dist_embedding.py 27.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

Z
zhaoyingli 已提交
15
from .common import infer_shape
16
from .common import DistributedOperatorImplContainer
17
from .common import DistributedOperatorImpl
18
from .common import register_distributed_operator_impl_container
19
from .common import gradient_synchronization
J
JZ-LIANG 已提交
20
from .common import register_distributed_operator_impl, set_comm_op_dist_attr_for_program, naive_copy_op_dist_attr_for_program, is_parameter_related
21 22 23 24 25 26
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
27
from ..dist_attribute import OperatorDistributedAttribute, TensorDistributedAttribute
28
from paddle.fluid import core, unique_name
J
Jiabin Yang 已提交
29
from paddle.fluid.framework import _non_static_mode
J
JZ-LIANG 已提交
30
from paddle.fluid.framework import Program, Parameter, Variable
31
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
32
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
33
from ..process_group import new_process_group
34
from ..utils import _get_comm_group, _get_idx_in_axis, _get_corresponding_rank, set_var_dist_attr
C
caozhou 已提交
35 36
from ..cost import build_comp_desc_from_dist_op, build_comm_desc_from_dist_op
from ..cost import build_comm_costs_from_descs, build_comp_costs_from_descs, build_dp_costs
37 38
from ..cost import EmbeddingOpCost, EmbeddingGradOpCost
from paddle.distributed.auto_parallel.cost.comm_op_cost import AllreduceSumOpCost, IdentityOpCost
39 40


41
class DistributedEmbedding(DistributedOperatorImplContainer):
42

43 44
    def __init__(self, op_type):
        super(DistributedEmbedding, self).__init__(op_type)
45 46


47 48 49 50
register_distributed_operator_impl_container(
    DistributedEmbedding("lookup_table_v2"))
register_distributed_operator_impl_container(
    DistributedEmbedding("c_embedding"))
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
register_distributed_operator_impl_container(
    DistributedEmbedding("lookup_table"))


def adopt_lookup_table_v1(ctx, main_block, src_op, Ids_var):

    assert len(
        Ids_var.shape
    ) == 3, "input Ids to lookup_table should have 3 dimensions but got [{}] with shape [{}]".format(
        Ids_var.name, Ids_var.shape)
    if not Ids_var.stop_gradient:
        raise NotImplementedError(
            'Requiring the gradient of Ids of lookup_table(v1)dist op is not currently supported. Please open an issue with details on your use case so that we can prioritize adding this (for instance, adversarial training for language model).'
        )

    target_shape = list(Ids_var.shape[:-1])
    intermediate_var_0 = main_block.create_var(
        name=unique_name.generate_with_ignorable_key(".".join(
            ["dist_reshape", 'tmp'])),
        dtype=Ids_var.dtype,
        shape=target_shape,
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
        stop_gradient=True)

    target_shape = [0] + list(Ids_var.shape[:-1])
    xshape_var = main_block.create_var(
        name=unique_name.generate_with_ignorable_key(".".join(
            ["dist_Xshape", 'tmp'])),
        dtype=Ids_var.dtype,
        shape=target_shape,
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
        stop_gradient=True)

    # TODO use inplace reshape for memory saving
    reshape_op = main_block.append_op(type='reshape2',
                                      inputs={'X': [Ids_var]},
                                      outputs={
                                          'Out': [intermediate_var_0],
                                          'XShape': [xshape_var]
                                      },
                                      attrs={
                                          "shape": [0, -1],
                                      })

    # set dist attr
    op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
    Ids_var_dist_attr = op_dist_attr.get_input_dist_attr(Ids_var.name)
    assert Ids_var_dist_attr is not None
    intermediate_var_0_dist_attr = set_var_dist_attr(
        ctx, intermediate_var_0, Ids_var_dist_attr.dims_mapping,
        Ids_var_dist_attr.process_mesh)
    set_var_dist_attr(ctx, xshape_var,
                      [-1] + list(Ids_var_dist_attr.dims_mapping),
                      Ids_var_dist_attr.process_mesh)
    op_dist_attr.del_input_dist_attr(Ids_var.name)
    op_dist_attr.set_input_dist_attr(intermediate_var_0.name,
                                     intermediate_var_0_dist_attr)

    new_op_dist_attr = OperatorDistributedAttribute()
    new_op_dist_attr.process_mesh = Ids_var_dist_attr.process_mesh
    new_op_dist_attr.impl_type = "default"
    new_op_dist_attr.impl_idx = 0
    new_op_dist_attr.set_input_dims_mapping(Ids_var.name,
                                            Ids_var_dist_attr.dims_mapping)
    new_op_dist_attr.set_output_dims_mapping(intermediate_var_0.name,
                                             Ids_var_dist_attr.dims_mapping)
    new_op_dist_attr.set_output_dims_mapping(
        xshape_var.name, [-1] + list(Ids_var_dist_attr.dims_mapping))
    ctx.set_op_dist_attr_for_program(reshape_op, new_op_dist_attr)

    return intermediate_var_0
124 125 126 127


# RowParallel
class DistributedEmbeddingImpl(DistributedOperatorImpl):
128

129
    def __init__(self, name):
130
        super(DistributedEmbeddingImpl, self).__init__(name)
131
        self._forward_implemented = True
132
        self._backward_implemented = True
133

C
caozhou 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        """Calculate the cost by the op role."""
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        # embedding need start_index
        cost_mapping = build_comp_costs_from_descs(EmbeddingOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)

        serial_op = dist_op.serial_op
        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("W")[0])[0]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        var_names = serial_op.output("Out")
        c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
            "c_allreduce_sum",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        comm_op_cost_list = build_comm_costs_from_descs(
            AllreduceSumOpCost, ctx, processes, c_allreduce_sum_desc_mapping,
            cluster)

        res_cost = [cost_mapping, comm_op_cost_list]

        return res_cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        main_block = backward_op.block
        dist_attr = dist_op.dist_attr

        embedding_row_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("W")[0])[0]
        parallel_axis = embedding_row_dim_mapping
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        var_names = [backward_op.input("Out@GRAD")[0]]
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)
        res.append(comm_op_cost_list)

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        cost_mapping = build_comp_costs_from_descs(EmbeddingGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Ids")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('W@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)

        return res

223 224 225
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
226 227 228 229
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
230 231
        if is_dim_replicate(w_dims_mapping[-2]) or is_dim_shard(
                w_dims_mapping[-1]):
232 233 234 235 236 237 238
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in ids_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        return True

239 240 241
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
242 243 244 245 246 247 248 249
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
250
    def is_auto_compatible(self, dist_op):
251 252 253 254
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
255 256 257 258 259 260 261 262
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
263

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
264 265 266 267 268
        if ids_dims_mapping != out_dims_mapping[:len(ids_dims_mapping)]:
            return False

        return True

269
    def update_dims_mapping(self, dist_op):
270
        changed = False
271 272
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        out_name = op_desc.output('Out')[0]
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        for i in range(len(ids_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [ids_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        dim_changed = compute_compatible_and_update_dim_mapping(
            [w_dims_mapping, out_dims_mapping], [-1, -1])
        if dim_changed:
            changed = True

        return changed

293 294 295 296 297 298
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

299
        dist_op_context = ctx.dist_op_context
300 301 302 303
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
304
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
305 306 307
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

308
        # check validation of inputs / outputs
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        assert 'Ids' in kwargs, "input [{}] is not given".format('Ids')
        assert 'W' in kwargs, "input [{}] is not given".format('W')
        assert 'Out' in kwargs, "output [{}] is not given".format('Out')

        assert len(
            kwargs['Ids']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Ids'])
        assert len(
            kwargs['W']
        ) == 1, "row_parallel_embedding input W take 1 variable but got {}".format(
            kwargs['W'])
        assert len(
            kwargs['Out']
        ) == 1, "row_parallel_embedding output Out take 1 variable but got {}".format(
            kwargs['Out'])

        Ids_var = main_block.var(kwargs['Ids'][0])
327
        Weight_var = main_block._var_recursive(kwargs['W'][0])
328 329
        Out_var = main_block.var(kwargs['Out'][0])

330 331 332 333
        # support lookup_table_v1
        if src_op.type == 'lookup_table':
            Ids_var = adopt_lookup_table_v1(ctx, main_block, src_op, Ids_var)

334 335 336 337 338
        # got dist attribute info
        embedding_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert embedding_row_dim_mapping >= 0, "row_parallel_embedding's row should be divided by a specific mesh axis, but got [{}]".format(
            embedding_row_dim_mapping)
339 340
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
341 342 343

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in process_mesh_group:
344
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
345 346 347 348 349 350 351 352 353
                                              rank_id)

        # A generalized method to caculate embedding offset using cartisian product
        relative_idx = _get_idx_in_axis(process_mesh_group, process_mesh_shape,
                                        embedding_row_dim_mapping, rank_id)

        per_part_size = Weight_var.shape[0]
        relative_idx = relative_idx * per_part_size

354
        # TODO caculate ring id
355 356 357 358 359 360 361 362 363
        parallel_axis = embedding_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        # append op
        check_variable_and_dtype(Ids_var, 'input', ['int32', 'int64'],
                                 'c_embedding')

Z
zhaoyingli 已提交
364 365 366 367 368 369 370 371
        # infer new var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

372 373 374 375 376 377 378 379
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_embedding", 'tmp'])),
            dtype=Weight_var.dtype,
            shape=Out_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=Out_var.stop_gradient)
Z
zhaoyingli 已提交
380 381 382
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
383 384 385 386 387 388 389 390

        check_variable_and_dtype(
            Out_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'c_allreduce_sum')

        c_embedding_op = main_block.append_op(
            type='c_embedding',
391 392 393 394
            inputs={
                'Ids': [Ids_var],
                'W': [Weight_var]
            },
395
            outputs={'Out': [intermediate_var_0]},
396 397 398 399
            attrs={
                "start_index": relative_idx,
                OP_ROLE_KEY: src_op.attr('op_role')
            })
Z
zhaoyingli 已提交
400 401
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
402 403 404 405 406 407 408 409 410 411

        # use_model_parallel
        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': [intermediate_var_0]},
            outputs={'Out': [Out_var]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
412
                OP_ROLE_KEY: src_op.attr('op_role')
413
            })
Z
zhaoyingli 已提交
414 415 416 417 418 419 420
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        embedding_op_dist_attr = OperatorDistributedAttribute()
        embedding_op_dist_attr.process_mesh = op_dist_attr.process_mesh
421
        embedding_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435
        embedding_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_embedding_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            embedding_op_dist_attr.set_input_dist_attr(input_varname,
                                                       input_dist_attr)
        output_varname = c_embedding_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        embedding_op_dist_attr.set_output_dist_attr(output_varname,
                                                    output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_embedding_op, embedding_op_dist_attr)
436

Z
zhaoyingli 已提交
437 438 439
        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
440
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
456 457

        # param initialization sync
458
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
459 460
            if Weight_var.name in dist_op_context.already_init_sync_vars:
                return
J
JZ-LIANG 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
            dist_op_context.already_init_sync_vars.add(Weight_var.name)
            param = startup_block.var(Weight_var.name)
            param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
            process_mesh = param_dist_attr.process_mesh
            dim_mapping = param_dist_attr.dims_mapping

            # NOTE all not splited axis should be presented in mesh
            for axis, size in enumerate(process_mesh.topology):
                if size <= 1 or axis in dim_mapping:
                    pass
                else:
                    group_ranks = _get_comm_group(process_mesh.processes,
                                                  process_mesh.topology, axis,
                                                  rank_id)
                    sync_group = new_process_group(group_ranks)

477 478 479 480 481 482 483 484 485
                    startup_block.append_op(type='c_broadcast',
                                            inputs={'X': param},
                                            outputs={'Out': param},
                                            attrs={
                                                'ring_id': sync_group.id,
                                                'root': 0,
                                                'use_calc_stream': True,
                                                OP_ROLE_KEY: OpRole.Forward
                                            })
486 487 488 489 490

    @staticmethod
    def backward(ctx, *args, **kwargs):

        # by now the backward function only insert the gradient allreduce for dist op itself
491
        dist_op_context = ctx.dist_op_context
492 493 494
        main_block = dist_op_context.work_block
        backward_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
495
        dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
496 497
        assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(backward_op))
498

499
        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
500 501
        if rank_id not in dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, dist_attr.process_mesh,
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
                                              rank_id)

        assert 'Ids' in kwargs, "input [{}] is not given".format('Ids')
        assert 'W' in kwargs, "input [{}] is not given".format('W')
        assert 'Out@GRAD' in kwargs, "input [{}] is not given".format('Out')
        assert 'W@GRAD' in kwargs, "output [{}] is not given".format('W@GRAD')

        assert len(
            kwargs['Ids']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Ids'])
        assert len(
            kwargs['W']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['W'])
        assert len(
            kwargs['Out@GRAD']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Out'])
        assert len(
            kwargs['W@GRAD']
        ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
            kwargs['W@GRAD'])

        Ids_var = main_block.var(kwargs['Ids'][0])
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
        Weight_var = main_block.var(kwargs['W'][0])
        Out_grad = main_block.var(kwargs['Out@GRAD'][0])
        Weight_grad = main_block.var(kwargs['W@GRAD'][0])

        embedding_row_dim_mapping = dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert embedding_row_dim_mapping >= 0, "row_parallel_embedding's row should be divided by a specific mesh axis, but got [{}]".format(
            embedding_row_dim_mapping)
        process_mesh_shape = dist_attr.process_mesh.topology
        process_mesh_group = dist_attr.process_mesh.processes

        # A generalized method to caculate embedding offset using cartisian product
        relative_idx = _get_idx_in_axis(process_mesh_group, process_mesh_shape,
                                        embedding_row_dim_mapping, rank_id)
        per_part_size = Weight_var.shape[0]
        relative_idx = relative_idx * per_part_size

        check_variable_and_dtype(
            Out_grad, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')

        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_embedding", '@tmp_0@GRAD'])),
            dtype=Out_grad.dtype,
            shape=Out_grad.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=Out_grad.stop_gradient)

        # copy X_var's dist_attr to intermediate_var_0's dist_attr
        out_grad_dist_attr = dist_attr.get_input_dist_attr(Out_grad.name)
        assert out_grad_dist_attr is not None
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_grad_dist_attr)

        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      embedding_row_dim_mapping, rank_id)
        group = new_process_group(group_ranks)

        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [Out_grad]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
                OP_ROLE_KEY: OpRole.Backward,
            })
        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')

        set_comm_op_dist_attr_for_program(c_identity_op, dist_attr.process_mesh,
                                          out_grad_dist_attr, ctx)

585
        c_embedding_grad_op_desc = main_block.append_op(type='nop').desc
586 587 588 589 590 591 592 593 594 595 596 597 598 599
        c_embedding_grad_op_desc.set_type("c_embedding_grad")
        c_embedding_grad_op_desc.set_input('Ids', [Ids_var.name])
        c_embedding_grad_op_desc.set_input('W', [Weight_var.name])
        c_embedding_grad_op_desc.set_input('Out@GRAD',
                                           [intermediate_var_0.name])
        c_embedding_grad_op_desc.set_output('W@GRAD', [Weight_grad.name])
        c_embedding_grad_op_desc._set_attr('start_index', relative_idx)
        c_embedding_grad_op_desc._set_attr(OP_ROLE_KEY, OpRole.Backward)

        c_embedding_grad_op = main_block.ops[-1]
        assert c_embedding_grad_op.type == "c_embedding_grad"
        naive_copy_op_dist_attr_for_program(c_embedding_grad_op, backward_op,
                                            ctx)

600 601 602
        # data parallel gradient synchronization
        act_grad_names = [Ids_var.name]
        out_grad_names = [kwargs['W@GRAD'][0]]
603

604 605
        gradient_synchronization(ctx, backward_op, act_grad_names,
                                 out_grad_names, rank_id)
606

607 608 609

register_distributed_operator_impl("lookup_table_v2",
                                   DistributedEmbeddingImpl("row_parallel"))
610 611
register_distributed_operator_impl("c_embedding",
                                   DistributedEmbeddingImpl("row_parallel"))
612 613
register_distributed_operator_impl("lookup_table",
                                   DistributedEmbeddingImpl("row_parallel"))