        model_saver.save(
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
                            {
                                "metric": acc_ema,
                                "epoch": epoch_id
                            },
                            prefix="best_model_ema")
                    logger.info("[Eval][Epoch {}][best metric ema: {}]".format(
                        epoch_id, best_metric_ema))
                    logger.scaler(
                        name="eval_acc_ema",
                        value=acc_ema,
                        step=epoch_id,
                        writer=self.vdl_writer)

            # save model
            if save_interval > 0 and epoch_id % save_interval == 0:
208
                model_saver.save(
209 210 211 212 213 214 215
                    {
                        "metric": acc,
                        "epoch": epoch_id
                    },
                    prefix=f"epoch_{epoch_id}")

            # save the latest model
216
            model_saver.save(
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
                {
                    "metric": acc,
                    "epoch": epoch_id
                }, prefix="latest")

        if self.vdl_writer is not None:
            self.vdl_writer.close()

    @paddle.no_grad()
    def eval(self, epoch_id=0):
        assert self.mode in ["train", "eval"]
        self.model.eval()
        eval_result = self.eval_func(self, epoch_id)
        self.model.train()
        return eval_result

D
dongshuilong 已提交
233 234 235
    @paddle.no_grad()
    def infer(self):
        assert self.mode == "infer" and self.eval_mode == "classification"
G
gaotingquan 已提交
236 237 238 239 240 241

        self.preprocess_func = create_operators(self.config["Infer"][
            "transforms"])
        self.postprocess_func = build_postprocess(self.config["Infer"][
            "PostProcess"])

242 243
        total_trainer = dist.get_world_size()
        local_rank = dist.get_rank()
D
dongshuilong 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        image_list = get_image_list(self.config["Infer"]["infer_imgs"])
        # data split
        image_list = image_list[local_rank::total_trainer]

        batch_size = self.config["Infer"]["batch_size"]
        self.model.eval()
        batch_data = []
        image_file_list = []
        for idx, image_file in enumerate(image_list):
            with open(image_file, 'rb') as f:
                x = f.read()
            for process in self.preprocess_func:
                x = process(x)
            batch_data.append(x)
            image_file_list.append(image_file)
            if len(batch_data) >= batch_size or idx == len(image_list) - 1:
                batch_tensor = paddle.to_tensor(batch_data)
261 262 263 264 265 266 267 268 269 270

                if self.amp and self.amp_eval:
                    with paddle.amp.auto_cast(
                            custom_black_list={
                                "flatten_contiguous_range", "greater_than"
                            },
                            level=self.amp_level):
                        out = self.model(batch_tensor)
                else:
                    out = self.model(batch_tensor)
G
gaotingquan 已提交
271

D
dongshuilong 已提交
272 273
                if isinstance(out, list):
                    out = out[0]
littletomatodonkey's avatar
littletomatodonkey 已提交
274 275
                if isinstance(out, dict) and "Student" in out:
                    out = out["Student"]
276 277 278
                if isinstance(out, dict) and "logits" in out:
                    out = out["logits"]
                if isinstance(out, dict) and "output" in out:
W
dbg  
weishengyu 已提交
279
                    out = out["output"]
D
dongshuilong 已提交
280 281 282 283 284 285 286
                result = self.postprocess_func(out, image_file_list)
                print(result)
                batch_data.clear()
                image_file_list.clear()

    def export(self):
        assert self.mode == "export"
Z
zhiboniu 已提交
287 288
        use_multilabel = self.config["Global"].get(
            "use_multilabel",
C
cuicheng01 已提交
289
            False) or "ATTRMetric" in self.config["Metric"]["Eval"][0]
C
cuicheng01 已提交
290
        model = ExportModel(self.config["Arch"], self.model, use_multilabel)
291 292 293 294 295 296 297 298 299
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
D
dongshuilong 已提交
300 301

        model.eval()
G
gaotingquan 已提交
302

303
        # for re-parameterization nets
H
HydrogenSulfate 已提交
304
        for layer in self.model.sublayers():
305 306 307
            if hasattr(layer, "re_parameterize") and not getattr(layer,
                                                                 "is_repped"):
                layer.re_parameterize()
G
gaotingquan 已提交
308

D
dongshuilong 已提交
309 310
        save_path = os.path.join(self.config["Global"]["save_inference_dir"],
                                 "inference")
littletomatodonkey's avatar
littletomatodonkey 已提交
311 312 313 314 315 316 317 318 319 320 321 322

        model = paddle.jit.to_static(
            model,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None] + self.config["Global"]["image_shape"],
                    dtype='float32')
            ])
        if hasattr(model.base_model,
                   "quanter") and model.base_model.quanter is not None:
            model.base_model.quanter.save_quantized_model(model,
                                                          save_path + "_int8")
D
dongshuilong 已提交
323 324
        else:
            paddle.jit.save(model, save_path)
G
gaotingquan 已提交
325 326 327
        logger.info(
            f"Export succeeded! The inference model exported has been saved in \"{self.config['Global']['save_inference_dir']}\"."
        )
D
dongshuilong 已提交
328

329 330 331 332 333 334 335 336 337
    def _init_vdl(self):
        if self.config['Global'][
                'use_visualdl'] and mode == "train" and dist.get_rank() == 0:
            vdl_writer_path = os.path.join(self.output_dir, "vdl")
            if not os.path.exists(vdl_writer_path):
                os.makedirs(vdl_writer_path)
            return LogWriter(logdir=vdl_writer_path)
        return None

G
gaotingquan 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    def _init_seed(self):
        seed = self.config["Global"].get("seed", False)
        if dist.get_world_size() != 1:
            # if self.config["Global"]["distributed"]:
            # set different seed in different GPU manually in distributed environment
            if not seed:
                logger.warning(
                    "The random seed cannot be None in a distributed environment. Global.seed has been set to 42 by default"
                )
                self.config["Global"]["seed"] = seed = 42
            logger.info(
                f"Set random seed to ({int(seed)} + $PADDLE_TRAINER_ID) for different trainer"
            )
            dist_seed = int(seed) + dist.get_rank()
            paddle.seed(dist_seed)
            np.random.seed(dist_seed)
            random.seed(dist_seed)
        elif seed or seed == 0:
            assert isinstance(seed, int), "The 'seed' must be a integer!"
            paddle.seed(seed)
            np.random.seed(seed)
            random.seed(seed)

    def _init_device(self):
        device = self.config["Global"]["device"]
        assert device in ["cpu", "gpu", "xpu", "npu", "mlu", "ascend"]
        logger.info('train with paddle {} and device {}'.format(
            paddle.__version__, device))
366
        paddle.set_device(device)
G
gaotingquan 已提交
367 368 369 370 371

    def _init_pretrained(self):
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
T
Tingquan Gao 已提交
372
                    [self.model, getattr(self, 'train_loss_func', None)],
G
gaotingquan 已提交
373 374 375
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
T
Tingquan Gao 已提交
376
                    [self.model, getattr(self, 'train_loss_func', None)],
G
gaotingquan 已提交
377 378 379
                    self.config["Global"]["pretrained_model"])

    def _init_amp(self):
380 381 382 383
        self.amp = "AMP" in self.config and self.config["AMP"] is not None
        self.amp_eval = False
        # for amp
        if self.amp:
G
gaotingquan 已提交
384 385 386 387 388 389 390
            AMP_RELATED_FLAGS_SETTING = {'FLAGS_max_inplace_grad_add': 8, }
            if paddle.is_compiled_with_cuda():
                AMP_RELATED_FLAGS_SETTING.update({
                    'FLAGS_cudnn_batchnorm_spatial_persistent': 1
                })
            paddle.set_flags(AMP_RELATED_FLAGS_SETTING)

391 392 393 394 395 396 397 398 399
            self.scale_loss = self.config["AMP"].get("scale_loss", 1.0)
            self.use_dynamic_loss_scaling = self.config["AMP"].get(
                "use_dynamic_loss_scaling", False)
            self.scaler = paddle.amp.GradScaler(
                init_loss_scaling=self.scale_loss,
                use_dynamic_loss_scaling=self.use_dynamic_loss_scaling)

            self.amp_level = self.config['AMP'].get("level", "O1")
            if self.amp_level not in ["O1", "O2"]:
G
gaotingquan 已提交
400 401 402
                msg = "[Parameter Error]: The optimize level of AMP only support 'O1' and 'O2'. The level has been set 'O1'."
                logger.warning(msg)
                self.config['AMP']["level"] = "O1"
403
                self.amp_level = "O1"
G
gaotingquan 已提交
404

405
            self.amp_eval = self.config["AMP"].get("use_fp16_test", False)
G
gaotingquan 已提交
406 407 408
            # TODO(gaotingquan): Paddle not yet support FP32 evaluation when training with AMPO2
            if self.mode == "train" and self.config["Global"].get(
                    "eval_during_train",
409
                    True) and self.amp_level == "O2" and self.amp_eval == False:
G
gaotingquan 已提交
410 411 412
                msg = "PaddlePaddle only support FP16 evaluation when training with AMP O2 now. "
                logger.warning(msg)
                self.config["AMP"]["use_fp16_test"] = True
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
                self.amp_eval = True

            paddle_version = paddle.__version__[:3]
            # paddle version < 2.3.0 and not develop
            if paddle_version not in ["2.3", "2.4", "0.0"]:
                msg = "When using AMP, PaddleClas release/2.6 and later version only support PaddlePaddle version >= 2.3.0."
                logger.error(msg)
                raise Exception(msg)

            if self.mode == "train" or self.amp_eval:
                self.model = paddle.amp.decorate(
                    models=self.model,
                    level=self.amp_level,
                    save_dtype='float32')

            if self.mode == "train" and len(self.train_loss_func.parameters(
            )) > 0:
                self.train_loss_func = paddle.amp.decorate(
                    models=self.train_loss_func,
                    level=self.amp_level,
                    save_dtype='float32')
G
gaotingquan 已提交
434

435
            self.amp_level = engine.config["AMP"].get("level", "O1").upper()
G
gaotingquan 已提交
436

G
gaotingquan 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    def _init_dist(self):
        # check the gpu num
        world_size = dist.get_world_size()
        self.config["Global"]["distributed"] = world_size != 1
        # TODO(gaotingquan):
        if self.mode == "train":
            std_gpu_num = 8 if isinstance(
                self.config["Optimizer"],
                dict) and self.config["Optimizer"]["name"] == "AdamW" else 4
            if world_size != std_gpu_num:
                msg = f"The training strategy provided by PaddleClas is based on {std_gpu_num} gpus. But the number of gpu is {world_size} in current training. Please modify the stategy (learning rate, batch size and so on) if use this config to train."
                logger.warning(msg)

        if self.config["Global"]["distributed"]:
            dist.init_parallel_env()
            self.model = paddle.DataParallel(self.model)
T
Tingquan Gao 已提交
453
            if self.mode == 'train' and len(self.train_loss_func.parameters(
G
gaotingquan 已提交
454
            )) > 0:
T
Tingquan Gao 已提交
455 456
                self.train_loss_func = paddle.DataParallel(
                    self.train_loss_func)
G
gaotingquan 已提交
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    def _build_ema_model(self):
        if "EMA" in self.config and self.mode == "train":
            model_ema = ExponentialMovingAverage(
                self.model, self.config['EMA'].get("decay", 0.9999))
            return model_ema
        else:
            return None

    def _init_checkpoints(self, best_metric):
        if self.config["Global"].get("checkpoints", None) is not None:
            metric_info = init_model(self.config.Global, self.model,
                                     self.optimizer, self.train_loss_func,
                                     self.model_ema)
            if metric_info is not None:
                best_metric.update(metric_info)
473
        return best_metric
474

D
dongshuilong 已提交
475

W
dbg  
weishengyu 已提交
476
class ExportModel(TheseusLayer):
D
dongshuilong 已提交
477 478 479 480
    """
    ExportModel: add softmax onto the model
    """

C
cuicheng01 已提交
481
    def __init__(self, config, model, use_multilabel):
D
dongshuilong 已提交
482 483 484 485 486 487 488 489 490 491 492 493
        super().__init__()
        self.base_model = model
        # we should choose a final model to export
        if isinstance(self.base_model, DistillationModel):
            self.infer_model_name = config["infer_model_name"]
        else:
            self.infer_model_name = None

        self.infer_output_key = config.get("infer_output_key", None)
        if self.infer_output_key == "features" and isinstance(self.base_model,
                                                              RecModel):
            self.base_model.head = IdentityHead()
C
cuicheng01 已提交
494 495
        if use_multilabel:
            self.out_act = nn.Sigmoid()
D
dongshuilong 已提交
496
        else:
C
cuicheng01 已提交
497 498 499 500
            if config.get("infer_add_softmax", True):
                self.out_act = nn.Softmax(axis=-1)
            else:
                self.out_act = None
D
dongshuilong 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

    def eval(self):
        self.training = False
        for layer in self.sublayers():
            layer.training = False
            layer.eval()

    def forward(self, x):
        x = self.base_model(x)
        if isinstance(x, list):
            x = x[0]
        if self.infer_model_name is not None:
            x = x[self.infer_model_name]
        if self.infer_output_key is not None:
            x = x[self.infer_output_key]
C
cuicheng01 已提交
516
        if self.out_act is not None:
wc晨曦's avatar
wc晨曦 已提交
517 518
            if isinstance(x, dict):
                x = x["logits"]
C
cuicheng01 已提交
519
            x = self.out_act(x)
D
dongshuilong 已提交
520
        return x