initializer.py 49.5 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import math
18
import functools
19
from . import framework
20
from . import core
21
from .framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph, default_main_program, _current_expected_place
22 23
from .lazy_init import lazy_guard
from .framework import program_guard
24
import numpy as np
25
from .core import VarDesc
W
Wu Yi 已提交
26
from . import unique_name
27
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
28
from paddle import _C_ops
29
import paddle
30

31
__all__ = [
32
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
33 34
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
35
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
36
]
37

38 39 40
_global_weight_initializer_ = None
_global_bias_initializer_ = None

41 42 43 44 45 46 47 48 49 50

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
51
    def __init__(self):
52 53
        pass

54
    def __call__(self, param, block=None):
55 56 57 58 59 60
        if not lazy_guard().state:
            return self.forward(param, block)

        return self._lazy_init(param, block)

    def forward(self, param, block=None):
61 62 63 64
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    def _lazy_init(self, param, block=None):
        # Apply lazy initialization
        assert in_dygraph_mode()
        new_block = lazy_guard().startup_program.global_block()
        new_var = param._to_static_var(True, block=new_block)

        # Record initializer operator
        with lazy_guard():
            self.forward(new_var, new_block)
        lazy_guard().enable(clear_cache=False)
        # Add hook function for initializing param in dygraph mode
        func = functools.partial(self.forward, param, block)
        param.set_init_func(func)

        return param

81 82
    def _check_block(self, block):
        if block is None:
83
            block = default_main_program().global_block()
84 85 86

        return block

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

122 123 124

class ConstantInitializer(Initializer):
    """Implements the constant initializer
125 126

    Args:
D
Double_V 已提交
127
        value (float32): constant value to initialize the variable 
128 129 130 131

    Examples:
        .. code-block:: python

132 133 134
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
135
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
136 137 138 139
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
140

141 142
    """

143
    def __init__(self, value=0.0, force_cpu=False):
144 145 146
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
147
        self._force_cpu = force_cpu
148

149
    def forward(self, var, block=None):
150
        """Initialize the input tensor with constant.
151 152

        Args:
153 154 155
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
156 157

        Returns:
158
            The initialization op
159
        """
160 161
        block = self._check_block(block)

162 163
        assert (isinstance(var, framework.Variable)
                or isinstance(var, framework.EagerParamBase))
164
        assert isinstance(block, framework.Block)
165

166 167
        if in_dygraph_mode():
            place = _current_expected_place()
168 169
            if self._force_cpu:
                place = core.CPUPlace()
170 171 172 173
            _C_ops.final_state_full_(var, var.shape, str(float(self._value)),
                                     var.dtype, place)
            return None
        elif _in_legacy_dygraph():
174 175
            _C_ops.fill_constant(var, 'value', float(self._value),
                                 'force_cpu', self._force_cpu, 'dtype',
176 177
                                 int(var.dtype), 'str_value',
                                 str(float(self._value)), 'shape', var.shape)
178 179
            return None
        else:
180 181 182 183 184 185 186 187 188 189
            op = block.append_op(type="fill_constant",
                                 outputs={"Out": var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": int(var.dtype),
                                     "value": float(self._value),
                                     'str_value': str(float(self._value)),
                                     'force_cpu': self._force_cpu
                                 },
                                 stop_gradient=True)
190

191
            var.op = op
192
            return op
193 194 195


class UniformInitializer(Initializer):
196
    """Implements the random uniform distribution initializer
197 198 199 200 201

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
202 203 204 205 206 207
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
208 209 210 211

    Examples:
        .. code-block:: python

X
xiaoting 已提交
212
            import paddle.fluid as fluid
213
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
214
            fc = fluid.layers.fc(input=x, size=10,
215
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
216 217
    """

218 219 220 221 222 223 224
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
225 226
        assert low is not None
        assert high is not None
227
        assert high >= low
228
        assert seed is not None
229 230 231 232 233
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
234 235 236 237
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
238 239 240
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
241

242
    def forward(self, var, block=None):
243
        """Initialize the input tensor with Uniform distribution.
244 245

        Args:
246 247 248
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
249 250

        Returns:
251
            The initialization op
252
        """
253 254
        block = self._check_block(block)

255
        assert isinstance(block, framework.Block)
256 257
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
258 259
                                 "uniform_random")

D
dzhwinter 已提交
260 261
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
262

X
polish  
Xin Pan 已提交
263
        # to be compatible of fp16 initializers
264
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
265
            out_dtype = VarDesc.VarType.FP32
266 267 268 269 270 271
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['uniform_random', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
W
Wu Yi 已提交
272 273 274 275
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
276
        if framework._non_static_mode():
277 278 279 280 281 282 283
            out_var = _C_ops.uniform_random(
                'shape', var.shape, 'min', self._low, 'max', self._high, 'seed',
                self._seed, 'dtype', out_dtype, 'diag_num', self._diag_num,
                'diag_step', self._diag_step, 'diag_val', self._diag_val)
            if var.dtype == VarDesc.VarType.FP16:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
284
                var_tmp._share_underline_tensor_to(var)
285
            else:
286
                out_var._share_underline_tensor_to(var)
287 288
            return None
        else:
289 290 291 292 293 294 295 296 297 298 299 300 301 302
            op = block.append_op(type="uniform_random",
                                 inputs={},
                                 outputs={"Out": out_var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": out_dtype,
                                     "min": self._low,
                                     "max": self._high,
                                     "seed": self._seed,
                                     "diag_num": self._diag_num,
                                     "diag_step": self._diag_step,
                                     "diag_val": self._diag_val
                                 },
                                 stop_gradient=True)
303 304

            if var.dtype == VarDesc.VarType.FP16:
305 306 307 308 309 310 311
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
W
Wu Yi 已提交
312

313
            var.op = op
314
            return op
315 316 317


class NormalInitializer(Initializer):
318 319 320 321 322 323 324 325 326 327
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
328
            import paddle.fluid as fluid
329
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
330 331
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
332

333 334 335 336 337 338 339 340 341 342 343
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

344
    def forward(self, var, block=None):
345
        """Initialize the input tensor with Normal distribution.
346 347

        Args:
348 349 350
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
351 352

        Returns:
353
            The initialization op
354
        """
355 356
        block = self._check_block(block)

357
        assert isinstance(block, framework.Block)
358

359 360
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
361
                                 "guassian_random")
362

363 364 365
        # to be compatible of fp16 initalizers
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
            out_dtype = VarDesc.VarType.FP32
366 367 368 369 370 371
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['normal_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
372 373 374 375
        else:
            out_dtype = var.dtype
            out_var = var

D
dzhwinter 已提交
376 377
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
378

379 380 381 382 383 384 385 386 387 388 389 390 391 392
        if in_dygraph_mode():
            place = _current_expected_place()
            out_var = _C_ops.final_state_gaussian_random(
                var.shape, self._mean, self._std_dev, self._seed, out_dtype,
                place)

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.final_state_cast(out_var, var.dtype)
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
            return None

        if _in_legacy_dygraph():
393 394 395 396
            out_var = _C_ops.gaussian_random('shape', var.shape, 'dtype',
                                             out_dtype, 'mean', self._mean,
                                             'std', self._std_dev, 'seed',
                                             self._seed, 'use_mkldnn', False)
397 398 399 400 401 402 403

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
404 405
            return None
        else:
406 407 408 409 410 411 412 413 414 415 416
            op = block.append_op(type="gaussian_random",
                                 outputs={"Out": out_var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": out_dtype,
                                     "mean": self._mean,
                                     "std": self._std_dev,
                                     "seed": self._seed,
                                     "use_mkldnn": False
                                 },
                                 stop_gradient=True)
417

418
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
419 420 421 422 423 424 425
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
426
            var.op = op
427
            return op
428 429


430 431 432 433 434 435 436 437 438 439 440
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
441
            import paddle.fluid as fluid
442
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
443 444 445 446 447 448 449 450
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
451
        super(TruncatedNormalInitializer, self).__init__()
452 453 454 455
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

456
    def forward(self, var, block=None):
457
        """Initialize the input tensor with TruncatedNormal distribution.
458 459

        Args:
460 461 462
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
463 464

        Returns:
465
            The initialization op
466
        """
467 468
        block = self._check_block(block)

469 470
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
471

472 473
        if self._seed == 0:
            self._seed = block.program.random_seed
474 475

        # to be compatible of fp16 initalizers
476
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
477
            out_dtype = VarDesc.VarType.FP32
478 479 480 481 482 483
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['truncated_gaussian_random', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
484 485 486 487
        else:
            out_dtype = var.dtype
            out_var = var

488 489 490 491 492 493 494 495 496 497 498 499
        if in_dygraph_mode():
            out_var = _C_ops.final_state_truncated_gaussian_random(
                var.shape, self._mean, self._std_dev, self._seed, out_dtype,
                _current_expected_place())
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.final_state_cast(out_var, var.dtype)
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
            return None

        if _in_legacy_dygraph():
500 501 502 503 504
            out_var = _C_ops.truncated_gaussian_random('shape', var.shape,
                                                       'dtype', out_dtype,
                                                       'mean', self._mean,
                                                       'std', self._std_dev,
                                                       'seed', self._seed)
505 506 507
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
508
                var_tmp._share_underline_tensor_to(var)
509
            else:
510
                out_var._share_underline_tensor_to(var)
511 512
            return None
        else:
513 514 515 516 517 518 519 520 521 522
            op = block.append_op(type="truncated_gaussian_random",
                                 outputs={"Out": out_var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": out_dtype,
                                     "mean": self._mean,
                                     "std": self._std_dev,
                                     "seed": self._seed
                                 },
                                 stop_gradient=True)
523

524
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
525 526 527 528 529 530 531
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
532
            var.op = op
533
            return op
534 535


536
class XavierInitializer(Initializer):
537
    r"""
538
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
539 540 541
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
542 543 544

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
545 546 547 548 549 550
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

551
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
552
    is
553

Q
qiaolongfei 已提交
554
    .. math::
555

Q
qiaolongfei 已提交
556
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
557 558


Q
qiaolongfei 已提交
559
    Args:
X
xiaoting 已提交
560 561
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
562
                inferred from the variable.
X
xiaoting 已提交
563
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
564 565 566 567 568 569 570 571 572
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
573
            import paddle.fluid as fluid
X
xiaoting 已提交
574
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
575 576 577 578 579 580 581
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
582 583 584 585 586 587 588 589
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

590
    def forward(self, var, block=None):
591
        """Initialize the input tensor with Xavier initialization.
592 593

        Args:
594 595 596
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
597 598

        Returns:
599
            The initialization op
600
        """
601 602
        block = self._check_block(block)

603
        assert isinstance(block, framework.Block)
604 605
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
606 607
                                 "xavier_init")

608 609 610 611 612 613
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
614 615 616
        if self._seed == 0:
            self._seed = block.program.random_seed

617
        # to be compatible of fp16 initalizers
618 619
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
620
            out_dtype = VarDesc.VarType.FP32
621 622 623 624 625 626
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['xavier_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
627 628 629 630
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
631
        if framework._non_static_mode():
632
            if self._uniform:
633
                limit = math.sqrt(6.0 / float(fan_in + fan_out))
634 635 636 637 638 639 640 641 642
                if in_dygraph_mode():
                    out_var = _C_ops.final_state_uniform_random(
                        out_var.shape, out_dtype, -limit, limit, self._seed,
                        _current_expected_place())
                elif _in_legacy_dygraph():
                    out_var = _C_ops.uniform_random('shape', out_var.shape,
                                                    'min', -limit, 'max', limit,
                                                    'seed', self._seed, 'dtype',
                                                    out_dtype)
643
            else:
644
                std = math.sqrt(2.0 / float(fan_in + fan_out))
645 646 647 648 649 650

                if in_dygraph_mode():
                    place = _current_expected_place()
                    out_var = _C_ops.final_state_gaussian_random(
                        out_var.shape, 0.0, std, self._seed, out_dtype, place)
                else:
651 652 653 654
                    out_var = _C_ops.gaussian_random('shape', out_var.shape,
                                                     'dtype', out_dtype, 'mean',
                                                     0.0, 'std', std, 'seed',
                                                     self._seed)
655 656 657

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
658 659 660 661 662
                if in_dygraph_mode():
                    var_tmp = _C_ops.final_state_cast(out_var, var.dtype)
                elif _in_legacy_dygraph():
                    var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                          'out_dtype', var.dtype)
663
                var_tmp._share_underline_tensor_to(var)
664
            else:
665
                out_var._share_underline_tensor_to(var)
666
            return None
667
        else:
668
            if self._uniform:
669
                limit = math.sqrt(6.0 / float(fan_in + fan_out))
670 671 672 673 674 675 676 677 678 679 680
                op = block.append_op(type="uniform_random",
                                     inputs={},
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": out_dtype,
                                         "min": -limit,
                                         "max": limit,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
681
            else:
682
                std = math.sqrt(2.0 / float(fan_in + fan_out))
683 684 685 686 687 688 689 690 691 692
                op = block.append_op(type="gaussian_random",
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": out_dtype,
                                         "mean": 0.0,
                                         "std": std,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
693 694 695

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
696 697 698 699 700 701 702
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
703

704
            var.op = op
705
            return op
706 707 708


class MSRAInitializer(Initializer):
709
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
710 711

    This class implements the weight initialization from the paper
712 713 714 715 716 717 718 719
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

720
        x = gain \times \sqrt{\frac{3}{fan\_in}}
721 722 723 724 725 726

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

727
        \frac{gain}{\sqrt{{fan\_in}}}
728 729

    Args:
730 731 732
        uniform (bool, optional): whether to use uniform or normal distribution
        fan_in (float32|None, optional): fan_in (in_features) of trainable Tensor, If None, it will be infered automaticly. If you don't want to use in_features of the Tensor, you can set the value of 'fan_in' smartly by yourself. default is None.
        seed (int32, optional): random seed.
733 734
        negative_slope (float, optional): negative_slope (only used with leaky_relu). default is 0.0.
        nonlinearity(str, optional): the non-linear function. default is relu.
735 736 737 738 739 740

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
741

742
            import paddle
X
xsrobin 已提交
743
            import paddle.fluid as fluid
744
            paddle.enable_static()
D
Double_V 已提交
745
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
746 747
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
748

749 750
    """

751 752 753 754 755 756
    def __init__(self,
                 uniform=True,
                 fan_in=None,
                 seed=0,
                 negative_slope=0,
                 nonlinearity='relu'):
757 758 759 760 761 762 763 764
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed
765 766
        self._negative_slope = negative_slope
        self._nonlinearity = nonlinearity
767

768
    def forward(self, var, block=None):
769
        """Initialize the input tensor with MSRA initialization.
770 771

        Args:
772 773 774
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
775 776

        Returns:
777
            The initialization op
778
        """
779 780
        block = self._check_block(block)

781 782 783 784 785 786 787
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
788 789 790
        if self._seed == 0:
            self._seed = block.program.random_seed

791
        # to be compatible of fp16 initalizers
792 793
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
794
            out_dtype = VarDesc.VarType.FP32
795 796 797 798 799 800
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['masra_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
801 802 803 804
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
805
        if framework._non_static_mode():
806
            if self._uniform:
807 808 809
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                limit = gain * math.sqrt(3.0 / float(fan_in))

810 811 812 813 814
                out_var = _C_ops.uniform_random('shape', out_var.shape, 'min',
                                                -limit, 'max', limit, 'seed',
                                                self._seed, 'dtype',
                                                int(out_dtype))
            else:
815 816
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                std = gain / math.sqrt(float(fan_in))
817 818 819 820 821
                if in_dygraph_mode():
                    place = _current_expected_place()
                    out_var = _C_ops.final_state_gaussian_random(
                        out_var.shape, 0.0, std, self._seed, out_dtype, place)
                else:
822 823 824 825 826
                    out_var = _C_ops.gaussian_random('shape',
                                                     out_var.shape, 'dtype',
                                                     int(out_dtype), 'mean',
                                                     0.0, 'std', std, 'seed',
                                                     self._seed)
827 828 829 830 831

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
832
                var_tmp._share_underline_tensor_to(var)
833
            else:
834
                out_var._share_underline_tensor_to(var)
835
            return None
836
        else:
837
            if self._uniform:
838 839
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                limit = gain * math.sqrt(3.0 / float(fan_in))
840 841 842 843 844 845 846 847 848 849 850
                op = block.append_op(type="uniform_random",
                                     inputs={},
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": int(out_dtype),
                                         "min": -limit,
                                         "max": limit,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
851 852

            else:
853 854
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                std = gain / math.sqrt(float(fan_in))
855 856 857 858 859 860 861 862 863 864
                op = block.append_op(type="gaussian_random",
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": int(out_dtype),
                                         "mean": 0.0,
                                         "std": std,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
865 866 867

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
868 869 870 871 872 873 874
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
875

876
            var.op = op
877
            return op
878 879


880
class BilinearInitializer(Initializer):
881
    """
882 883 884
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
885 886 887 888 889

    Examples:

        .. code-block:: python

890
            import math
891 892 893 894 895

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
896 897
            factor = 2
            C = 2
D
Double_V 已提交
898 899
            B = 8
            H = W = 32
900 901 902 903
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
904
            conv_up = nn.Conv2DTranspose(3,
905 906 907 908 909 910 911 912 913 914 915
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
916 917 918 919
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
920 921
    interpolation unchanged during training.

922 923 924 925 926 927 928
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

929
    def forward(self, var, block=None):
930
        """Initialize the input tensor with Bilinear initialization.
931 932

        Args:
933 934 935
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
936 937

        Returns:
938
            The initialization op
939
        """
940 941
        block = self._check_block(block)

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

966
        # to be compatible of fp16 initalizers
967 968 969
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
970
            out_dtype = VarDesc.VarType.FP32
971 972 973 974 975 976
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['bilinear_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
977 978 979 980 981
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
982 983 984
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
985 986
            raise TypeError("Unsupported dtype %s", var.dtype)

987 988
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
989

J
Jiabin Yang 已提交
990
        if framework._non_static_mode():
991 992
            _C_ops.assign_value(out_var, 'shape', list(shape), 'dtype',
                                out_dtype, value_name, values)
993 994 995 996 997 998
            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
999
                var_tmp._share_underline_tensor_to(var)
1000
            else:
1001
                out_var._share_underline_tensor_to(var)
1002 1003
            return None
        else:
1004 1005 1006 1007 1008 1009 1010
            op = block.append_op(type='assign_value',
                                 outputs={'Out': [out_var]},
                                 attrs={
                                     'dtype': out_dtype,
                                     'shape': list(shape),
                                     value_name: values
                                 })
1011 1012 1013 1014 1015

            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
1016 1017 1018 1019 1020 1021 1022
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
1023

1024
            var.op = op
1025
            return op
1026 1027


1028 1029
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
1030
    This op initialize the variable by numpy array.
1031 1032 1033 1034

    Args:
        value (numpy): numpy array to initialize the variable

1035 1036 1037
    Returns:
        A Tensor variable initialized by numpy.

1038 1039 1040
    Examples:
        .. code-block:: python

1041
            import paddle.fluid as fluid
1042 1043
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

1054
    def forward(self, var, block=None):
1055
        """Initialize the input tensor with Numpy array.
1056 1057

        Args:
1058 1059 1060
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
1061 1062

        Returns:
1063
            The initialization op
1064
        """
1065 1066
        block = self._check_block(block)

1067 1068
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
1069 1070

        # to be compatible of fp16 initalizers
1071
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1072 1073
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
1074 1075 1076 1077 1078 1079
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['numpy_array_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
1080 1081 1082 1083 1084 1085
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

        if out_dtype == VarDesc.VarType.FP32:
1086
            value_name = "fp32_values"
1087 1088
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
1089
            value_name = "int32_values"
1090
            values = [int(v) for v in np_value.flat]
1091 1092
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
1093
        if self._value.size > 1024 * 1024 * 1024:
1094 1095
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
1096

J
Jiabin Yang 已提交
1097
        if framework._non_static_mode():
1098 1099
            _C_ops.assign_value(out_var, 'shape', list(self._value.shape),
                                'dtype', out_dtype, value_name, values)
1100 1101 1102
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
1103
                var_tmp._share_underline_tensor_to(var)
1104
            else:
1105
                out_var._share_underline_tensor_to(var)
1106 1107
            return None
        else:
1108 1109 1110 1111 1112 1113 1114 1115
            op = block.append_op(type='assign_value',
                                 outputs={'Out': out_var},
                                 attrs={
                                     'dtype': out_dtype,
                                     'shape': list(self._value.shape),
                                     value_name: values
                                 },
                                 stop_gradient=True)
1116 1117

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1118 1119 1120 1121 1122 1123 1124
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
1125

1126
            var.op = op
1127
            return op
1128 1129


1130 1131 1132 1133 1134 1135 1136
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
1137
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

1157 1158 1159 1160 1161
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
1162 1163 1164

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
1165 1166
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
1167 1168 1169 1170

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
1171 1172 1173 1174
            conv2 = nn.Conv2D(4, 6, (3, 3), 
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1175 1176

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1177
            nn.initializer.set_global_initializer(None)
1178
    """
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1205 1206
def calculate_gain(nonlinearity, param=None):
    """
1207 1208
    Get the recommended ``gain`` value of some nonlinearity function. ``gain`` value can be used in some 
    ``paddle.nn.initializer`` api to adjust the initialization value.
1209 1210

    Args:
1211 1212
        nonlinearity(str): name of nonlinearity activation function. If it is a linear function, such as: 
            `linear/conv1d/conv2d/conv3d/conv1d_transpose/conv2d_transpose/conv3d_transpose` , 1.0 will be returned.
1213
        param(bool|int|float, optional): optional parameter for somme nonlinearity function. Now, it only applies to 
1214
            'leaky_relu'. Default: None, it will be calculated as 0.01 in the formula.
1215 1216

    Returns:
1217
        A float value, which is the recommended gain for this nonlinearity function.
1218 1219 1220

    Examples:
        .. code-block:: python
1221

1222 1223 1224
            import paddle
            gain = paddle.nn.initializer.calculate_gain('tanh') # 5.0 / 3
            gain = paddle.nn.initializer.calculate_gain('leaky_relu', param=1.0) # 1.0 = math.sqrt(2.0 / (1+param^2))
1225
            initializer = paddle.nn.initializer.Orthogonal(gain)
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

    """
    if param is None:
        param = 0.01
    else:
        assert isinstance(param, (bool, int, float))
        param = float(param)
    recommended_gain = {
        'sigmoid': 1,
        'linear': 1,
        'conv1d': 1,
        'conv2d': 1,
        'conv3d': 1,
1239 1240 1241
        'conv1d_transpose': 1,
        'conv2d_transpose': 1,
        'conv3d_transpose': 1,
1242 1243 1244 1245 1246 1247 1248 1249
        'tanh': 5.0 / 3,
        'relu': math.sqrt(2.0),
        'leaky_relu': math.sqrt(2.0 / (1 + param**2)),
        'selu': 3.0 / 4
    }
    if nonlinearity in recommended_gain.keys():
        return recommended_gain[nonlinearity]
    else:
1250 1251 1252
        raise ValueError(
            "nonlinearity function {} is not suppported now.".format(
                nonlinearity))
1253 1254


1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1267
TruncatedNormal = TruncatedNormalInitializer
1268 1269
Xavier = XavierInitializer
MSRA = MSRAInitializer
1270
Bilinear = BilinearInitializer