dist_embedding.py 21.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

Z
zhaoyingli 已提交
15
from .common import infer_shape
16
from .common import DistributedOperatorImplContainer
17
from .common import DistributedOperatorImpl
18
from .common import register_distributed_operator_impl_container
19
from .common import register_distributed_operator_impl, set_comm_op_dist_attr_for_program, naive_copy_op_dist_attr_for_program
20 21 22 23 24 25
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
26
from ..dist_attribute import OperatorDistributedAttribute, TensorDistributedAttribute
27 28 29 30
from paddle.fluid import core, unique_name
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
31
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
32
from ..process_group import new_process_group
33
from ..utils import _get_comm_group, _get_idx_in_axis, _get_corresponding_rank
34 35


36
class DistributedEmbedding(DistributedOperatorImplContainer):
37 38 39 40 41
    def __init__(self, name):
        super(DistributedEmbedding, self).__init__()
        self._name = name


42 43 44 45
register_distributed_operator_impl_container("lookup_table_v2",
                                             DistributedEmbedding("embedding"))
register_distributed_operator_impl_container("c_embedding",
                                             DistributedEmbedding("embedding"))
46 47 48 49 50 51 52


# RowParallel
class DistributedEmbeddingImpl(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedEmbeddingImpl, self).__init__()
        self._name = name
53
        self._forward_implemented = True
54
        self._backward_implemented = True
55

56 57 58
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
59 60 61 62 63 64 65 66 67 68 69 70 71
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
        if is_dim_replicate(w_dims_mapping[-2]) or is_dim_shard(w_dims_mapping[
                -1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in ids_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        return True

72 73 74
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
75 76 77 78 79 80 81 82
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
        if is_dim_replicate(w_dims_mapping[-2]) or is_dim_shard(w_dims_mapping[
                -1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in ids_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        for mapping in out_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        if w_dims_mapping[-1] != out_dims_mapping[-1]:
            return False
        if ids_dims_mapping != out_dims_mapping[:len(ids_dims_mapping)]:
            return False

        return True

109
    def update_dims_mapping(self, dist_op):
110
        changed = False
111 112
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        out_name = op_desc.output('Out')[0]
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        for i in range(len(ids_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [ids_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        dim_changed = compute_compatible_and_update_dim_mapping(
            [w_dims_mapping, out_dims_mapping], [-1, -1])
        if dim_changed:
            changed = True

        return changed

133 134 135 136 137 138
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

139 140 141 142 143 144
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
145 146 147
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

148
        # check validation of inputs / outputs
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        assert 'Ids' in kwargs, "input [{}] is not given".format('Ids')
        assert 'W' in kwargs, "input [{}] is not given".format('W')
        assert 'Out' in kwargs, "output [{}] is not given".format('Out')

        assert len(
            kwargs['Ids']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Ids'])
        assert len(
            kwargs['W']
        ) == 1, "row_parallel_embedding input W take 1 variable but got {}".format(
            kwargs['W'])
        assert len(
            kwargs['Out']
        ) == 1, "row_parallel_embedding output Out take 1 variable but got {}".format(
            kwargs['Out'])

        Ids_var = main_block.var(kwargs['Ids'][0])
        Weight_var = main_block.var(kwargs['W'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # got dist attribute info
        embedding_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert embedding_row_dim_mapping >= 0, "row_parallel_embedding's row should be divided by a specific mesh axis, but got [{}]".format(
            embedding_row_dim_mapping)
175 176
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
177 178 179

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in process_mesh_group:
180
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
181 182 183 184 185 186 187 188 189
                                              rank_id)

        # A generalized method to caculate embedding offset using cartisian product
        relative_idx = _get_idx_in_axis(process_mesh_group, process_mesh_shape,
                                        embedding_row_dim_mapping, rank_id)

        per_part_size = Weight_var.shape[0]
        relative_idx = relative_idx * per_part_size

190
        # TODO caculate ring id
191 192 193 194 195 196 197 198 199
        parallel_axis = embedding_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        # append op
        check_variable_and_dtype(Ids_var, 'input', ['int32', 'int64'],
                                 'c_embedding')

Z
zhaoyingli 已提交
200 201 202 203 204 205 206 207
        # infer new var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

208 209 210 211 212 213 214 215
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_embedding", 'tmp'])),
            dtype=Weight_var.dtype,
            shape=Out_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=Out_var.stop_gradient)
Z
zhaoyingli 已提交
216 217 218
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
219 220 221 222 223 224 225 226 227 228 229 230

        check_variable_and_dtype(
            Out_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'c_allreduce_sum')

        c_embedding_op = main_block.append_op(
            type='c_embedding',
            inputs={'Ids': [Ids_var],
                    'W': [Weight_var]},
            outputs={'Out': [intermediate_var_0]},
            attrs={"start_index": relative_idx})
Z
zhaoyingli 已提交
231 232
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
233 234 235 236 237 238 239 240 241 242 243

        # use_model_parallel
        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': [intermediate_var_0]},
            outputs={'Out': [Out_var]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            })
Z
zhaoyingli 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        embedding_op_dist_attr = OperatorDistributedAttribute()
        embedding_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        embedding_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_embedding_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            embedding_op_dist_attr.set_input_dist_attr(input_varname,
                                                       input_dist_attr)
        output_varname = c_embedding_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        embedding_op_dist_attr.set_output_dist_attr(output_varname,
                                                    output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_embedding_op, embedding_op_dist_attr)
265

Z
zhaoyingli 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
284 285

        # param initialization sync
286 287
        assert Weight_var.name not in dist_op_context.already_init_sync_vars
        dist_op_context.already_init_sync_vars.add(Weight_var.name)
288
        param = startup_block.var(Weight_var.name)
289 290 291
        param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
        process_mesh = param_dist_attr.process_mesh
        dim_mapping = param_dist_attr.dims_mapping
292

293
        # NOTE all not splited axis should be presented in mesh
294 295 296
        for axis, size in enumerate(process_mesh.topology):
            if size <= 1 or axis in dim_mapping:
                pass
297
            else:
298
                group_ranks = _get_comm_group(process_mesh.processes,
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
                                              process_mesh.topology, axis,
                                              rank_id)
                sync_group = new_process_group(group_ranks)

                startup_block.append_op(
                    type='c_broadcast',
                    inputs={'X': param},
                    outputs={'Out': param},
                    attrs={
                        'ring_id': sync_group.id,
                        'root': 0,
                        'use_calc_stream': True,
                        OP_ROLE_KEY: OpRole.Forward
                    })
        startup_block._sync_with_cpp()

    @staticmethod
    def backward(ctx, *args, **kwargs):

        # by now the backward function only insert the gradient allreduce for dist op itself
319 320 321 322 323
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        backward_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
324 325
        assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(backward_op))
326

327
        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
328 329
        if rank_id not in dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, dist_attr.process_mesh,
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
                                              rank_id)

        assert 'Ids' in kwargs, "input [{}] is not given".format('Ids')
        assert 'W' in kwargs, "input [{}] is not given".format('W')
        assert 'Out@GRAD' in kwargs, "input [{}] is not given".format('Out')
        assert 'W@GRAD' in kwargs, "output [{}] is not given".format('W@GRAD')

        assert len(
            kwargs['Ids']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Ids'])
        assert len(
            kwargs['W']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['W'])
        assert len(
            kwargs['Out@GRAD']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Out'])
        assert len(
            kwargs['W@GRAD']
        ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
            kwargs['W@GRAD'])

        Ids_var = main_block.var(kwargs['Ids'][0])
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        Weight_var = main_block.var(kwargs['W'][0])
        Out_grad = main_block.var(kwargs['Out@GRAD'][0])
        Weight_grad = main_block.var(kwargs['W@GRAD'][0])

        embedding_row_dim_mapping = dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert embedding_row_dim_mapping >= 0, "row_parallel_embedding's row should be divided by a specific mesh axis, but got [{}]".format(
            embedding_row_dim_mapping)
        process_mesh_shape = dist_attr.process_mesh.topology
        process_mesh_group = dist_attr.process_mesh.processes

        # A generalized method to caculate embedding offset using cartisian product
        relative_idx = _get_idx_in_axis(process_mesh_group, process_mesh_shape,
                                        embedding_row_dim_mapping, rank_id)
        per_part_size = Weight_var.shape[0]
        relative_idx = relative_idx * per_part_size

        check_variable_and_dtype(
            Out_grad, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')

        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_embedding", '@tmp_0@GRAD'])),
            dtype=Out_grad.dtype,
            shape=Out_grad.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=Out_grad.stop_gradient)

        # copy X_var's dist_attr to intermediate_var_0's dist_attr
        out_grad_dist_attr = dist_attr.get_input_dist_attr(Out_grad.name)
        assert out_grad_dist_attr is not None
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_grad_dist_attr)

        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      embedding_row_dim_mapping, rank_id)
        group = new_process_group(group_ranks)

        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [Out_grad]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
                OP_ROLE_KEY: OpRole.Backward,
            })
        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')

        set_comm_op_dist_attr_for_program(c_identity_op, dist_attr.process_mesh,
                                          out_grad_dist_attr, ctx)

        main_block._sync_with_cpp()
        c_embedding_grad_op_desc = main_block.desc.append_op()
        c_embedding_grad_op_desc.set_type("c_embedding_grad")
        c_embedding_grad_op_desc.set_input('Ids', [Ids_var.name])
        c_embedding_grad_op_desc.set_input('W', [Weight_var.name])
        c_embedding_grad_op_desc.set_input('Out@GRAD',
                                           [intermediate_var_0.name])
        c_embedding_grad_op_desc.set_output('W@GRAD', [Weight_grad.name])
        c_embedding_grad_op_desc._set_attr('start_index', relative_idx)
        c_embedding_grad_op_desc._set_attr(OP_ROLE_KEY, OpRole.Backward)
        main_block._sync_with_cpp()

        c_embedding_grad_op = main_block.ops[-1]
        assert c_embedding_grad_op.type == "c_embedding_grad"
        naive_copy_op_dist_attr_for_program(c_embedding_grad_op, backward_op,
                                            ctx)

        # check if need gradient allreduce
        need_gradient_allreduce = False

433
        process_mesh = dist_attr.process_mesh
434 435 436 437 438
        var_dim_mapping = dist_attr.get_input_dims_mapping(Ids_var.name)
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
            need_gradient_allreduce = True
439

440
            group_ranks = _get_comm_group(process_mesh.processes,
441
                                          process_mesh.topology,
442 443 444 445 446 447 448
                                          batch_size_axis, rank_id)
            dp_degree = len(group_ranks)
            dp_group = new_process_group(group_ranks)

        if need_gradient_allreduce:
            W_Grad_var = main_block.var(kwargs['W@GRAD'][0])
            allreduce_op = main_block.append_op(
449
                type='c_allreduce_sum',
450 451
                inputs={'X': [W_Grad_var]},
                outputs={'Out': [W_Grad_var]},
452
                attrs={
453
                    'ring_id': dp_group.id,
454
                    'use_calc_stream': True,
455
                    OP_ROLE_KEY: OpRole.Backward
456
                })
457 458 459 460 461 462 463
            scale_op = main_block.append_op(
                type='scale',
                inputs={'X': W_Grad_var},
                outputs={'Out': W_Grad_var},
                attrs={'scale': 1.0 / dp_degree,
                       OP_ROLE_KEY: OpRole.Backward})
            main_block._sync_with_cpp()
464

465 466 467
            dims_mapping = ctx.get_tensor_dist_attr_for_program(
                W_Grad_var).dims_mapping
            process_mesh = dist_attr.process_mesh
468
            for op in [allreduce_op, scale_op]:
469 470
                op_attr = OperatorDistributedAttribute()
                op_attr.process_mesh = process_mesh
471 472
                op_attr.set_output_dims_mapping(W_Grad_var.name, dims_mapping)
                op_attr.set_input_dims_mapping(W_Grad_var.name, dims_mapping)
473
                ctx.set_op_dist_attr_for_program(op, op_attr)
474

475 476 477

register_distributed_operator_impl("lookup_table_v2",
                                   DistributedEmbeddingImpl("row_parallel"))
478 479
register_distributed_operator_impl("c_embedding",
                                   DistributedEmbeddingImpl("row_parallel"))