initializer.py 48.6 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import math
18
from . import framework
19
from . import core
20
from .framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph, default_main_program, _current_expected_place
21
import numpy as np
22
from .core import VarDesc
W
Wu Yi 已提交
23
from . import unique_name
24
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
25
from paddle import _C_ops
26
import paddle
27

28
__all__ = [
29
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
30 31
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
32
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
33
]
34

35 36 37
_global_weight_initializer_ = None
_global_bias_initializer_ = None

38 39 40 41 42 43 44 45 46 47

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
48
    def __init__(self):
49 50
        pass

51
    def __call__(self, param, block=None):
52 53 54 55
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

56 57
    def _check_block(self, block):
        if block is None:
58
            block = default_main_program().global_block()
59 60 61

        return block

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

97 98 99

class ConstantInitializer(Initializer):
    """Implements the constant initializer
100 101

    Args:
D
Double_V 已提交
102
        value (float32): constant value to initialize the variable 
103 104 105 106

    Examples:
        .. code-block:: python

107 108 109
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
110
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
111 112 113 114
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
115

116 117
    """

118
    def __init__(self, value=0.0, force_cpu=False):
119 120 121
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
122
        self._force_cpu = force_cpu
123

124 125
    def __call__(self, var, block=None):
        """Initialize the input tensor with constant.
126 127

        Args:
128 129 130
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
131 132

        Returns:
133
            The initialization op
134
        """
135 136
        block = self._check_block(block)

137 138
        assert (isinstance(var, framework.Variable)
                or isinstance(var, framework.EagerParamBase))
139
        assert isinstance(block, framework.Block)
140

141 142 143 144 145 146
        if in_dygraph_mode():
            place = _current_expected_place()
            _C_ops.final_state_full_(var, var.shape, str(float(self._value)),
                                     var.dtype, place)
            return None
        elif _in_legacy_dygraph():
147 148
            _C_ops.fill_constant(var, 'value', float(self._value),
                                 'force_cpu', self._force_cpu, 'dtype',
149 150
                                 int(var.dtype), 'str_value',
                                 str(float(self._value)), 'shape', var.shape)
151 152
            return None
        else:
153 154 155 156 157 158 159 160 161 162
            op = block.append_op(type="fill_constant",
                                 outputs={"Out": var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": int(var.dtype),
                                     "value": float(self._value),
                                     'str_value': str(float(self._value)),
                                     'force_cpu': self._force_cpu
                                 },
                                 stop_gradient=True)
163

164
            var.op = op
165
            return op
166 167 168


class UniformInitializer(Initializer):
169
    """Implements the random uniform distribution initializer
170 171 172 173 174

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
175 176 177 178 179 180
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
181 182 183 184

    Examples:
        .. code-block:: python

X
xiaoting 已提交
185
            import paddle.fluid as fluid
186
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
187
            fc = fluid.layers.fc(input=x, size=10,
188
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
189 190
    """

191 192 193 194 195 196 197
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
198 199
        assert low is not None
        assert high is not None
200
        assert high >= low
201
        assert seed is not None
202 203 204 205 206
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
207 208 209 210
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
211 212 213
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
214

215 216
    def __call__(self, var, block=None):
        """Initialize the input tensor with Uniform distribution.
217 218

        Args:
219 220 221
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
222 223

        Returns:
224
            The initialization op
225
        """
226 227
        block = self._check_block(block)

228
        assert isinstance(block, framework.Block)
229 230
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
231 232
                                 "uniform_random")

D
dzhwinter 已提交
233 234
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
235

X
polish  
Xin Pan 已提交
236
        # to be compatible of fp16 initializers
237
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
238
            out_dtype = VarDesc.VarType.FP32
239 240 241 242 243 244
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['uniform_random', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
W
Wu Yi 已提交
245 246 247 248
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
249
        if framework._non_static_mode():
250 251 252 253 254 255 256
            out_var = _C_ops.uniform_random(
                'shape', var.shape, 'min', self._low, 'max', self._high, 'seed',
                self._seed, 'dtype', out_dtype, 'diag_num', self._diag_num,
                'diag_step', self._diag_step, 'diag_val', self._diag_val)
            if var.dtype == VarDesc.VarType.FP16:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
257
                var_tmp._share_underline_tensor_to(var)
258
            else:
259
                out_var._share_underline_tensor_to(var)
260 261
            return None
        else:
262 263 264 265 266 267 268 269 270 271 272 273 274 275
            op = block.append_op(type="uniform_random",
                                 inputs={},
                                 outputs={"Out": out_var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": out_dtype,
                                     "min": self._low,
                                     "max": self._high,
                                     "seed": self._seed,
                                     "diag_num": self._diag_num,
                                     "diag_step": self._diag_step,
                                     "diag_val": self._diag_val
                                 },
                                 stop_gradient=True)
276 277

            if var.dtype == VarDesc.VarType.FP16:
278 279 280 281 282 283 284
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
W
Wu Yi 已提交
285

286
            var.op = op
287
            return op
288 289 290


class NormalInitializer(Initializer):
291 292 293 294 295 296 297 298 299 300
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
301
            import paddle.fluid as fluid
302
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
303 304
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
305

306 307 308 309 310 311 312 313 314 315 316
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

317 318
    def __call__(self, var, block=None):
        """Initialize the input tensor with Normal distribution.
319 320

        Args:
321 322 323
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
324 325

        Returns:
326
            The initialization op
327
        """
328 329
        block = self._check_block(block)

330
        assert isinstance(block, framework.Block)
331

332 333
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
334
                                 "guassian_random")
335

336 337 338
        # to be compatible of fp16 initalizers
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
            out_dtype = VarDesc.VarType.FP32
339 340 341 342 343 344
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['normal_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
345 346 347 348
        else:
            out_dtype = var.dtype
            out_var = var

D
dzhwinter 已提交
349 350
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
351

352 353 354 355 356 357 358 359 360 361 362 363 364 365
        if in_dygraph_mode():
            place = _current_expected_place()
            out_var = _C_ops.final_state_gaussian_random(
                var.shape, self._mean, self._std_dev, self._seed, out_dtype,
                place)

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.final_state_cast(out_var, var.dtype)
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
            return None

        if _in_legacy_dygraph():
366 367 368 369
            out_var = _C_ops.gaussian_random('shape', var.shape, 'dtype',
                                             out_dtype, 'mean', self._mean,
                                             'std', self._std_dev, 'seed',
                                             self._seed, 'use_mkldnn', False)
370 371 372 373 374 375 376

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
377 378
            return None
        else:
379 380 381 382 383 384 385 386 387 388 389
            op = block.append_op(type="gaussian_random",
                                 outputs={"Out": out_var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": out_dtype,
                                     "mean": self._mean,
                                     "std": self._std_dev,
                                     "seed": self._seed,
                                     "use_mkldnn": False
                                 },
                                 stop_gradient=True)
390

391
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
392 393 394 395 396 397 398
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
399
            var.op = op
400
            return op
401 402


403 404 405 406 407 408 409 410 411 412 413
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
414
            import paddle.fluid as fluid
415
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
416 417 418 419 420 421 422 423
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
424
        super(TruncatedNormalInitializer, self).__init__()
425 426 427 428
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

429 430
    def __call__(self, var, block=None):
        """Initialize the input tensor with TruncatedNormal distribution.
431 432

        Args:
433 434 435
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
436 437

        Returns:
438
            The initialization op
439
        """
440 441
        block = self._check_block(block)

442 443
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
444

445 446
        if self._seed == 0:
            self._seed = block.program.random_seed
447 448

        # to be compatible of fp16 initalizers
449
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
450
            out_dtype = VarDesc.VarType.FP32
451 452 453 454 455 456
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['truncated_gaussian_random', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
457 458 459 460
        else:
            out_dtype = var.dtype
            out_var = var

461 462 463 464 465 466 467 468 469 470 471 472
        if in_dygraph_mode():
            out_var = _C_ops.final_state_truncated_gaussian_random(
                var.shape, self._mean, self._std_dev, self._seed, out_dtype,
                _current_expected_place())
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.final_state_cast(out_var, var.dtype)
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
            return None

        if _in_legacy_dygraph():
473 474 475 476 477
            out_var = _C_ops.truncated_gaussian_random('shape', var.shape,
                                                       'dtype', out_dtype,
                                                       'mean', self._mean,
                                                       'std', self._std_dev,
                                                       'seed', self._seed)
478 479 480
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
481
                var_tmp._share_underline_tensor_to(var)
482
            else:
483
                out_var._share_underline_tensor_to(var)
484 485
            return None
        else:
486 487 488 489 490 491 492 493 494 495
            op = block.append_op(type="truncated_gaussian_random",
                                 outputs={"Out": out_var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": out_dtype,
                                     "mean": self._mean,
                                     "std": self._std_dev,
                                     "seed": self._seed
                                 },
                                 stop_gradient=True)
496

497
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
498 499 500 501 502 503 504
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
505
            var.op = op
506
            return op
507 508


509
class XavierInitializer(Initializer):
510
    r"""
511
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
512 513 514
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
515 516 517

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
518 519 520 521 522 523
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

524
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
525
    is
526

Q
qiaolongfei 已提交
527
    .. math::
528

Q
qiaolongfei 已提交
529
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
530 531


Q
qiaolongfei 已提交
532
    Args:
X
xiaoting 已提交
533 534
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
535
                inferred from the variable.
X
xiaoting 已提交
536
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
537 538 539 540 541 542 543 544 545
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
546
            import paddle.fluid as fluid
X
xiaoting 已提交
547
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
548 549 550 551 552 553 554
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
555 556 557 558 559 560 561 562
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

563 564
    def __call__(self, var, block=None):
        """Initialize the input tensor with Xavier initialization.
565 566

        Args:
567 568 569
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
570 571

        Returns:
572
            The initialization op
573
        """
574 575
        block = self._check_block(block)

576
        assert isinstance(block, framework.Block)
577 578
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
579 580
                                 "xavier_init")

581 582 583 584 585 586
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
587 588 589
        if self._seed == 0:
            self._seed = block.program.random_seed

590
        # to be compatible of fp16 initalizers
591 592
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
593
            out_dtype = VarDesc.VarType.FP32
594 595 596 597 598 599
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['xavier_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
600 601 602 603
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
604
        if framework._non_static_mode():
605
            if self._uniform:
606
                limit = math.sqrt(6.0 / float(fan_in + fan_out))
607 608 609 610 611 612 613 614 615
                if in_dygraph_mode():
                    out_var = _C_ops.final_state_uniform_random(
                        out_var.shape, out_dtype, -limit, limit, self._seed,
                        _current_expected_place())
                elif _in_legacy_dygraph():
                    out_var = _C_ops.uniform_random('shape', out_var.shape,
                                                    'min', -limit, 'max', limit,
                                                    'seed', self._seed, 'dtype',
                                                    out_dtype)
616
            else:
617
                std = math.sqrt(2.0 / float(fan_in + fan_out))
618 619 620 621 622 623

                if in_dygraph_mode():
                    place = _current_expected_place()
                    out_var = _C_ops.final_state_gaussian_random(
                        out_var.shape, 0.0, std, self._seed, out_dtype, place)
                else:
624 625 626 627
                    out_var = _C_ops.gaussian_random('shape', out_var.shape,
                                                     'dtype', out_dtype, 'mean',
                                                     0.0, 'std', std, 'seed',
                                                     self._seed)
628 629 630

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
631 632 633 634 635
                if in_dygraph_mode():
                    var_tmp = _C_ops.final_state_cast(out_var, var.dtype)
                elif _in_legacy_dygraph():
                    var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                          'out_dtype', var.dtype)
636
                var_tmp._share_underline_tensor_to(var)
637
            else:
638
                out_var._share_underline_tensor_to(var)
639
            return None
640
        else:
641
            if self._uniform:
642
                limit = math.sqrt(6.0 / float(fan_in + fan_out))
643 644 645 646 647 648 649 650 651 652 653
                op = block.append_op(type="uniform_random",
                                     inputs={},
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": out_dtype,
                                         "min": -limit,
                                         "max": limit,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
654
            else:
655
                std = math.sqrt(2.0 / float(fan_in + fan_out))
656 657 658 659 660 661 662 663 664 665
                op = block.append_op(type="gaussian_random",
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": out_dtype,
                                         "mean": 0.0,
                                         "std": std,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
666 667 668

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
669 670 671 672 673 674 675
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
676

677
            var.op = op
678
            return op
679 680 681


class MSRAInitializer(Initializer):
682
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
683 684

    This class implements the weight initialization from the paper
685 686 687 688 689 690 691 692
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

693
        x = gain \times \sqrt{\frac{3}{fan\_in}}
694 695 696 697 698 699

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

700
        \frac{gain}{\sqrt{{fan\_in}}}
701 702

    Args:
703 704 705
        uniform (bool, optional): whether to use uniform or normal distribution
        fan_in (float32|None, optional): fan_in (in_features) of trainable Tensor, If None, it will be infered automaticly. If you don't want to use in_features of the Tensor, you can set the value of 'fan_in' smartly by yourself. default is None.
        seed (int32, optional): random seed.
706 707
        negative_slope (float, optional): negative_slope (only used with leaky_relu). default is 0.0.
        nonlinearity(str, optional): the non-linear function. default is relu.
708 709 710 711 712 713

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
714

715
            import paddle
X
xsrobin 已提交
716
            import paddle.fluid as fluid
717
            paddle.enable_static()
D
Double_V 已提交
718
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
719 720
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
721

722 723
    """

724 725 726 727 728 729
    def __init__(self,
                 uniform=True,
                 fan_in=None,
                 seed=0,
                 negative_slope=0,
                 nonlinearity='relu'):
730 731 732 733 734 735 736 737
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed
738 739
        self._negative_slope = negative_slope
        self._nonlinearity = nonlinearity
740

741 742
    def __call__(self, var, block=None):
        """Initialize the input tensor with MSRA initialization.
743 744

        Args:
745 746 747
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
748 749

        Returns:
750
            The initialization op
751
        """
752 753
        block = self._check_block(block)

754 755 756 757 758 759 760
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
761 762 763
        if self._seed == 0:
            self._seed = block.program.random_seed

764
        # to be compatible of fp16 initalizers
765 766
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
767
            out_dtype = VarDesc.VarType.FP32
768 769 770 771 772 773
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['masra_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
774 775 776 777
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
778
        if framework._non_static_mode():
779
            if self._uniform:
780 781 782
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                limit = gain * math.sqrt(3.0 / float(fan_in))

783 784 785 786 787
                out_var = _C_ops.uniform_random('shape', out_var.shape, 'min',
                                                -limit, 'max', limit, 'seed',
                                                self._seed, 'dtype',
                                                int(out_dtype))
            else:
788 789
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                std = gain / math.sqrt(float(fan_in))
790 791 792 793 794
                if in_dygraph_mode():
                    place = _current_expected_place()
                    out_var = _C_ops.final_state_gaussian_random(
                        out_var.shape, 0.0, std, self._seed, out_dtype, place)
                else:
795 796 797 798 799
                    out_var = _C_ops.gaussian_random('shape',
                                                     out_var.shape, 'dtype',
                                                     int(out_dtype), 'mean',
                                                     0.0, 'std', std, 'seed',
                                                     self._seed)
800 801 802 803 804

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
805
                var_tmp._share_underline_tensor_to(var)
806
            else:
807
                out_var._share_underline_tensor_to(var)
808
            return None
809
        else:
810
            if self._uniform:
811 812
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                limit = gain * math.sqrt(3.0 / float(fan_in))
813 814 815 816 817 818 819 820 821 822 823
                op = block.append_op(type="uniform_random",
                                     inputs={},
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": int(out_dtype),
                                         "min": -limit,
                                         "max": limit,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
824 825

            else:
826 827
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                std = gain / math.sqrt(float(fan_in))
828 829 830 831 832 833 834 835 836 837
                op = block.append_op(type="gaussian_random",
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": int(out_dtype),
                                         "mean": 0.0,
                                         "std": std,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
838 839 840

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
841 842 843 844 845 846 847
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
848

849
            var.op = op
850
            return op
851 852


853
class BilinearInitializer(Initializer):
854
    """
855 856 857
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
858 859 860 861 862

    Examples:

        .. code-block:: python

863
            import math
864 865 866 867 868

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
869 870
            factor = 2
            C = 2
D
Double_V 已提交
871 872
            B = 8
            H = W = 32
873 874 875 876
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
877
            conv_up = nn.Conv2DTranspose(3,
878 879 880 881 882 883 884 885 886 887 888
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
889 890 891 892
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
893 894
    interpolation unchanged during training.

895 896 897 898 899 900 901
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

902 903
    def __call__(self, var, block=None):
        """Initialize the input tensor with Bilinear initialization.
904 905

        Args:
906 907 908
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
909 910

        Returns:
911
            The initialization op
912
        """
913 914
        block = self._check_block(block)

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

939
        # to be compatible of fp16 initalizers
940 941 942
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
943
            out_dtype = VarDesc.VarType.FP32
944 945 946 947 948 949
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['bilinear_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
950 951 952 953 954
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
955 956 957
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
958 959
            raise TypeError("Unsupported dtype %s", var.dtype)

960 961
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
962

J
Jiabin Yang 已提交
963
        if framework._non_static_mode():
964 965
            _C_ops.assign_value(out_var, 'shape', list(shape), 'dtype',
                                out_dtype, value_name, values)
966 967 968 969 970 971
            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
972
                var_tmp._share_underline_tensor_to(var)
973
            else:
974
                out_var._share_underline_tensor_to(var)
975 976
            return None
        else:
977 978 979 980 981 982 983
            op = block.append_op(type='assign_value',
                                 outputs={'Out': [out_var]},
                                 attrs={
                                     'dtype': out_dtype,
                                     'shape': list(shape),
                                     value_name: values
                                 })
984 985 986 987 988

            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
989 990 991 992 993 994 995
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
996

997
            var.op = op
998
            return op
999 1000


1001 1002
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
1003
    This op initialize the variable by numpy array.
1004 1005 1006 1007

    Args:
        value (numpy): numpy array to initialize the variable

1008 1009 1010
    Returns:
        A Tensor variable initialized by numpy.

1011 1012 1013
    Examples:
        .. code-block:: python

1014
            import paddle.fluid as fluid
1015 1016
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

1027 1028
    def __call__(self, var, block=None):
        """Initialize the input tensor with Numpy array.
1029 1030

        Args:
1031 1032 1033
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
1034 1035

        Returns:
1036
            The initialization op
1037
        """
1038 1039
        block = self._check_block(block)

1040 1041
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
1042 1043

        # to be compatible of fp16 initalizers
1044
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1045 1046
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
1047 1048 1049 1050 1051 1052
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['numpy_array_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
1053 1054 1055 1056 1057 1058
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

        if out_dtype == VarDesc.VarType.FP32:
1059
            value_name = "fp32_values"
1060 1061
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
1062
            value_name = "int32_values"
1063
            values = [int(v) for v in np_value.flat]
1064 1065
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
1066
        if self._value.size > 1024 * 1024 * 1024:
1067 1068
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
1069

J
Jiabin Yang 已提交
1070
        if framework._non_static_mode():
1071 1072
            _C_ops.assign_value(out_var, 'shape', list(self._value.shape),
                                'dtype', out_dtype, value_name, values)
1073 1074 1075
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
1076
                var_tmp._share_underline_tensor_to(var)
1077
            else:
1078
                out_var._share_underline_tensor_to(var)
1079 1080
            return None
        else:
1081 1082 1083 1084 1085 1086 1087 1088
            op = block.append_op(type='assign_value',
                                 outputs={'Out': out_var},
                                 attrs={
                                     'dtype': out_dtype,
                                     'shape': list(self._value.shape),
                                     value_name: values
                                 },
                                 stop_gradient=True)
1089 1090

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1091 1092 1093 1094 1095 1096 1097
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
1098

1099
            var.op = op
1100
            return op
1101 1102


1103 1104 1105 1106 1107 1108 1109
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
1110
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

1130 1131 1132 1133 1134
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
1135 1136 1137

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
1138 1139
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
1140 1141 1142 1143

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
1144 1145 1146 1147
            conv2 = nn.Conv2D(4, 6, (3, 3), 
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1148 1149

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1150
            nn.initializer.set_global_initializer(None)
1151
    """
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1178 1179
def calculate_gain(nonlinearity, param=None):
    """
1180 1181
    Get the recommended ``gain`` value of some nonlinearity function. ``gain`` value can be used in some 
    ``paddle.nn.initializer`` api to adjust the initialization value.
1182 1183

    Args:
1184 1185
        nonlinearity(str): name of nonlinearity activation function. If it is a linear function, such as: 
            `linear/conv1d/conv2d/conv3d/conv1d_transpose/conv2d_transpose/conv3d_transpose` , 1.0 will be returned.
1186
        param(bool|int|float, optional): optional parameter for somme nonlinearity function. Now, it only applies to 
1187
            'leaky_relu'. Default: None, it will be calculated as 0.01 in the formula.
1188 1189

    Returns:
1190
        A float value, which is the recommended gain for this nonlinearity function.
1191 1192 1193

    Examples:
        .. code-block:: python
1194

1195 1196 1197
            import paddle
            gain = paddle.nn.initializer.calculate_gain('tanh') # 5.0 / 3
            gain = paddle.nn.initializer.calculate_gain('leaky_relu', param=1.0) # 1.0 = math.sqrt(2.0 / (1+param^2))
1198
            initializer = paddle.nn.initializer.Orthogonal(gain)
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

    """
    if param is None:
        param = 0.01
    else:
        assert isinstance(param, (bool, int, float))
        param = float(param)
    recommended_gain = {
        'sigmoid': 1,
        'linear': 1,
        'conv1d': 1,
        'conv2d': 1,
        'conv3d': 1,
1212 1213 1214
        'conv1d_transpose': 1,
        'conv2d_transpose': 1,
        'conv3d_transpose': 1,
1215 1216 1217 1218 1219 1220 1221 1222
        'tanh': 5.0 / 3,
        'relu': math.sqrt(2.0),
        'leaky_relu': math.sqrt(2.0 / (1 + param**2)),
        'selu': 3.0 / 4
    }
    if nonlinearity in recommended_gain.keys():
        return recommended_gain[nonlinearity]
    else:
1223 1224 1225
        raise ValueError(
            "nonlinearity function {} is not suppported now.".format(
                nonlinearity))
1226 1227


1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1240
TruncatedNormal = TruncatedNormalInitializer
1241 1242
Xavier = XavierInitializer
MSRA = MSRAInitializer
1243
Bilinear = BilinearInitializer