dist_embedding.py 26.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

Z
zhaoyingli 已提交
15
from .common import infer_shape
16
from .common import DistributedOperatorImplContainer
17
from .common import DistributedOperatorImpl
18
from .common import register_distributed_operator_impl_container
19
from .common import gradient_synchronization
20
from .common import naive_copy_op_dist_attr_for_program, register_distributed_operator_impl, set_comm_op_dist_attr_for_program
21 22 23
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import compute_compatible_and_update_dim_mapping
24
from ..dist_attribute import OperatorDistributedAttribute
25 26
from paddle.fluid import core, unique_name
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
27
from paddle.distributed.fleet.meta_optimizers.common import OP_ROLE_KEY, OpRole
28
from ..process_group import new_process_group
29
from ..utils import _get_comm_group, _get_idx_in_axis, _get_corresponding_rank, set_var_dist_attr
C
caozhou 已提交
30 31
from ..cost import build_comp_desc_from_dist_op, build_comm_desc_from_dist_op
from ..cost import build_comm_costs_from_descs, build_comp_costs_from_descs, build_dp_costs
32 33
from ..cost import EmbeddingOpCost, EmbeddingGradOpCost
from paddle.distributed.auto_parallel.cost.comm_op_cost import AllreduceSumOpCost, IdentityOpCost
34 35


36
class DistributedEmbedding(DistributedOperatorImplContainer):
37

38 39
    def __init__(self, op_type):
        super(DistributedEmbedding, self).__init__(op_type)
40 41


42 43 44 45
register_distributed_operator_impl_container(
    DistributedEmbedding("lookup_table_v2"))
register_distributed_operator_impl_container(
    DistributedEmbedding("c_embedding"))
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
register_distributed_operator_impl_container(
    DistributedEmbedding("lookup_table"))


def adopt_lookup_table_v1(ctx, main_block, src_op, Ids_var):

    assert len(
        Ids_var.shape
    ) == 3, "input Ids to lookup_table should have 3 dimensions but got [{}] with shape [{}]".format(
        Ids_var.name, Ids_var.shape)
    if not Ids_var.stop_gradient:
        raise NotImplementedError(
            'Requiring the gradient of Ids of lookup_table(v1)dist op is not currently supported. Please open an issue with details on your use case so that we can prioritize adding this (for instance, adversarial training for language model).'
        )

    target_shape = list(Ids_var.shape[:-1])
    intermediate_var_0 = main_block.create_var(
        name=unique_name.generate_with_ignorable_key(".".join(
            ["dist_reshape", 'tmp'])),
        dtype=Ids_var.dtype,
        shape=target_shape,
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
        stop_gradient=True)

    target_shape = [0] + list(Ids_var.shape[:-1])
    xshape_var = main_block.create_var(
        name=unique_name.generate_with_ignorable_key(".".join(
            ["dist_Xshape", 'tmp'])),
        dtype=Ids_var.dtype,
        shape=target_shape,
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
        stop_gradient=True)

    # TODO use inplace reshape for memory saving
    reshape_op = main_block.append_op(type='reshape2',
                                      inputs={'X': [Ids_var]},
                                      outputs={
                                          'Out': [intermediate_var_0],
                                          'XShape': [xshape_var]
                                      },
                                      attrs={
                                          "shape": [0, -1],
                                      })

    # set dist attr
    op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
    Ids_var_dist_attr = op_dist_attr.get_input_dist_attr(Ids_var.name)
    assert Ids_var_dist_attr is not None
    intermediate_var_0_dist_attr = set_var_dist_attr(
        ctx, intermediate_var_0, Ids_var_dist_attr.dims_mapping,
        Ids_var_dist_attr.process_mesh)
    set_var_dist_attr(ctx, xshape_var,
                      [-1] + list(Ids_var_dist_attr.dims_mapping),
                      Ids_var_dist_attr.process_mesh)
    op_dist_attr.del_input_dist_attr(Ids_var.name)
    op_dist_attr.set_input_dist_attr(intermediate_var_0.name,
                                     intermediate_var_0_dist_attr)

    new_op_dist_attr = OperatorDistributedAttribute()
    new_op_dist_attr.process_mesh = Ids_var_dist_attr.process_mesh
    new_op_dist_attr.impl_type = "default"
    new_op_dist_attr.impl_idx = 0
    new_op_dist_attr.set_input_dims_mapping(Ids_var.name,
                                            Ids_var_dist_attr.dims_mapping)
    new_op_dist_attr.set_output_dims_mapping(intermediate_var_0.name,
                                             Ids_var_dist_attr.dims_mapping)
    new_op_dist_attr.set_output_dims_mapping(
        xshape_var.name, [-1] + list(Ids_var_dist_attr.dims_mapping))
    ctx.set_op_dist_attr_for_program(reshape_op, new_op_dist_attr)

    return intermediate_var_0
119 120 121 122


# RowParallel
class DistributedEmbeddingImpl(DistributedOperatorImpl):
123

124
    def __init__(self, name):
125
        super(DistributedEmbeddingImpl, self).__init__(name)
126
        self._forward_implemented = True
127
        self._backward_implemented = True
128

C
caozhou 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        """Calculate the cost by the op role."""
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        # embedding need start_index
        cost_mapping = build_comp_costs_from_descs(EmbeddingOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)

        serial_op = dist_op.serial_op
        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("W")[0])[0]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        var_names = serial_op.output("Out")
        c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
            "c_allreduce_sum",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        comm_op_cost_list = build_comm_costs_from_descs(
            AllreduceSumOpCost, ctx, processes, c_allreduce_sum_desc_mapping,
            cluster)

        res_cost = [cost_mapping, comm_op_cost_list]

        return res_cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        main_block = backward_op.block
        dist_attr = dist_op.dist_attr

        embedding_row_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("W")[0])[0]
        parallel_axis = embedding_row_dim_mapping
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        var_names = [backward_op.input("Out@GRAD")[0]]
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)
        res.append(comm_op_cost_list)

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        cost_mapping = build_comp_costs_from_descs(EmbeddingGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Ids")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('W@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)

        return res

218 219 220
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
221 222 223 224
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
225 226
        if is_dim_replicate(w_dims_mapping[-2]) or is_dim_shard(
                w_dims_mapping[-1]):
227 228 229 230 231 232 233
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in ids_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        return True

234 235 236
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
237 238 239 240 241 242 243 244
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
245
    def is_auto_compatible(self, dist_op):
246 247 248 249
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
250 251 252 253 254 255 256 257
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
258

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
259 260 261 262 263
        if ids_dims_mapping != out_dims_mapping[:len(ids_dims_mapping)]:
            return False

        return True

264
    def update_dims_mapping(self, dist_op):
265
        changed = False
266 267
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        out_name = op_desc.output('Out')[0]
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        for i in range(len(ids_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [ids_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        dim_changed = compute_compatible_and_update_dim_mapping(
            [w_dims_mapping, out_dims_mapping], [-1, -1])
        if dim_changed:
            changed = True

        return changed

288 289 290 291 292 293
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

294
        dist_op_context = ctx.dist_op_context
295 296 297 298
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
299
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
300 301 302
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

303
        # check validation of inputs / outputs
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
        assert 'Ids' in kwargs, "input [{}] is not given".format('Ids')
        assert 'W' in kwargs, "input [{}] is not given".format('W')
        assert 'Out' in kwargs, "output [{}] is not given".format('Out')

        assert len(
            kwargs['Ids']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Ids'])
        assert len(
            kwargs['W']
        ) == 1, "row_parallel_embedding input W take 1 variable but got {}".format(
            kwargs['W'])
        assert len(
            kwargs['Out']
        ) == 1, "row_parallel_embedding output Out take 1 variable but got {}".format(
            kwargs['Out'])

        Ids_var = main_block.var(kwargs['Ids'][0])
322
        Weight_var = main_block._var_recursive(kwargs['W'][0])
323 324
        Out_var = main_block.var(kwargs['Out'][0])

325 326 327 328
        # support lookup_table_v1
        if src_op.type == 'lookup_table':
            Ids_var = adopt_lookup_table_v1(ctx, main_block, src_op, Ids_var)

329 330 331 332 333
        # got dist attribute info
        embedding_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert embedding_row_dim_mapping >= 0, "row_parallel_embedding's row should be divided by a specific mesh axis, but got [{}]".format(
            embedding_row_dim_mapping)
334 335
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
336 337 338

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in process_mesh_group:
339
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
340 341 342 343 344 345 346 347 348
                                              rank_id)

        # A generalized method to caculate embedding offset using cartisian product
        relative_idx = _get_idx_in_axis(process_mesh_group, process_mesh_shape,
                                        embedding_row_dim_mapping, rank_id)

        per_part_size = Weight_var.shape[0]
        relative_idx = relative_idx * per_part_size

349
        # TODO caculate ring id
350 351 352 353 354 355 356 357 358
        parallel_axis = embedding_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        # append op
        check_variable_and_dtype(Ids_var, 'input', ['int32', 'int64'],
                                 'c_embedding')

Z
zhaoyingli 已提交
359 360 361 362 363 364 365 366
        # infer new var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

367 368 369 370 371 372 373 374
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_embedding", 'tmp'])),
            dtype=Weight_var.dtype,
            shape=Out_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=Out_var.stop_gradient)
Z
zhaoyingli 已提交
375 376 377
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
378 379 380 381 382 383 384 385

        check_variable_and_dtype(
            Out_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'c_allreduce_sum')

        c_embedding_op = main_block.append_op(
            type='c_embedding',
386 387 388 389
            inputs={
                'Ids': [Ids_var],
                'W': [Weight_var]
            },
390
            outputs={'Out': [intermediate_var_0]},
391 392 393 394
            attrs={
                "start_index": relative_idx,
                OP_ROLE_KEY: src_op.attr('op_role')
            })
Z
zhaoyingli 已提交
395 396
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
397 398 399 400 401 402 403 404 405 406

        # use_model_parallel
        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': [intermediate_var_0]},
            outputs={'Out': [Out_var]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
407
                OP_ROLE_KEY: src_op.attr('op_role')
408
            })
Z
zhaoyingli 已提交
409 410 411 412 413 414 415
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        embedding_op_dist_attr = OperatorDistributedAttribute()
        embedding_op_dist_attr.process_mesh = op_dist_attr.process_mesh
416
        embedding_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430
        embedding_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_embedding_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            embedding_op_dist_attr.set_input_dist_attr(input_varname,
                                                       input_dist_attr)
        output_varname = c_embedding_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        embedding_op_dist_attr.set_output_dist_attr(output_varname,
                                                    output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_embedding_op, embedding_op_dist_attr)
431

Z
zhaoyingli 已提交
432 433 434
        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
435
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
451 452

        # param initialization sync
453
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
454 455
            if Weight_var.name in dist_op_context.already_init_sync_vars:
                return
J
JZ-LIANG 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
            dist_op_context.already_init_sync_vars.add(Weight_var.name)
            param = startup_block.var(Weight_var.name)
            param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
            process_mesh = param_dist_attr.process_mesh
            dim_mapping = param_dist_attr.dims_mapping

            # NOTE all not splited axis should be presented in mesh
            for axis, size in enumerate(process_mesh.topology):
                if size <= 1 or axis in dim_mapping:
                    pass
                else:
                    group_ranks = _get_comm_group(process_mesh.processes,
                                                  process_mesh.topology, axis,
                                                  rank_id)
                    sync_group = new_process_group(group_ranks)

472 473 474 475 476 477 478 479 480
                    startup_block.append_op(type='c_broadcast',
                                            inputs={'X': param},
                                            outputs={'Out': param},
                                            attrs={
                                                'ring_id': sync_group.id,
                                                'root': 0,
                                                'use_calc_stream': True,
                                                OP_ROLE_KEY: OpRole.Forward
                                            })
481 482 483 484 485

    @staticmethod
    def backward(ctx, *args, **kwargs):

        # by now the backward function only insert the gradient allreduce for dist op itself
486
        dist_op_context = ctx.dist_op_context
487 488 489
        main_block = dist_op_context.work_block
        backward_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
490
        dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
491 492
        assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(backward_op))
493

494
        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
495 496
        if rank_id not in dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, dist_attr.process_mesh,
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
                                              rank_id)

        assert 'Ids' in kwargs, "input [{}] is not given".format('Ids')
        assert 'W' in kwargs, "input [{}] is not given".format('W')
        assert 'Out@GRAD' in kwargs, "input [{}] is not given".format('Out')
        assert 'W@GRAD' in kwargs, "output [{}] is not given".format('W@GRAD')

        assert len(
            kwargs['Ids']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Ids'])
        assert len(
            kwargs['W']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['W'])
        assert len(
            kwargs['Out@GRAD']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Out'])
        assert len(
            kwargs['W@GRAD']
        ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
            kwargs['W@GRAD'])

        Ids_var = main_block.var(kwargs['Ids'][0])
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
        Weight_var = main_block.var(kwargs['W'][0])
        Out_grad = main_block.var(kwargs['Out@GRAD'][0])
        Weight_grad = main_block.var(kwargs['W@GRAD'][0])

        embedding_row_dim_mapping = dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert embedding_row_dim_mapping >= 0, "row_parallel_embedding's row should be divided by a specific mesh axis, but got [{}]".format(
            embedding_row_dim_mapping)
        process_mesh_shape = dist_attr.process_mesh.topology
        process_mesh_group = dist_attr.process_mesh.processes

        # A generalized method to caculate embedding offset using cartisian product
        relative_idx = _get_idx_in_axis(process_mesh_group, process_mesh_shape,
                                        embedding_row_dim_mapping, rank_id)
        per_part_size = Weight_var.shape[0]
        relative_idx = relative_idx * per_part_size

        check_variable_and_dtype(
            Out_grad, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')

        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_embedding", '@tmp_0@GRAD'])),
            dtype=Out_grad.dtype,
            shape=Out_grad.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=Out_grad.stop_gradient)

        # copy X_var's dist_attr to intermediate_var_0's dist_attr
        out_grad_dist_attr = dist_attr.get_input_dist_attr(Out_grad.name)
        assert out_grad_dist_attr is not None
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_grad_dist_attr)

        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      embedding_row_dim_mapping, rank_id)
        group = new_process_group(group_ranks)

        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [Out_grad]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
                OP_ROLE_KEY: OpRole.Backward,
            })
        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')

        set_comm_op_dist_attr_for_program(c_identity_op, dist_attr.process_mesh,
                                          out_grad_dist_attr, ctx)

580
        c_embedding_grad_op_desc = main_block.append_op(type='nop').desc
581 582 583 584 585 586 587 588 589 590 591 592 593 594
        c_embedding_grad_op_desc.set_type("c_embedding_grad")
        c_embedding_grad_op_desc.set_input('Ids', [Ids_var.name])
        c_embedding_grad_op_desc.set_input('W', [Weight_var.name])
        c_embedding_grad_op_desc.set_input('Out@GRAD',
                                           [intermediate_var_0.name])
        c_embedding_grad_op_desc.set_output('W@GRAD', [Weight_grad.name])
        c_embedding_grad_op_desc._set_attr('start_index', relative_idx)
        c_embedding_grad_op_desc._set_attr(OP_ROLE_KEY, OpRole.Backward)

        c_embedding_grad_op = main_block.ops[-1]
        assert c_embedding_grad_op.type == "c_embedding_grad"
        naive_copy_op_dist_attr_for_program(c_embedding_grad_op, backward_op,
                                            ctx)

595 596 597
        # data parallel gradient synchronization
        act_grad_names = [Ids_var.name]
        out_grad_names = [kwargs['W@GRAD'][0]]
598

599 600
        gradient_synchronization(ctx, backward_op, act_grad_names,
                                 out_grad_names, rank_id)
601

602 603 604

register_distributed_operator_impl("lookup_table_v2",
                                   DistributedEmbeddingImpl("row_parallel"))
605 606
register_distributed_operator_impl("c_embedding",
                                   DistributedEmbeddingImpl("row_parallel"))
607 608
register_distributed_operator_impl("lookup_table",
                                   DistributedEmbeddingImpl("row_parallel"))