dist_embedding.py 25.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

Z
zhaoyingli 已提交
15
from .common import infer_shape
16
from .common import DistributedOperatorImplContainer
17
from .common import DistributedOperatorImpl
18
from .common import register_distributed_operator_impl_container
J
JZ-LIANG 已提交
19
from .common import register_distributed_operator_impl, set_comm_op_dist_attr_for_program, naive_copy_op_dist_attr_for_program, is_parameter_related
20 21 22 23 24 25
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
26
from ..dist_attribute import OperatorDistributedAttribute, TensorDistributedAttribute
27
from paddle.fluid import core, unique_name
J
Jiabin Yang 已提交
28
from paddle.fluid.framework import _non_static_mode
J
JZ-LIANG 已提交
29
from paddle.fluid.framework import Program, Parameter, Variable
30
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
31
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
32
from ..process_group import new_process_group
33
from ..utils import _get_comm_group, _get_idx_in_axis, _get_corresponding_rank
C
caozhou 已提交
34 35 36
from ..cost import build_comp_desc_from_dist_op, build_comm_desc_from_dist_op
from ..cost import build_comm_costs_from_descs, build_comp_costs_from_descs, build_dp_costs
from ..cost import EmbeddingOpCost, EmbeddingGradOpCost, AllreduceSumOpCost, IdentityOpCost
37 38


39
class DistributedEmbedding(DistributedOperatorImplContainer):
40

41 42
    def __init__(self, op_type):
        super(DistributedEmbedding, self).__init__(op_type)
43 44


45 46 47 48
register_distributed_operator_impl_container(
    DistributedEmbedding("lookup_table_v2"))
register_distributed_operator_impl_container(
    DistributedEmbedding("c_embedding"))
49 50 51 52


# RowParallel
class DistributedEmbeddingImpl(DistributedOperatorImpl):
53

54
    def __init__(self, name):
55
        super(DistributedEmbeddingImpl, self).__init__(name)
56
        self._forward_implemented = True
57
        self._backward_implemented = True
58

C
caozhou 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        """Calculate the cost by the op role."""
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        # embedding need start_index
        cost_mapping = build_comp_costs_from_descs(EmbeddingOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)

        serial_op = dist_op.serial_op
        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("W")[0])[0]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        var_names = serial_op.output("Out")
        c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
            "c_allreduce_sum",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        comm_op_cost_list = build_comm_costs_from_descs(
            AllreduceSumOpCost, ctx, processes, c_allreduce_sum_desc_mapping,
            cluster)

        res_cost = [cost_mapping, comm_op_cost_list]

        return res_cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        main_block = backward_op.block
        dist_attr = dist_op.dist_attr

        embedding_row_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("W")[0])[0]
        parallel_axis = embedding_row_dim_mapping
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        var_names = [backward_op.input("Out@GRAD")[0]]
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)
        res.append(comm_op_cost_list)

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        cost_mapping = build_comp_costs_from_descs(EmbeddingGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Ids")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('W@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)

        return res

148 149 150
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
151 152 153 154
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
155 156
        if is_dim_replicate(w_dims_mapping[-2]) or is_dim_shard(
                w_dims_mapping[-1]):
157 158 159 160 161 162 163
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in ids_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        return True

164 165 166
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
167 168 169 170 171 172 173 174
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
175
    def is_auto_compatible(self, dist_op):
176 177 178 179
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
180 181 182 183 184 185 186 187
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
188

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
189 190 191 192 193
        if ids_dims_mapping != out_dims_mapping[:len(ids_dims_mapping)]:
            return False

        return True

194
    def update_dims_mapping(self, dist_op):
195
        changed = False
196 197
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        out_name = op_desc.output('Out')[0]
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        for i in range(len(ids_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [ids_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        dim_changed = compute_compatible_and_update_dim_mapping(
            [w_dims_mapping, out_dims_mapping], [-1, -1])
        if dim_changed:
            changed = True

        return changed

218 219 220 221 222 223
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

224
        dist_op_context = ctx.dist_op_context
225 226 227 228
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
229
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
230 231 232
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

233
        # check validation of inputs / outputs
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
        assert 'Ids' in kwargs, "input [{}] is not given".format('Ids')
        assert 'W' in kwargs, "input [{}] is not given".format('W')
        assert 'Out' in kwargs, "output [{}] is not given".format('Out')

        assert len(
            kwargs['Ids']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Ids'])
        assert len(
            kwargs['W']
        ) == 1, "row_parallel_embedding input W take 1 variable but got {}".format(
            kwargs['W'])
        assert len(
            kwargs['Out']
        ) == 1, "row_parallel_embedding output Out take 1 variable but got {}".format(
            kwargs['Out'])

        Ids_var = main_block.var(kwargs['Ids'][0])
252
        Weight_var = main_block._var_recursive(kwargs['W'][0])
253 254 255 256 257 258 259
        Out_var = main_block.var(kwargs['Out'][0])

        # got dist attribute info
        embedding_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert embedding_row_dim_mapping >= 0, "row_parallel_embedding's row should be divided by a specific mesh axis, but got [{}]".format(
            embedding_row_dim_mapping)
260 261
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
262 263 264

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in process_mesh_group:
265
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
266 267 268 269 270 271 272 273 274
                                              rank_id)

        # A generalized method to caculate embedding offset using cartisian product
        relative_idx = _get_idx_in_axis(process_mesh_group, process_mesh_shape,
                                        embedding_row_dim_mapping, rank_id)

        per_part_size = Weight_var.shape[0]
        relative_idx = relative_idx * per_part_size

275
        # TODO caculate ring id
276 277 278 279 280 281 282 283 284
        parallel_axis = embedding_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        # append op
        check_variable_and_dtype(Ids_var, 'input', ['int32', 'int64'],
                                 'c_embedding')

Z
zhaoyingli 已提交
285 286 287 288 289 290 291 292
        # infer new var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

293 294 295 296 297 298 299 300
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_embedding", 'tmp'])),
            dtype=Weight_var.dtype,
            shape=Out_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=Out_var.stop_gradient)
Z
zhaoyingli 已提交
301 302 303
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
304 305 306 307 308 309 310 311

        check_variable_and_dtype(
            Out_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'c_allreduce_sum')

        c_embedding_op = main_block.append_op(
            type='c_embedding',
312 313 314 315
            inputs={
                'Ids': [Ids_var],
                'W': [Weight_var]
            },
316
            outputs={'Out': [intermediate_var_0]},
317 318 319 320
            attrs={
                "start_index": relative_idx,
                OP_ROLE_KEY: src_op.attr('op_role')
            })
Z
zhaoyingli 已提交
321 322
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
323 324 325 326 327 328 329 330 331 332

        # use_model_parallel
        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': [intermediate_var_0]},
            outputs={'Out': [Out_var]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
333
                OP_ROLE_KEY: src_op.attr('op_role')
334
            })
Z
zhaoyingli 已提交
335 336 337 338 339 340 341
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        embedding_op_dist_attr = OperatorDistributedAttribute()
        embedding_op_dist_attr.process_mesh = op_dist_attr.process_mesh
342
        embedding_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356
        embedding_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_embedding_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            embedding_op_dist_attr.set_input_dist_attr(input_varname,
                                                       input_dist_attr)
        output_varname = c_embedding_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        embedding_op_dist_attr.set_output_dist_attr(output_varname,
                                                    output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_embedding_op, embedding_op_dist_attr)
357

Z
zhaoyingli 已提交
358 359 360
        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
361
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
377 378

        # param initialization sync
379
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
380 381
            if Weight_var.name in dist_op_context.already_init_sync_vars:
                return
J
JZ-LIANG 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
            dist_op_context.already_init_sync_vars.add(Weight_var.name)
            param = startup_block.var(Weight_var.name)
            param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
            process_mesh = param_dist_attr.process_mesh
            dim_mapping = param_dist_attr.dims_mapping

            # NOTE all not splited axis should be presented in mesh
            for axis, size in enumerate(process_mesh.topology):
                if size <= 1 or axis in dim_mapping:
                    pass
                else:
                    group_ranks = _get_comm_group(process_mesh.processes,
                                                  process_mesh.topology, axis,
                                                  rank_id)
                    sync_group = new_process_group(group_ranks)

398 399 400 401 402 403 404 405 406
                    startup_block.append_op(type='c_broadcast',
                                            inputs={'X': param},
                                            outputs={'Out': param},
                                            attrs={
                                                'ring_id': sync_group.id,
                                                'root': 0,
                                                'use_calc_stream': True,
                                                OP_ROLE_KEY: OpRole.Forward
                                            })
407 408 409 410 411

    @staticmethod
    def backward(ctx, *args, **kwargs):

        # by now the backward function only insert the gradient allreduce for dist op itself
412
        dist_op_context = ctx.dist_op_context
413 414 415
        main_block = dist_op_context.work_block
        backward_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
416
        dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
417 418
        assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(backward_op))
419

420
        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
421 422
        if rank_id not in dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, dist_attr.process_mesh,
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
                                              rank_id)

        assert 'Ids' in kwargs, "input [{}] is not given".format('Ids')
        assert 'W' in kwargs, "input [{}] is not given".format('W')
        assert 'Out@GRAD' in kwargs, "input [{}] is not given".format('Out')
        assert 'W@GRAD' in kwargs, "output [{}] is not given".format('W@GRAD')

        assert len(
            kwargs['Ids']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Ids'])
        assert len(
            kwargs['W']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['W'])
        assert len(
            kwargs['Out@GRAD']
        ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Out'])
        assert len(
            kwargs['W@GRAD']
        ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
            kwargs['W@GRAD'])

        Ids_var = main_block.var(kwargs['Ids'][0])
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
        Weight_var = main_block.var(kwargs['W'][0])
        Out_grad = main_block.var(kwargs['Out@GRAD'][0])
        Weight_grad = main_block.var(kwargs['W@GRAD'][0])

        embedding_row_dim_mapping = dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert embedding_row_dim_mapping >= 0, "row_parallel_embedding's row should be divided by a specific mesh axis, but got [{}]".format(
            embedding_row_dim_mapping)
        process_mesh_shape = dist_attr.process_mesh.topology
        process_mesh_group = dist_attr.process_mesh.processes

        # A generalized method to caculate embedding offset using cartisian product
        relative_idx = _get_idx_in_axis(process_mesh_group, process_mesh_shape,
                                        embedding_row_dim_mapping, rank_id)
        per_part_size = Weight_var.shape[0]
        relative_idx = relative_idx * per_part_size

        check_variable_and_dtype(
            Out_grad, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')

        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_embedding", '@tmp_0@GRAD'])),
            dtype=Out_grad.dtype,
            shape=Out_grad.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=Out_grad.stop_gradient)

        # copy X_var's dist_attr to intermediate_var_0's dist_attr
        out_grad_dist_attr = dist_attr.get_input_dist_attr(Out_grad.name)
        assert out_grad_dist_attr is not None
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_grad_dist_attr)

        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      embedding_row_dim_mapping, rank_id)
        group = new_process_group(group_ranks)

        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [Out_grad]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
                OP_ROLE_KEY: OpRole.Backward,
            })
        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')

        set_comm_op_dist_attr_for_program(c_identity_op, dist_attr.process_mesh,
                                          out_grad_dist_attr, ctx)

506
        c_embedding_grad_op_desc = main_block.append_op(type='nop').desc
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
        c_embedding_grad_op_desc.set_type("c_embedding_grad")
        c_embedding_grad_op_desc.set_input('Ids', [Ids_var.name])
        c_embedding_grad_op_desc.set_input('W', [Weight_var.name])
        c_embedding_grad_op_desc.set_input('Out@GRAD',
                                           [intermediate_var_0.name])
        c_embedding_grad_op_desc.set_output('W@GRAD', [Weight_grad.name])
        c_embedding_grad_op_desc._set_attr('start_index', relative_idx)
        c_embedding_grad_op_desc._set_attr(OP_ROLE_KEY, OpRole.Backward)

        c_embedding_grad_op = main_block.ops[-1]
        assert c_embedding_grad_op.type == "c_embedding_grad"
        naive_copy_op_dist_attr_for_program(c_embedding_grad_op, backward_op,
                                            ctx)

        # check if need gradient allreduce
        need_gradient_allreduce = False

524
        process_mesh = dist_attr.process_mesh
525 526 527 528 529
        var_dim_mapping = dist_attr.get_input_dims_mapping(Ids_var.name)
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
            need_gradient_allreduce = True
530

531
            group_ranks = _get_comm_group(process_mesh.processes,
532
                                          process_mesh.topology,
533 534 535 536 537
                                          batch_size_axis, rank_id)
            dp_degree = len(group_ranks)
            dp_group = new_process_group(group_ranks)

        if need_gradient_allreduce:
538
            added_ops = []
539
            W_Grad_var = main_block.var(kwargs['W@GRAD'][0])
540 541 542 543 544 545 546 547
            allreduce_op = main_block.append_op(type='c_allreduce_sum',
                                                inputs={'X': [W_Grad_var]},
                                                outputs={'Out': [W_Grad_var]},
                                                attrs={
                                                    'ring_id': dp_group.id,
                                                    'use_calc_stream': True,
                                                    OP_ROLE_KEY: OpRole.Backward
                                                })
548 549 550 551 552 553 554 555 556 557 558 559
            added_ops.append(allreduce_op)

            if ctx.gradient_scale:
                scale_op = main_block.append_op(type='scale',
                                                inputs={'X': W_Grad_var},
                                                outputs={'Out': W_Grad_var},
                                                attrs={
                                                    'scale': 1.0 / dp_degree,
                                                    OP_ROLE_KEY: OpRole.Backward
                                                })
                added_ops.append(scale_op)

560
            main_block._sync_with_cpp()
561

562 563 564
            dims_mapping = ctx.get_tensor_dist_attr_for_program(
                W_Grad_var).dims_mapping
            process_mesh = dist_attr.process_mesh
565
            for op in added_ops:
566 567
                op_attr = OperatorDistributedAttribute()
                op_attr.process_mesh = process_mesh
568 569
                op_attr.set_output_dims_mapping(W_Grad_var.name, dims_mapping)
                op_attr.set_input_dims_mapping(W_Grad_var.name, dims_mapping)
570
                ctx.set_op_dist_attr_for_program(op, op_attr)
571

572 573 574

register_distributed_operator_impl("lookup_table_v2",
                                   DistributedEmbeddingImpl("row_parallel"))
575 576
register_distributed_operator_impl("c_embedding",
                                   DistributedEmbeddingImpl("row_parallel"))