engine.py 22.2 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

D
dongshuilong 已提交
17
import os
D
dongshuilong 已提交
18 19 20
import paddle
import paddle.distributed as dist
from visualdl import LogWriter
D
dongshuilong 已提交
21
from paddle import nn
D
dongshuilong 已提交
22 23
import numpy as np
import random
D
dongshuilong 已提交
24 25 26 27 28 29

from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.utils.config import print_config
from ppcls.data import build_dataloader
W
dbg  
weishengyu 已提交
30
from ppcls.arch import build_model, RecModel, DistillationModel, TheseusLayer
D
dongshuilong 已提交
31 32 33
from ppcls.loss import build_loss
from ppcls.metric import build_metrics
from ppcls.optimizer import build_optimizer
F
flytocc 已提交
34
from ppcls.utils.ema import ExponentialMovingAverage
D
dongshuilong 已提交
35 36 37 38 39 40 41
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
from ppcls.utils.save_load import init_model
from ppcls.utils import save_load

from ppcls.data.utils.get_image_list import get_image_list
from ppcls.data.postprocess import build_postprocess
from ppcls.data import create_operators
D
dongshuilong 已提交
42
from ppcls.engine import train as train_method
43
from ppcls.engine.train.utils import type_name
D
dongshuilong 已提交
44
from ppcls.engine import evaluation
D
dongshuilong 已提交
45 46 47
from ppcls.arch.gears.identity_head import IdentityHead


D
dongshuilong 已提交
48
class Engine(object):
D
dongshuilong 已提交
49
    def __init__(self, config, mode="train"):
D
dongshuilong 已提交
50
        assert mode in ["train", "eval", "infer", "export"]
D
dongshuilong 已提交
51 52
        self.mode = mode
        self.config = config
D
dongshuilong 已提交
53

D
dongshuilong 已提交
54
        # set seed
G
gaotingquan 已提交
55
        self._init_seed()
D
dongshuilong 已提交
56

D
dongshuilong 已提交
57
        # init logger
G
gaotingquan 已提交
58
        init_logger(self.config, mode=mode)
D
dongshuilong 已提交
59

G
gaotingquan 已提交
60 61 62
        # for visualdl
        self.vdl_writer = self._init_vdl()

D
dongshuilong 已提交
63
        # init train_func and eval_func
G
gaotingquan 已提交
64
        self.train_mode = self.config["Global"].get("train_mode", None)
D
dongshuilong 已提交
65 66 67 68 69
        if self.train_mode is None:
            self.train_epoch_func = train_method.train_epoch
        else:
            self.train_epoch_func = getattr(train_method,
                                            "train_epoch_" + self.train_mode)
D
dongshuilong 已提交
70

G
gaotingquan 已提交
71 72 73 74 75 76
        self.eval_mode = self.config["Global"].get("eval_mode",
                                                   "classification")
        assert self.eval_mode in [
            "classification", "retrieval", "adaface"
        ], logger.error("Invalid eval mode: {}".format(self.eval_mode))
        self.eval_func = getattr(evaluation, self.eval_mode + "_eval")
D
dongshuilong 已提交
77 78

        # set device
G
gaotingquan 已提交
79
        self.device = self._init_device()
D
dongshuilong 已提交
80

81 82 83
        # gradient accumulation
        self.update_freq = self.config["Global"].get("update_freq", 1)

D
dongshuilong 已提交
84
        # build dataloader
G
gaotingquan 已提交
85 86 87 88 89 90 91
        self.dataloader_dict = build_dataloader(self)
        self.train_dataloader, self.unlabel_train_dataloader, self.eval_dataloader = self.dataloader_dict[
            "Train"], self.dataloader_dict[
                "UnLabelTrain"], self.dataloader_dict["Eval"]
        self.gallery_query_dataloader, self.gallery_dataloader, self.query_dataloader = self.dataloader_dict[
            "GalleryQuery"], self.dataloader_dict[
                "Gallery"], self.dataloader_dict["Query"]
D
dongshuilong 已提交
92 93

        # build loss
G
gaotingquan 已提交
94 95
        self.train_loss_func, self.unlabel_train_loss_func, self.eval_loss_func = build_loss(
            self.config, self.mode)
D
dongshuilong 已提交
96 97

        # build metric
G
gaotingquan 已提交
98
        self.train_metric_func, self.eval_metric_func = build_metrics(self)
D
dongshuilong 已提交
99 100

        # build model
littletomatodonkey's avatar
littletomatodonkey 已提交
101
        self.model = build_model(self.config, self.mode)
D
dongshuilong 已提交
102

D
dongshuilong 已提交
103
        # load_pretrain
G
gaotingquan 已提交
104
        self._init_pretrained()
D
dongshuilong 已提交
105 106

        # build optimizer
G
gaotingquan 已提交
107 108 109
        self.optimizer, self.lr_sch = build_optimizer(
            self.config, self.train_dataloader,
            [self.model, self.train_loss_func])
110

111
        # AMP training and evaluating
G
gaotingquan 已提交
112
        self._init_amp()
113 114

        # for distributed
G
gaotingquan 已提交
115
        self._init_dist()
D
dongshuilong 已提交
116

117 118
        print_config(config)

D
dongshuilong 已提交
119 120 121 122 123
    def train(self):
        assert self.mode == "train"
        print_batch_step = self.config['Global']['print_batch_step']
        save_interval = self.config["Global"]["save_interval"]
        best_metric = {
C
cuicheng01 已提交
124
            "metric": -1.0,
D
dongshuilong 已提交
125 126
            "epoch": 0,
        }
G
gaotingquan 已提交
127 128 129

        # build EMA model
        self.ema = "EMA" in self.config and self.mode == "train"
F
flytocc 已提交
130
        if self.ema:
G
gaotingquan 已提交
131 132
            self.model_ema = ExponentialMovingAverage(
                self.model, self.config['EMA'].get("decay", 0.9999))
F
flytocc 已提交
133 134
            best_metric_ema = 0.0
            ema_module = self.model_ema.module
G
gaotingquan 已提交
135 136 137
        else:
            ema_module = None

D
dongshuilong 已提交
138 139 140 141 142 143 144 145 146 147 148 149
        # key:
        # val: metrics list word
        self.output_info = dict()
        self.time_info = {
            "batch_cost": AverageMeter(
                "batch_cost", '.5f', postfix=" s,"),
            "reader_cost": AverageMeter(
                "reader_cost", ".5f", postfix=" s,"),
        }
        # global iter counter
        self.global_step = 0

150 151
        if self.config.Global.checkpoints is not None:
            metric_info = init_model(self.config.Global, self.model,
F
flytocc 已提交
152 153
                                     self.optimizer, self.train_loss_func,
                                     ema_module)
D
dongshuilong 已提交
154 155 156 157 158 159 160
            if metric_info is not None:
                best_metric.update(metric_info)

        for epoch_id in range(best_metric["epoch"] + 1,
                              self.config["Global"]["epochs"] + 1):
            acc = 0.0
            # for one epoch train
D
dongshuilong 已提交
161
            self.train_epoch_func(self, epoch_id, print_batch_step)
D
dongshuilong 已提交
162

littletomatodonkey's avatar
littletomatodonkey 已提交
163 164
            metric_msg = ", ".join(
                [self.output_info[key].avg_info for key in self.output_info])
D
dongshuilong 已提交
165 166 167 168 169
            logger.info("[Train][Epoch {}/{}][Avg]{}".format(
                epoch_id, self.config["Global"]["epochs"], metric_msg))
            self.output_info.clear()

            # eval model and save model if possible
littletomatodonkey's avatar
littletomatodonkey 已提交
170 171
            start_eval_epoch = self.config["Global"].get("start_eval_epoch",
                                                         0) - 1
D
dongshuilong 已提交
172 173
            if self.config["Global"][
                    "eval_during_train"] and epoch_id % self.config["Global"][
C
cuicheng01 已提交
174
                        "eval_interval"] == 0 and epoch_id > start_eval_epoch:
D
dongshuilong 已提交
175
                acc = self.eval(epoch_id)
H
add xbm  
HydrogenSulfate 已提交
176 177 178 179

                # step lr (by epoch) according to given metric, such as acc
                for i in range(len(self.lr_sch)):
                    if getattr(self.lr_sch[i], "by_epoch", False) and \
180
                            type_name(self.lr_sch[i]) == "ReduceOnPlateau":
H
add xbm  
HydrogenSulfate 已提交
181 182
                        self.lr_sch[i].step(acc)

D
dongshuilong 已提交
183 184 185 186 187 188 189 190
                if acc > best_metric["metric"]:
                    best_metric["metric"] = acc
                    best_metric["epoch"] = epoch_id
                    save_load.save_model(
                        self.model,
                        self.optimizer,
                        best_metric,
                        self.output_dir,
F
flytocc 已提交
191
                        ema=ema_module,
D
dongshuilong 已提交
192
                        model_name=self.config["Arch"]["name"],
193
                        prefix="best_model",
littletomatodonkey's avatar
littletomatodonkey 已提交
194 195
                        loss=self.train_loss_func,
                        save_student_model=True)
D
dongshuilong 已提交
196 197 198 199 200 201 202 203 204 205
                logger.info("[Eval][Epoch {}][best metric: {}]".format(
                    epoch_id, best_metric["metric"]))
                logger.scaler(
                    name="eval_acc",
                    value=acc,
                    step=epoch_id,
                    writer=self.vdl_writer)

                self.model.train()

F
flytocc 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
                if self.ema:
                    ori_model, self.model = self.model, ema_module
                    acc_ema = self.eval(epoch_id)
                    self.model = ori_model
                    ema_module.eval()

                    if acc_ema > best_metric_ema:
                        best_metric_ema = acc_ema
                        save_load.save_model(
                            self.model,
                            self.optimizer,
                            {"metric": acc_ema,
                             "epoch": epoch_id},
                            self.output_dir,
                            ema=ema_module,
                            model_name=self.config["Arch"]["name"],
                            prefix="best_model_ema",
                            loss=self.train_loss_func)
                    logger.info("[Eval][Epoch {}][best metric ema: {}]".format(
                        epoch_id, best_metric_ema))
                    logger.scaler(
                        name="eval_acc_ema",
                        value=acc_ema,
                        step=epoch_id,
                        writer=self.vdl_writer)

D
dongshuilong 已提交
232
            # save model
D
dongshuilong 已提交
233
            if save_interval > 0 and epoch_id % save_interval == 0:
D
dongshuilong 已提交
234 235 236 237 238
                save_load.save_model(
                    self.model,
                    self.optimizer, {"metric": acc,
                                     "epoch": epoch_id},
                    self.output_dir,
F
flytocc 已提交
239
                    ema=ema_module,
D
dongshuilong 已提交
240
                    model_name=self.config["Arch"]["name"],
241 242
                    prefix="epoch_{}".format(epoch_id),
                    loss=self.train_loss_func)
G
gaotingquan 已提交
243 244 245 246 247 248
            # save the latest model
            save_load.save_model(
                self.model,
                self.optimizer, {"metric": acc,
                                 "epoch": epoch_id},
                self.output_dir,
F
flytocc 已提交
249
                ema=ema_module,
G
gaotingquan 已提交
250
                model_name=self.config["Arch"]["name"],
251 252
                prefix="latest",
                loss=self.train_loss_func)
D
dongshuilong 已提交
253 254 255 256 257 258 259 260

        if self.vdl_writer is not None:
            self.vdl_writer.close()

    @paddle.no_grad()
    def eval(self, epoch_id=0):
        assert self.mode in ["train", "eval"]
        self.model.eval()
D
dongshuilong 已提交
261
        eval_result = self.eval_func(self, epoch_id)
D
dongshuilong 已提交
262 263 264 265 266 267
        self.model.train()
        return eval_result

    @paddle.no_grad()
    def infer(self):
        assert self.mode == "infer" and self.eval_mode == "classification"
G
gaotingquan 已提交
268 269 270 271 272 273

        self.preprocess_func = create_operators(self.config["Infer"][
            "transforms"])
        self.postprocess_func = build_postprocess(self.config["Infer"][
            "PostProcess"])

274 275
        total_trainer = dist.get_world_size()
        local_rank = dist.get_rank()
D
dongshuilong 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
        image_list = get_image_list(self.config["Infer"]["infer_imgs"])
        # data split
        image_list = image_list[local_rank::total_trainer]

        batch_size = self.config["Infer"]["batch_size"]
        self.model.eval()
        batch_data = []
        image_file_list = []
        for idx, image_file in enumerate(image_list):
            with open(image_file, 'rb') as f:
                x = f.read()
            for process in self.preprocess_func:
                x = process(x)
            batch_data.append(x)
            image_file_list.append(image_file)
            if len(batch_data) >= batch_size or idx == len(image_list) - 1:
                batch_tensor = paddle.to_tensor(batch_data)
G
gaotingquan 已提交
293 294 295 296 297 298 299 300 301 302 303

                if self.amp and self.amp_eval:
                    with paddle.amp.auto_cast(
                            custom_black_list={
                                "flatten_contiguous_range", "greater_than"
                            },
                            level=self.amp_level):
                        out = self.model(batch_tensor)
                else:
                    out = self.model(batch_tensor)

D
dongshuilong 已提交
304 305
                if isinstance(out, list):
                    out = out[0]
littletomatodonkey's avatar
littletomatodonkey 已提交
306 307
                if isinstance(out, dict) and "Student" in out:
                    out = out["Student"]
308 309 310
                if isinstance(out, dict) and "logits" in out:
                    out = out["logits"]
                if isinstance(out, dict) and "output" in out:
W
dbg  
weishengyu 已提交
311
                    out = out["output"]
D
dongshuilong 已提交
312 313 314 315 316 317 318
                result = self.postprocess_func(out, image_file_list)
                print(result)
                batch_data.clear()
                image_file_list.clear()

    def export(self):
        assert self.mode == "export"
Z
zhiboniu 已提交
319 320
        use_multilabel = self.config["Global"].get(
            "use_multilabel",
C
cuicheng01 已提交
321
            False) or "ATTRMetric" in self.config["Metric"]["Eval"][0]
C
cuicheng01 已提交
322
        model = ExportModel(self.config["Arch"], self.model, use_multilabel)
323 324 325 326 327 328 329 330 331
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
D
dongshuilong 已提交
332 333

        model.eval()
G
gaotingquan 已提交
334

335
        # for re-parameterization nets
H
HydrogenSulfate 已提交
336
        for layer in self.model.sublayers():
337 338 339
            if hasattr(layer, "re_parameterize") and not getattr(layer,
                                                                 "is_repped"):
                layer.re_parameterize()
G
gaotingquan 已提交
340

D
dongshuilong 已提交
341 342
        save_path = os.path.join(self.config["Global"]["save_inference_dir"],
                                 "inference")
littletomatodonkey's avatar
littletomatodonkey 已提交
343 344 345 346 347 348 349 350 351 352 353 354

        model = paddle.jit.to_static(
            model,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None] + self.config["Global"]["image_shape"],
                    dtype='float32')
            ])
        if hasattr(model.base_model,
                   "quanter") and model.base_model.quanter is not None:
            model.base_model.quanter.save_quantized_model(model,
                                                          save_path + "_int8")
D
dongshuilong 已提交
355 356
        else:
            paddle.jit.save(model, save_path)
G
gaotingquan 已提交
357 358 359
        logger.info(
            f"Export succeeded! The inference model exported has been saved in \"{self.config['Global']['save_inference_dir']}\"."
        )
D
dongshuilong 已提交
360

G
gaotingquan 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    def _init_vdl(self):
        if self.config['Global'][
                'use_visualdl'] and mode == "train" and dist.get_rank() == 0:
            vdl_writer_path = os.path.join(self.output_dir, "vdl")
            if not os.path.exists(vdl_writer_path):
                os.makedirs(vdl_writer_path)
            return LogWriter(logdir=vdl_writer_path)
        return None

    def _init_seed(self):
        seed = self.config["Global"].get("seed", False)
        if dist.get_world_size() != 1:
            # if self.config["Global"]["distributed"]:
            # set different seed in different GPU manually in distributed environment
            if not seed:
                logger.warning(
                    "The random seed cannot be None in a distributed environment. Global.seed has been set to 42 by default"
                )
                self.config["Global"]["seed"] = seed = 42
            logger.info(
                f"Set random seed to ({int(seed)} + $PADDLE_TRAINER_ID) for different trainer"
            )
            dist_seed = int(seed) + dist.get_rank()
            paddle.seed(dist_seed)
            np.random.seed(dist_seed)
            random.seed(dist_seed)
        elif seed or seed == 0:
            assert isinstance(seed, int), "The 'seed' must be a integer!"
            paddle.seed(seed)
            np.random.seed(seed)
            random.seed(seed)

    def _init_device(self):
        device = self.config["Global"]["device"]
        assert device in ["cpu", "gpu", "xpu", "npu", "mlu", "ascend"]
        logger.info('train with paddle {} and device {}'.format(
            paddle.__version__, device))
        return paddle.set_device(device)

    def _init_pretrained(self):
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    [self.model, getattr(self, 'train_loss_func', None)],
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    [self.model, getattr(self, 'train_loss_func', None)],
                    self.config["Global"]["pretrained_model"])

    def _init_amp(self):
        self.amp = "AMP" in self.config and self.config["AMP"] is not None
        self.amp_eval = False
        # for amp
        if self.amp:
            AMP_RELATED_FLAGS_SETTING = {'FLAGS_max_inplace_grad_add': 8, }
            if paddle.is_compiled_with_cuda():
                AMP_RELATED_FLAGS_SETTING.update({
                    'FLAGS_cudnn_batchnorm_spatial_persistent': 1
                })
            paddle.set_flags(AMP_RELATED_FLAGS_SETTING)

            self.scale_loss = self.config["AMP"].get("scale_loss", 1.0)
            self.use_dynamic_loss_scaling = self.config["AMP"].get(
                "use_dynamic_loss_scaling", False)
            self.scaler = paddle.amp.GradScaler(
                init_loss_scaling=self.scale_loss,
                use_dynamic_loss_scaling=self.use_dynamic_loss_scaling)

            self.amp_level = self.config['AMP'].get("level", "O1")
            if self.amp_level not in ["O1", "O2"]:
                msg = "[Parameter Error]: The optimize level of AMP only support 'O1' and 'O2'. The level has been set 'O1'."
                logger.warning(msg)
                self.config['AMP']["level"] = "O1"
                self.amp_level = "O1"

            self.amp_eval = self.config["AMP"].get("use_fp16_test", False)
            # TODO(gaotingquan): Paddle not yet support FP32 evaluation when training with AMPO2
            if self.mode == "train" and self.config["Global"].get(
                    "eval_during_train",
                    True) and self.amp_level == "O2" and self.amp_eval == False:
                msg = "PaddlePaddle only support FP16 evaluation when training with AMP O2 now. "
                logger.warning(msg)
                self.config["AMP"]["use_fp16_test"] = True
                self.amp_eval = True

            # TODO(gaotingquan): to compatible with different versions of Paddle
            paddle_version = paddle.__version__[:3]
            # paddle version < 2.3.0 and not develop
            if paddle_version not in ["2.3", "0.0"]:
                if self.mode == "train":
                    self.model, self.optimizer = paddle.amp.decorate(
                        models=self.model,
                        optimizers=self.optimizer,
                        level=self.amp_level,
                        save_dtype='float32')
                elif self.amp_eval:
                    if self.amp_level == "O2":
                        msg = "The PaddlePaddle that installed not support FP16 evaluation in AMP O2. Please use PaddlePaddle version >= 2.3.0. Use FP32 evaluation instead and please notice the Eval Dataset output_fp16 should be 'False'."
                        logger.warning(msg)
                        self.amp_eval = False
                    else:
                        self.model, self.optimizer = paddle.amp.decorate(
                            models=self.model,
                            level=self.amp_level,
                            save_dtype='float32')
            # paddle version >= 2.3.0 or develop
            else:
                if self.mode == "train" or self.amp_eval:
                    self.model = paddle.amp.decorate(
                        models=self.model,
                        level=self.amp_level,
                        save_dtype='float32')

            if self.mode == "train" and len(self.train_loss_func.parameters(
            )) > 0:
                self.train_loss_func = paddle.amp.decorate(
                    models=self.train_loss_func,
                    level=self.amp_level,
                    save_dtype='float32')

    def _init_dist(self):
        # check the gpu num
        world_size = dist.get_world_size()
        self.config["Global"]["distributed"] = world_size != 1
        # TODO(gaotingquan):
        if self.mode == "train":
            std_gpu_num = 8 if isinstance(
                self.config["Optimizer"],
                dict) and self.config["Optimizer"]["name"] == "AdamW" else 4
            if world_size != std_gpu_num:
                msg = f"The training strategy provided by PaddleClas is based on {std_gpu_num} gpus. But the number of gpu is {world_size} in current training. Please modify the stategy (learning rate, batch size and so on) if use this config to train."
                logger.warning(msg)

        if self.config["Global"]["distributed"]:
            dist.init_parallel_env()
            self.model = paddle.DataParallel(self.model)
            if self.mode == 'train' and len(self.train_loss_func.parameters(
            )) > 0:
                self.train_loss_func = paddle.DataParallel(
                    self.train_loss_func)

D
dongshuilong 已提交
503

W
dbg  
weishengyu 已提交
504
class ExportModel(TheseusLayer):
D
dongshuilong 已提交
505 506 507 508
    """
    ExportModel: add softmax onto the model
    """

C
cuicheng01 已提交
509
    def __init__(self, config, model, use_multilabel):
D
dongshuilong 已提交
510 511 512 513 514 515 516 517 518 519 520 521
        super().__init__()
        self.base_model = model
        # we should choose a final model to export
        if isinstance(self.base_model, DistillationModel):
            self.infer_model_name = config["infer_model_name"]
        else:
            self.infer_model_name = None

        self.infer_output_key = config.get("infer_output_key", None)
        if self.infer_output_key == "features" and isinstance(self.base_model,
                                                              RecModel):
            self.base_model.head = IdentityHead()
C
cuicheng01 已提交
522 523
        if use_multilabel:
            self.out_act = nn.Sigmoid()
D
dongshuilong 已提交
524
        else:
C
cuicheng01 已提交
525 526 527 528
            if config.get("infer_add_softmax", True):
                self.out_act = nn.Softmax(axis=-1)
            else:
                self.out_act = None
D
dongshuilong 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

    def eval(self):
        self.training = False
        for layer in self.sublayers():
            layer.training = False
            layer.eval()

    def forward(self, x):
        x = self.base_model(x)
        if isinstance(x, list):
            x = x[0]
        if self.infer_model_name is not None:
            x = x[self.infer_model_name]
        if self.infer_output_key is not None:
            x = x[self.infer_output_key]
C
cuicheng01 已提交
544
        if self.out_act is not None:
wc晨曦's avatar
wc晨曦 已提交
545 546
            if isinstance(x, dict):
                x = x["logits"]
C
cuicheng01 已提交
547
            x = self.out_act(x)
D
dongshuilong 已提交
548
        return x