engine.py 12.1 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

D
dongshuilong 已提交
17
import os
D
dongshuilong 已提交
18 19 20
import paddle
import paddle.distributed as dist
from visualdl import LogWriter
D
dongshuilong 已提交
21
from paddle import nn
D
dongshuilong 已提交
22 23
import numpy as np
import random
D
dongshuilong 已提交
24 25 26 27

from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.utils.config import print_config
W
dbg  
weishengyu 已提交
28
from ppcls.arch import build_model, RecModel, DistillationModel, TheseusLayer
D
dongshuilong 已提交
29 30 31 32 33
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

from ppcls.data.utils.get_image_list import get_image_list
from ppcls.data.postprocess import build_postprocess
from ppcls.data import create_operators
34
from .train import build_train_func
35
from .evaluation import build_eval_func
D
dongshuilong 已提交
36
from ppcls.engine import evaluation
D
dongshuilong 已提交
37 38 39
from ppcls.arch.gears.identity_head import IdentityHead


D
dongshuilong 已提交
40
class Engine(object):
D
dongshuilong 已提交
41
    def __init__(self, config, mode="train"):
D
dongshuilong 已提交
42
        assert mode in ["train", "eval", "infer", "export"]
D
dongshuilong 已提交
43 44
        self.mode = mode
        self.config = config
D
dongshuilong 已提交
45

T
Tingquan Gao 已提交
46 47 48
        # set seed
        self._init_seed()

D
dongshuilong 已提交
49
        # init logger
50 51
        log_file = os.path.join(self.config['Global']['output_dir'],
                                self.config["Arch"]["name"], f"{mode}.log")
G
gaotingquan 已提交
52
        init_logger(log_file=log_file)
D
dongshuilong 已提交
53 54

        # set device
55
        self._init_device()
D
dongshuilong 已提交
56 57

        # build model
littletomatodonkey's avatar
littletomatodonkey 已提交
58
        self.model = build_model(self.config, self.mode)
D
dongshuilong 已提交
59

T
Tingquan Gao 已提交
60 61 62
        # load_pretrain
        self._init_pretrained()

63 64 65 66 67
        # init train_func and eval_func
        self.eval = build_eval_func(
            self.config, mode=self.mode, model=self.model)
        self.train = build_train_func(
            self.config, mode=self.mode, model=self.model, eval_func=self.eval)
68 69

        # for distributed
G
gaotingquan 已提交
70
        self._init_dist()
D
dongshuilong 已提交
71

T
Tingquan Gao 已提交
72
        print_config(config)
73

D
dongshuilong 已提交
74 75 76
    @paddle.no_grad()
    def infer(self):
        assert self.mode == "infer" and self.eval_mode == "classification"
G
gaotingquan 已提交
77 78 79 80 81 82

        self.preprocess_func = create_operators(self.config["Infer"][
            "transforms"])
        self.postprocess_func = build_postprocess(self.config["Infer"][
            "PostProcess"])

83 84
        total_trainer = dist.get_world_size()
        local_rank = dist.get_rank()
D
dongshuilong 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        image_list = get_image_list(self.config["Infer"]["infer_imgs"])
        # data split
        image_list = image_list[local_rank::total_trainer]

        batch_size = self.config["Infer"]["batch_size"]
        self.model.eval()
        batch_data = []
        image_file_list = []
        for idx, image_file in enumerate(image_list):
            with open(image_file, 'rb') as f:
                x = f.read()
            for process in self.preprocess_func:
                x = process(x)
            batch_data.append(x)
            image_file_list.append(image_file)
            if len(batch_data) >= batch_size or idx == len(image_list) - 1:
                batch_tensor = paddle.to_tensor(batch_data)
102
                out = self.model(batch_tensor)
G
gaotingquan 已提交
103

D
dongshuilong 已提交
104 105
                if isinstance(out, list):
                    out = out[0]
littletomatodonkey's avatar
littletomatodonkey 已提交
106 107
                if isinstance(out, dict) and "Student" in out:
                    out = out["Student"]
108 109 110
                if isinstance(out, dict) and "logits" in out:
                    out = out["logits"]
                if isinstance(out, dict) and "output" in out:
W
dbg  
weishengyu 已提交
111
                    out = out["output"]
D
dongshuilong 已提交
112 113 114 115 116 117 118
                result = self.postprocess_func(out, image_file_list)
                print(result)
                batch_data.clear()
                image_file_list.clear()

    def export(self):
        assert self.mode == "export"
Z
zhiboniu 已提交
119 120
        use_multilabel = self.config["Global"].get(
            "use_multilabel",
C
cuicheng01 已提交
121
            False) or "ATTRMetric" in self.config["Metric"]["Eval"][0]
C
cuicheng01 已提交
122
        model = ExportModel(self.config["Arch"], self.model, use_multilabel)
123 124 125 126 127 128 129 130 131
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
D
dongshuilong 已提交
132 133

        model.eval()
G
gaotingquan 已提交
134

135
        # for re-parameterization nets
H
HydrogenSulfate 已提交
136
        for layer in self.model.sublayers():
137 138 139
            if hasattr(layer, "re_parameterize") and not getattr(layer,
                                                                 "is_repped"):
                layer.re_parameterize()
G
gaotingquan 已提交
140

D
dongshuilong 已提交
141 142
        save_path = os.path.join(self.config["Global"]["save_inference_dir"],
                                 "inference")
littletomatodonkey's avatar
littletomatodonkey 已提交
143 144 145 146 147 148 149 150 151 152 153 154

        model = paddle.jit.to_static(
            model,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None] + self.config["Global"]["image_shape"],
                    dtype='float32')
            ])
        if hasattr(model.base_model,
                   "quanter") and model.base_model.quanter is not None:
            model.base_model.quanter.save_quantized_model(model,
                                                          save_path + "_int8")
D
dongshuilong 已提交
155 156
        else:
            paddle.jit.save(model, save_path)
G
gaotingquan 已提交
157 158 159
        logger.info(
            f"Export succeeded! The inference model exported has been saved in \"{self.config['Global']['save_inference_dir']}\"."
        )
D
dongshuilong 已提交
160

G
gaotingquan 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def _init_seed(self):
        seed = self.config["Global"].get("seed", False)
        if dist.get_world_size() != 1:
            # if self.config["Global"]["distributed"]:
            # set different seed in different GPU manually in distributed environment
            if not seed:
                logger.warning(
                    "The random seed cannot be None in a distributed environment. Global.seed has been set to 42 by default"
                )
                self.config["Global"]["seed"] = seed = 42
            logger.info(
                f"Set random seed to ({int(seed)} + $PADDLE_TRAINER_ID) for different trainer"
            )
            dist_seed = int(seed) + dist.get_rank()
            paddle.seed(dist_seed)
            np.random.seed(dist_seed)
            random.seed(dist_seed)
        elif seed or seed == 0:
            assert isinstance(seed, int), "The 'seed' must be a integer!"
            paddle.seed(seed)
            np.random.seed(seed)
            random.seed(seed)

    def _init_device(self):
        device = self.config["Global"]["device"]
        assert device in ["cpu", "gpu", "xpu", "npu", "mlu", "ascend"]
        logger.info('train with paddle {} and device {}'.format(
            paddle.__version__, device))
189
        paddle.set_device(device)
G
gaotingquan 已提交
190 191 192 193 194

    def _init_pretrained(self):
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
T
Tingquan Gao 已提交
195
                    [self.model, getattr(self, 'train_loss_func', None)],
G
gaotingquan 已提交
196 197 198
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
T
Tingquan Gao 已提交
199
                    [self.model, getattr(self, 'train_loss_func', None)],
G
gaotingquan 已提交
200 201 202
                    self.config["Global"]["pretrained_model"])

    def _init_amp(self):
203 204 205 206 207 208 209 210
        if "AMP" in self.config and self.config["AMP"] is not None:
            paddle_version = paddle.__version__[:3]
            # paddle version < 2.3.0 and not develop
            if paddle_version not in ["2.3", "2.4", "0.0"]:
                msg = "When using AMP, PaddleClas release/2.6 and later version only support PaddlePaddle version >= 2.3.0."
                logger.error(msg)
                raise Exception(msg)

G
gaotingquan 已提交
211 212 213 214 215 216 217
            AMP_RELATED_FLAGS_SETTING = {'FLAGS_max_inplace_grad_add': 8, }
            if paddle.is_compiled_with_cuda():
                AMP_RELATED_FLAGS_SETTING.update({
                    'FLAGS_cudnn_batchnorm_spatial_persistent': 1
                })
            paddle.set_flags(AMP_RELATED_FLAGS_SETTING)

218 219
            amp_level = self.config['AMP'].get("level", "O1").upper()
            if amp_level not in ["O1", "O2"]:
G
gaotingquan 已提交
220 221 222
                msg = "[Parameter Error]: The optimize level of AMP only support 'O1' and 'O2'. The level has been set 'O1'."
                logger.warning(msg)
                self.config['AMP']["level"] = "O1"
223
                amp_level = "O1"
G
gaotingquan 已提交
224

225
            amp_eval = self.config["AMP"].get("use_fp16_test", False)
G
gaotingquan 已提交
226 227 228
            # TODO(gaotingquan): Paddle not yet support FP32 evaluation when training with AMPO2
            if self.mode == "train" and self.config["Global"].get(
                    "eval_during_train",
229
                    True) and amp_level == "O2" and amp_eval == False:
G
gaotingquan 已提交
230 231 232
                msg = "PaddlePaddle only support FP16 evaluation when training with AMP O2 now. "
                logger.warning(msg)
                self.config["AMP"]["use_fp16_test"] = True
233
                amp_eval = True
G
gaotingquan 已提交
234

235 236 237
            if self.mode == "train" or amp_eval:
                AMPForwardDecorator.amp_level = amp_level
                AMPForwardDecorator.amp_eval = amp_eval
G
gaotingquan 已提交
238

G
gaotingquan 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    def _init_dist(self):
        # check the gpu num
        world_size = dist.get_world_size()
        self.config["Global"]["distributed"] = world_size != 1
        # TODO(gaotingquan):
        if self.mode == "train":
            std_gpu_num = 8 if isinstance(
                self.config["Optimizer"],
                dict) and self.config["Optimizer"]["name"] == "AdamW" else 4
            if world_size != std_gpu_num:
                msg = f"The training strategy provided by PaddleClas is based on {std_gpu_num} gpus. But the number of gpu is {world_size} in current training. Please modify the stategy (learning rate, batch size and so on) if use this config to train."
                logger.warning(msg)

        if self.config["Global"]["distributed"]:
            dist.init_parallel_env()
            self.model = paddle.DataParallel(self.model)
T
Tingquan Gao 已提交
255
            if self.mode == 'train' and len(self.train_loss_func.parameters(
G
gaotingquan 已提交
256
            )) > 0:
T
Tingquan Gao 已提交
257 258
                self.train_loss_func = paddle.DataParallel(
                    self.train_loss_func)
G
gaotingquan 已提交
259

D
dongshuilong 已提交
260

W
dbg  
weishengyu 已提交
261
class ExportModel(TheseusLayer):
D
dongshuilong 已提交
262 263 264 265
    """
    ExportModel: add softmax onto the model
    """

C
cuicheng01 已提交
266
    def __init__(self, config, model, use_multilabel):
D
dongshuilong 已提交
267 268 269 270 271 272 273 274 275 276 277 278
        super().__init__()
        self.base_model = model
        # we should choose a final model to export
        if isinstance(self.base_model, DistillationModel):
            self.infer_model_name = config["infer_model_name"]
        else:
            self.infer_model_name = None

        self.infer_output_key = config.get("infer_output_key", None)
        if self.infer_output_key == "features" and isinstance(self.base_model,
                                                              RecModel):
            self.base_model.head = IdentityHead()
C
cuicheng01 已提交
279 280
        if use_multilabel:
            self.out_act = nn.Sigmoid()
D
dongshuilong 已提交
281
        else:
C
cuicheng01 已提交
282 283 284 285
            if config.get("infer_add_softmax", True):
                self.out_act = nn.Softmax(axis=-1)
            else:
                self.out_act = None
D
dongshuilong 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

    def eval(self):
        self.training = False
        for layer in self.sublayers():
            layer.training = False
            layer.eval()

    def forward(self, x):
        x = self.base_model(x)
        if isinstance(x, list):
            x = x[0]
        if self.infer_model_name is not None:
            x = x[self.infer_model_name]
        if self.infer_output_key is not None:
            x = x[self.infer_output_key]
C
cuicheng01 已提交
301
        if self.out_act is not None:
wc晨曦's avatar
wc晨曦 已提交
302 303
            if isinstance(x, dict):
                x = x["logits"]
C
cuicheng01 已提交
304
            x = self.out_act(x)
D
dongshuilong 已提交
305
        return x