dist_embedding.py 21.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

Z
zhaoyingli 已提交
15
from .common import infer_shape
16
from .common import DistributedOperatorImplContainer
17
from .common import DistributedOperatorImpl
18
from .common import register_distributed_operator_impl_container
J
JZ-LIANG 已提交
19
from .common import register_distributed_operator_impl, set_comm_op_dist_attr_for_program, naive_copy_op_dist_attr_for_program, is_parameter_related
20 21 22 23 24 25
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
26
from ..dist_attribute import OperatorDistributedAttribute, TensorDistributedAttribute
27
from paddle.fluid import core, unique_name
J
Jiabin Yang 已提交
28
from paddle.fluid.framework import _non_static_mode
J
JZ-LIANG 已提交
29
from paddle.fluid.framework import Program, Parameter, Variable
30
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
31
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
32
from ..process_group import new_process_group
33
from ..utils import _get_comm_group, _get_idx_in_axis, _get_corresponding_rank
34 35


36
class DistributedEmbedding(DistributedOperatorImplContainer):
37

38 39
    def __init__(self, op_type):
        super(DistributedEmbedding, self).__init__(op_type)
40 41


42 43 44 45
register_distributed_operator_impl_container(
    DistributedEmbedding("lookup_table_v2"))
register_distributed_operator_impl_container(
    DistributedEmbedding("c_embedding"))
46 47 48 49


# RowParallel
class DistributedEmbeddingImpl(DistributedOperatorImpl):
50

51
    def __init__(self, name):
52
        super(DistributedEmbeddingImpl, self).__init__(name)
53
        self._forward_implemented = True
54
        self._backward_implemented = True
55

56 57 58
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
59 60 61 62
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
63 64
        if is_dim_replicate(w_dims_mapping[-2]) or is_dim_shard(
                w_dims_mapping[-1]):
65 66 67 68 69 70 71
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in ids_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        return True

72 73 74
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
75 76 77 78 79 80 81 82
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
83
    def is_auto_compatible(self, dist_op):
84 85 86 87
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
88 89 90 91 92 93 94 95
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
96

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
97 98 99 100 101
        if ids_dims_mapping != out_dims_mapping[:len(ids_dims_mapping)]:
            return False

        return True

102
    def update_dims_mapping(self, dist_op):
103
        changed = False
104 105
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        out_name = op_desc.output('Out')[0]
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        for i in range(len(ids_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [ids_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        dim_changed = compute_compatible_and_update_dim_mapping(
            [w_dims_mapping, out_dims_mapping], [-1, -1])
        if dim_changed:
            changed = True

        return changed

126 127 128 129 130 131
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

132
        dist_op_context = ctx.dist_op_context
133 134 135 136
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
137
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
138 139 140
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

141
        # check validation of inputs / outputs
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        assert 'Ids' in kwargs, "input [{}] is not given".format('Ids')
        assert 'W' in kwargs, "input [{}] is not given".format('W')
        assert 'Out' in kwargs, "output [{}] is not given".format('Out')

        assert len(
            kwargs['Ids']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Ids'])
        assert len(
            kwargs['W']
        ) == 1, "row_parallel_embedding input W take 1 variable but got {}".format(
            kwargs['W'])
        assert len(
            kwargs['Out']
        ) == 1, "row_parallel_embedding output Out take 1 variable but got {}".format(
            kwargs['Out'])

        Ids_var = main_block.var(kwargs['Ids'][0])
160
        Weight_var = main_block._var_recursive(kwargs['W'][0])
161 162 163 164 165 166 167
        Out_var = main_block.var(kwargs['Out'][0])

        # got dist attribute info
        embedding_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert embedding_row_dim_mapping >= 0, "row_parallel_embedding's row should be divided by a specific mesh axis, but got [{}]".format(
            embedding_row_dim_mapping)
168 169
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
170 171 172

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in process_mesh_group:
173
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
174 175 176 177 178 179 180 181 182
                                              rank_id)

        # A generalized method to caculate embedding offset using cartisian product
        relative_idx = _get_idx_in_axis(process_mesh_group, process_mesh_shape,
                                        embedding_row_dim_mapping, rank_id)

        per_part_size = Weight_var.shape[0]
        relative_idx = relative_idx * per_part_size

183
        # TODO caculate ring id
184 185 186 187 188 189 190 191 192
        parallel_axis = embedding_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        # append op
        check_variable_and_dtype(Ids_var, 'input', ['int32', 'int64'],
                                 'c_embedding')

Z
zhaoyingli 已提交
193 194 195 196 197 198 199 200
        # infer new var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

201 202 203 204 205 206 207 208
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_embedding", 'tmp'])),
            dtype=Weight_var.dtype,
            shape=Out_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=Out_var.stop_gradient)
Z
zhaoyingli 已提交
209 210 211
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
212 213 214 215 216 217 218 219

        check_variable_and_dtype(
            Out_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'c_allreduce_sum')

        c_embedding_op = main_block.append_op(
            type='c_embedding',
220 221 222 223
            inputs={
                'Ids': [Ids_var],
                'W': [Weight_var]
            },
224 225
            outputs={'Out': [intermediate_var_0]},
            attrs={"start_index": relative_idx})
Z
zhaoyingli 已提交
226 227
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
228 229 230 231 232 233 234 235 236 237 238

        # use_model_parallel
        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': [intermediate_var_0]},
            outputs={'Out': [Out_var]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            })
Z
zhaoyingli 已提交
239 240 241 242 243 244 245
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        embedding_op_dist_attr = OperatorDistributedAttribute()
        embedding_op_dist_attr.process_mesh = op_dist_attr.process_mesh
246
        embedding_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260
        embedding_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_embedding_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            embedding_op_dist_attr.set_input_dist_attr(input_varname,
                                                       input_dist_attr)
        output_varname = c_embedding_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        embedding_op_dist_attr.set_output_dist_attr(output_varname,
                                                    output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_embedding_op, embedding_op_dist_attr)
261

Z
zhaoyingli 已提交
262 263 264
        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
265
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
281 282

        # param initialization sync
283
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
284 285
            if Weight_var.name in dist_op_context.already_init_sync_vars:
                return
J
JZ-LIANG 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
            dist_op_context.already_init_sync_vars.add(Weight_var.name)
            param = startup_block.var(Weight_var.name)
            param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
            process_mesh = param_dist_attr.process_mesh
            dim_mapping = param_dist_attr.dims_mapping

            # NOTE all not splited axis should be presented in mesh
            for axis, size in enumerate(process_mesh.topology):
                if size <= 1 or axis in dim_mapping:
                    pass
                else:
                    group_ranks = _get_comm_group(process_mesh.processes,
                                                  process_mesh.topology, axis,
                                                  rank_id)
                    sync_group = new_process_group(group_ranks)

302 303 304 305 306 307 308 309 310
                    startup_block.append_op(type='c_broadcast',
                                            inputs={'X': param},
                                            outputs={'Out': param},
                                            attrs={
                                                'ring_id': sync_group.id,
                                                'root': 0,
                                                'use_calc_stream': True,
                                                OP_ROLE_KEY: OpRole.Forward
                                            })
J
JZ-LIANG 已提交
311
            startup_block._sync_with_cpp()
312 313 314 315 316

    @staticmethod
    def backward(ctx, *args, **kwargs):

        # by now the backward function only insert the gradient allreduce for dist op itself
317
        dist_op_context = ctx.dist_op_context
318 319 320
        main_block = dist_op_context.work_block
        backward_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
321
        dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
322 323
        assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(backward_op))
324

325
        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
326 327
        if rank_id not in dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, dist_attr.process_mesh,
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
                                              rank_id)

        assert 'Ids' in kwargs, "input [{}] is not given".format('Ids')
        assert 'W' in kwargs, "input [{}] is not given".format('W')
        assert 'Out@GRAD' in kwargs, "input [{}] is not given".format('Out')
        assert 'W@GRAD' in kwargs, "output [{}] is not given".format('W@GRAD')

        assert len(
            kwargs['Ids']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Ids'])
        assert len(
            kwargs['W']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['W'])
        assert len(
            kwargs['Out@GRAD']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Out'])
        assert len(
            kwargs['W@GRAD']
        ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
            kwargs['W@GRAD'])

        Ids_var = main_block.var(kwargs['Ids'][0])
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        Weight_var = main_block.var(kwargs['W'][0])
        Out_grad = main_block.var(kwargs['Out@GRAD'][0])
        Weight_grad = main_block.var(kwargs['W@GRAD'][0])

        embedding_row_dim_mapping = dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert embedding_row_dim_mapping >= 0, "row_parallel_embedding's row should be divided by a specific mesh axis, but got [{}]".format(
            embedding_row_dim_mapping)
        process_mesh_shape = dist_attr.process_mesh.topology
        process_mesh_group = dist_attr.process_mesh.processes

        # A generalized method to caculate embedding offset using cartisian product
        relative_idx = _get_idx_in_axis(process_mesh_group, process_mesh_shape,
                                        embedding_row_dim_mapping, rank_id)
        per_part_size = Weight_var.shape[0]
        relative_idx = relative_idx * per_part_size

        check_variable_and_dtype(
            Out_grad, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')

        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_embedding", '@tmp_0@GRAD'])),
            dtype=Out_grad.dtype,
            shape=Out_grad.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=Out_grad.stop_gradient)

        # copy X_var's dist_attr to intermediate_var_0's dist_attr
        out_grad_dist_attr = dist_attr.get_input_dist_attr(Out_grad.name)
        assert out_grad_dist_attr is not None
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_grad_dist_attr)

        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      embedding_row_dim_mapping, rank_id)
        group = new_process_group(group_ranks)

        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [Out_grad]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
                OP_ROLE_KEY: OpRole.Backward,
            })
        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')

        set_comm_op_dist_attr_for_program(c_identity_op, dist_attr.process_mesh,
                                          out_grad_dist_attr, ctx)

        main_block._sync_with_cpp()
        c_embedding_grad_op_desc = main_block.desc.append_op()
        c_embedding_grad_op_desc.set_type("c_embedding_grad")
        c_embedding_grad_op_desc.set_input('Ids', [Ids_var.name])
        c_embedding_grad_op_desc.set_input('W', [Weight_var.name])
        c_embedding_grad_op_desc.set_input('Out@GRAD',
                                           [intermediate_var_0.name])
        c_embedding_grad_op_desc.set_output('W@GRAD', [Weight_grad.name])
        c_embedding_grad_op_desc._set_attr('start_index', relative_idx)
        c_embedding_grad_op_desc._set_attr(OP_ROLE_KEY, OpRole.Backward)
        main_block._sync_with_cpp()

        c_embedding_grad_op = main_block.ops[-1]
        assert c_embedding_grad_op.type == "c_embedding_grad"
        naive_copy_op_dist_attr_for_program(c_embedding_grad_op, backward_op,
                                            ctx)

        # check if need gradient allreduce
        need_gradient_allreduce = False

431
        process_mesh = dist_attr.process_mesh
432 433 434 435 436
        var_dim_mapping = dist_attr.get_input_dims_mapping(Ids_var.name)
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
            need_gradient_allreduce = True
437

438
            group_ranks = _get_comm_group(process_mesh.processes,
439
                                          process_mesh.topology,
440 441 442 443 444 445
                                          batch_size_axis, rank_id)
            dp_degree = len(group_ranks)
            dp_group = new_process_group(group_ranks)

        if need_gradient_allreduce:
            W_Grad_var = main_block.var(kwargs['W@GRAD'][0])
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
            allreduce_op = main_block.append_op(type='c_allreduce_sum',
                                                inputs={'X': [W_Grad_var]},
                                                outputs={'Out': [W_Grad_var]},
                                                attrs={
                                                    'ring_id': dp_group.id,
                                                    'use_calc_stream': True,
                                                    OP_ROLE_KEY: OpRole.Backward
                                                })
            scale_op = main_block.append_op(type='scale',
                                            inputs={'X': W_Grad_var},
                                            outputs={'Out': W_Grad_var},
                                            attrs={
                                                'scale': 1.0 / dp_degree,
                                                OP_ROLE_KEY: OpRole.Backward
                                            })
461
            main_block._sync_with_cpp()
462

463 464 465
            dims_mapping = ctx.get_tensor_dist_attr_for_program(
                W_Grad_var).dims_mapping
            process_mesh = dist_attr.process_mesh
466
            for op in [allreduce_op, scale_op]:
467 468
                op_attr = OperatorDistributedAttribute()
                op_attr.process_mesh = process_mesh
469 470
                op_attr.set_output_dims_mapping(W_Grad_var.name, dims_mapping)
                op_attr.set_input_dims_mapping(W_Grad_var.name, dims_mapping)
471
                ctx.set_op_dist_attr_for_program(op, op_attr)
472

473 474 475

register_distributed_operator_impl("lookup_table_v2",
                                   DistributedEmbeddingImpl("row_parallel"))
476 477
register_distributed_operator_impl("c_embedding",
                                   DistributedEmbeddingImpl("row_parallel"))