common.py 74.8 KB
Newer Older
S
shiyutang 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
S
shiyutang 已提交
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define the common classes to build a neural network
16
import paddle
17 18
from paddle import in_dynamic_mode

19
from .. import functional as F
20
from .layers import Layer
21

22 23
__all__ = []

24

25
def _npairs(x, n):
26
    if isinstance(x, (paddle.Tensor, list, tuple)):
27 28 29 30 31
        return x
    x = [x] * (n * 2)
    return x


S
shiyutang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
class Identity(Layer):
    r"""

    A placeholder identity operator that is argument-insensitive. For each input :math:`X` ,
    the output :math:`Out` is:

    .. math::

        Out = X

    Parameters:
        args: any argument (unused)
        kwargs: any keyword argument (unused)

    Shape:
        - input: Multi-dimentional tensor with shape :math:`[batch\_size, n1, n2, ...]` .
        - output: Multi-dimentional tensor with shape :math:`[batch\_size, n1, n2, ...]` .

    Examples:
        .. code-block:: python

          import paddle

          input_tensor = paddle.randn(shape=[3, 2])
          layer = paddle.nn.Identity()
          out = layer(input_tensor)
          # input_tensor: [[-0.32342386 -1.200079  ]
          #                [ 0.7979031  -0.90978354]
          #                [ 0.40597573  1.8095392 ]]
          # out: [[-0.32342386 -1.200079  ]
          #      [ 0.7979031  -0.90978354]
          #      [ 0.40597573  1.8095392 ]]


    """

    def __init__(self, *args, **kwargs):
69
        super().__init__()
S
shiyutang 已提交
70 71 72 73 74

    def forward(self, input):
        return input


Z
zhiboniu 已提交
75
class Linear(Layer):
76
    r"""
77 78 79

    Fully-connected linear transformation layer. For each input :math:`X` ,
    the equation is:
80 81 82

    .. math::

83
        Out = XW + b
84

85
    where :math:`W` is the weight and :math:`b` is the bias.
86

87 88 89 90 91 92 93
    Linear layer takes only one multi-dimensional tensor as input with the
    shape :math:`[batch\_size, *, in\_features]` , where :math:`*` means any
    number of additional dimensions. It multiplies input tensor with the weight
    (a 2-D tensor of shape :math:`[in\_features, out\_features]` ) and produces
    an output tensor of shape :math:`[batch\_size, *, out\_features]` .
    If :math:`bias\_attr` is not False, the bias (a 1-D tensor of
    shape :math:`[out\_features]` ) will be created and added to the output.
94 95

    Parameters:
96 97 98
        in_features (int): The number of input units.
        out_features (int): The number of output units.
        weight_attr (ParamAttr, optional): The attribute for the learnable
99 100 101
            weight of this layer. The default value is None. If the Initializer of the
            param_attr is not set, the parameter is initialized with Xavier.
            For detailed information, please refer to paddle.ParamAttr.
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        bias_attr (ParamAttr|bool, optional): The attribute for the learnable bias
            of this layer. If it is set to False, no bias will be added to the output.
            If it is set to None or one kind of ParamAttr, a bias parameter will
            be created according to ParamAttr. For detailed information, please refer
            to paddle.ParamAttr. The default value is None and the bias will be
            initialized to zero.
        name (str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Attribute:
        **weight** (Parameter): the learnable weight of this layer.

        **bias** (Parameter): the learnable bias of this layer.

    Shape:
117 118
        - input: Multi-dimentional tensor with shape :math:`[batch\_size, *, in\_features]` . Its data types are float16, float32, float64 ,The default is float32 .
        - output: Multi-dimentional tensor with shape :math:`[batch\_size, *, out\_features]` . The data type is the same as the input .
119 120 121 122 123

    Examples:
        .. code-block:: python

          import paddle
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

          # Define the linear layer.
          weight_attr = paddle.ParamAttr(
              name="weight",
              initializer=paddle.nn.initializer.Constant(value=0.5))
          bias_attr = paddle.ParamAttr(
              name="bias",
              initializer=paddle.nn.initializer.Constant(value=1.0))
          linear = paddle.nn.Linear(2, 4, weight_attr=weight_attr, bias_attr=bias_attr)
          # linear.weight: [[0.5 0.5 0.5 0.5]
          #                 [0.5 0.5 0.5 0.5]]
          # linear.bias: [1. 1. 1. 1.]

          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          y = linear(x)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
145 146
    """

147 148 149 150 151 152 153 154
    def __init__(
        self,
        in_features,
        out_features,
        weight_attr=None,
        bias_attr=None,
        name=None,
    ):
155
        super().__init__()
156 157 158
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
159 160 161 162 163 164 165 166 167 168 169 170
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False,
        )
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True,
        )
171 172 173
        self.name = name

    def forward(self, input):
174 175 176
        out = F.linear(
            x=input, weight=self.weight, bias=self.bias, name=self.name
        )
177 178
        return out

179
    def extra_repr(self):
180
        name_str = f', name={self.name}' if self.name else ''
181
        return 'in_features={}, out_features={}, dtype={}{}'.format(
182 183
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str
        )
184

185

FormlessUnit's avatar
FormlessUnit 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
class LinearCompress(Layer):
    r"""

    Fully-connected linear transformation layer. For each input :math:`X` ,
    the equation is:

    .. math::

        Out = XW + b

    where :math:`W` is the weight and :math:`b` is the bias.

    Linear layer takes only one multi-dimensional tensor as input with the
    shape :math:`[batch\_size, *, in\_features]` , where :math:`*` means any
    number of additional dimensions. It multiplies input tensor with the weight
    (a 2-D tensor of shape :math:`[in\_features, out\_features]` ) and produces
    an output tensor of shape :math:`[batch\_size, *, out\_features]` .
    If :math:`bias\_attr` is not False, the bias (a 1-D tensor of
    shape :math:`[out\_features]` ) will be created and added to the output.

    Parameters:
        in_features (int): The number of input units.
        out_features (int): The number of output units.
        weight_attr (ParamAttr, optional): The attribute for the weight of this layer.
            The default value is None. If the Initializer of the
            param_attr is not set, the parameter is initialized with Xavier.
            For detailed information, please refer to paddle.ParamAttr.
        bias_attr (ParamAttr|bool, optional): The attribute for the bias of this layer.
            If it is set to False, no bias will be added to the output.
            If it is set to None or one kind of ParamAttr, a bias parameter will
            be created according to ParamAttr. For detailed information, please refer
            to paddle.ParamAttr. The default value is None and the bias will be
            initialized to zero.
        name (str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .
        bits (int, optional): The attribute to set num of bits in quant during weight_only,
            it must be set as 8, default: 8.
        algo (str, optional): The  attribute to set algorithm of cpmoress, it must be set as 'weight_only'
            or 'llm.int8', default: weight_only.
        config (dict, optional): The parameter config for algorithm of cpmoress.
            For llm.int8, it should be set as {'threshold': 6.0}, default: {'threshold': 6.0}.

    Attribute:
        **weight** (Parameter): the learnable weight of this layer.

        **bias** (Parameter): the learnable bias of this layer.

    Shape:
        - input: Multi-dimentional tensor with shape :math:`[batch\_size, *, in\_features]` . Its data types are float16.
        - output: Multi-dimentional tensor with shape :math:`[batch\_size, *, out\_features]` . The data type is the same as the input .

    Examples:
        .. code-block:: python

          import paddle

          # Define the linear layer.
          paddle.set_default_dtype('float16')
          weight_attr = paddle.ParamAttr(
              name="weight",
              initializer=paddle.nn.initializer.Constant(value=0.5))
          bias_attr = paddle.ParamAttr(
              name="bias",
              initializer=paddle.nn.initializer.Constant(value=1.0))
          linear = paddle.nn.LinearCompress(128, 64, weight_attr=weight_attr, bias_attr=bias_attr, bits=8, algo='weight_only')
          x = paddle.randn((3, 128), dtype="float16")
          y = linear(x)
    """

    def __init__(
        self,
        in_features,
        out_features,
        weight_attr=None,
        bias_attr=None,
        name=None,
        bits=8,
        algo="weight_only",
        config={'threshold': 6.0},
    ):
        super().__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False,
        )
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True,
        )
        self.weight_scale = self.create_parameter(
            shape=[out_features],
            attr=None,
            dtype=self._dtype,
            is_bias=False,
        )
        self.is_weight_quanted = False
        self.name = (name,)
        self.bits = bits
        self.layout = algo
        self.algo = algo
        self.config = config

    def forward(self, input):
        if in_dynamic_mode():
            if not self.is_weight_quanted:
                weight_tensor, weight_scale_tensor = F.quant_for_compress(
                    self.weight, self.bits, self.layout
                )
                weight_attr = paddle.framework.ParamAttr(
                    initializer=paddle.nn.initializer.Assign(weight_tensor)
                )
FormlessUnit's avatar
FormlessUnit 已提交
304 305 306 307 308
                weight_shape = (
                    [self.weight.shape[1], self.weight.shape[0]]
                    if self.bits == 8
                    else [self.weight.shape[1] / 2, self.weight.shape[0]]
                )
FormlessUnit's avatar
FormlessUnit 已提交
309
                self.weight = self.create_parameter(
FormlessUnit's avatar
FormlessUnit 已提交
310
                    shape=weight_shape,
FormlessUnit's avatar
FormlessUnit 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
                    attr=weight_attr,
                    dtype="int8",
                    is_bias=False,
                )
                weight_scale_attr = paddle.framework.ParamAttr(
                    initializer=paddle.nn.initializer.Assign(
                        weight_scale_tensor
                    )
                )
                self.weight_scale = self.create_parameter(
                    shape=self.weight_scale.shape,
                    attr=weight_scale_attr,
                    dtype="float32",
                    is_bias=False,
                )
                self.is_weight_quanted = True
            out = F.linear_compress(
                x=input,
                weight=self.weight,
                weight_scale=self.weight_scale,
                bias=self.bias,
                bits=self.bits,
                algo=self.algo,
                name=self.name,
                config=self.config,
            )
            return out

    def extra_repr(self):
        name_str = f', name={self.name}' if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}, algo={}'.format(
            self.weight.shape[0],
            self.weight.shape[1],
            self._dtype,
            name_str,
            self.algo,
        )


Z
zhiboniu 已提交
350
class Upsample(Layer):
351 352
    """
    This op resizes a batch of images.
353

354 355 356
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
357 358
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
359
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
360

361
    Supporting resample methods:
362 363 364 365 366 367
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation

T
tangwei12 已提交
368 369 370
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

371 372 373 374 375 376 377 378 379
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
T
tangwei12 已提交
380

381 382 383 384
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
385 386 387 388 389

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
390
    align_corners and align_mode are optional parameters,the calculation method
391 392
    of interpolation can be selected by them.

393 394 395 396 397 398
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

399 400 401 402
    Example:

    .. code-block:: text

403
        For scale_factor:
404 405 406 407 408
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

409 410 411 412 413 414 415 416 417 418
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
419 420 421 422 423 424 425 426 427 428 429 430 431 432

        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
T
tangwei12 已提交
433

434 435 436
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
437

438 439 440 441 442
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
443

444 445 446 447 448 449 450 451 452 453 454 455
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
456

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

478 479
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
T
tangwei12 已提交
480

481 482
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
T
tangwei12 已提交
483

484 485
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
T
tangwei12 已提交
486

487 488
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
T
tangwei12 已提交
489

490 491
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
T
tangwei12 已提交
492

493
    Parameters:
X
xiaoting 已提交
494
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
495
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
496
        size (list|tuple|Tensor|None): Output shape of image resize
497 498
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
499
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
500
             If a Tensor , its dimensions size should be a 1.
501 502 503
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`. Has to match input size if it is either a list or a tuple or a Tensor.
504
             Default: None.
505 506
        mode (str): The resample method. It supports 'linear', 'nearst', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
507 508 509
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
510 511 512 513
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
514
        data_format (str, optional): Specify the data format of the input, and the data format of the output
515
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
516 517 518
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
519 520 521
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
522 523 524
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
525
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
526 527 528

    Examples:
        .. code-block:: python
529

530
            import paddle
X
xiaoting 已提交
531

532 533
            input = paddle.rand([2,3,6,10], dtype="float32")
            upsample_out = paddle.nn.Upsample(size=[12,12])
X
xiaoting 已提交
534 535 536

            output = upsample_out(x=input)
            print(output.shape)
537
            # [2, 3, 12, 12]
X
xiaoting 已提交
538

539 540
    """

541 542 543 544 545 546 547 548 549 550
    def __init__(
        self,
        size=None,
        scale_factor=None,
        mode='nearest',
        align_corners=False,
        align_mode=0,
        data_format='NCHW',
        name=None,
    ):
551
        super().__init__()
552 553 554
        self.size = size
        self.scale_factor = scale_factor
        self.mode = mode.lower()
555 556 557
        self.align_corners = align_corners
        self.align_mode = align_mode
        self.data_format = data_format
X
xiaoting 已提交
558
        self.name = name
559

X
xiaoting 已提交
560
    def forward(self, x):
561 562 563 564 565 566 567 568 569 570
        out = F.interpolate(
            x,
            size=self.size,
            scale_factor=self.scale_factor,
            mode=self.mode,
            align_corners=self.align_corners,
            align_mode=self.align_mode,
            data_format=self.data_format,
            name=self.name,
        )
X
xiaoting 已提交
571 572 573

        return out

574 575
    def extra_repr(self):
        if self.scale_factor is not None:
576
            main_str = f'scale_factor={self.scale_factor}'
577
        else:
578 579
            main_str = f'size={self.size}'
        name_str = f', name={self.name}' if self.name else ''
580
        return '{}, mode={}, align_corners={}, align_mode={}, data_format={}{}'.format(
581 582 583 584 585 586 587
            main_str,
            self.mode,
            self.align_corners,
            self.align_mode,
            self.data_format,
            name_str,
        )
588

X
xiaoting 已提交
589

Z
zhiboniu 已提交
590
class UpsamplingNearest2D(Layer):
X
xiaoting 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    """
    This op upsamples a batch of images, using nearest neighbours' pixel values.
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w),
    where in_w is width of the input tensor, in_h is the height of the input tensor.
    And the upsampling only applies on the two dimensions(height and width).
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    Parameters:
        x (Tensor): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor.
608
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
             If a Tensor , its dimensions size should be a 1.
        scale_factor (float|int|list|tuple|Tensor|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.
             Has to match input size if it is either a list or a tuple or a Tensor.
             Default: None.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),


    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

X
xiaoting 已提交
633
            input_data = paddle.rand(shape=(2,3,6,10)).astype("float32")
X
xiaoting 已提交
634 635 636 637 638 639 640
            upsample_out  = paddle.nn.UpsamplingNearest2D(size=[12,12])
            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
    """

641 642 643
    def __init__(
        self, size=None, scale_factor=None, data_format='NCHW', name=None
    ):
644
        super().__init__()
X
xiaoting 已提交
645 646 647 648 649 650
        self.size = size
        self.scale_factor = scale_factor
        self.data_format = data_format
        self.name = name

    def forward(self, x):
651 652 653 654 655 656 657 658 659 660
        out = F.interpolate(
            x,
            size=self.size,
            scale_factor=self.scale_factor,
            mode='nearest',
            align_corners=False,
            align_mode=0,
            data_format=self.data_format,
            name=self.name,
        )
X
xiaoting 已提交
661 662 663

        return out

664 665
    def extra_repr(self):
        if self.scale_factor is not None:
666
            main_str = f'scale_factor={self.scale_factor}'
667
        else:
668 669
            main_str = f'size={self.size}'
        name_str = f', name={self.name}' if self.name else ''
670 671 672
        return '{}, data_format={}{}'.format(
            main_str, self.data_format, name_str
        )
673

X
xiaoting 已提交
674

Z
zhiboniu 已提交
675
class UpsamplingBilinear2D(Layer):
X
xiaoting 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
    """
    This op upsamples a batch of images, using bilinear' pixel values.
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w),
    where in_w is width of the input tensor, in_h is the height of the input tensor.
    And the upsampling only applies on the two dimensions(height and width).
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

    Parameters:
        x (Tensor): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor.
695
             Default: None. If a list/tuple, each element can be an integer or a Tensor  of shape: [1].
X
xiaoting 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
             If a Tensor , its dimensions size should be a 1.
        scale_factor (float|int|list|tuple|Tensor|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.
             Has to match input size if it is either a list or a tuple or a Tensor.
             Default: None.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

X
xiaoting 已提交
719
            input_data = paddle.rand(shape=(2,3,6,10)).astype("float32")
X
xiaoting 已提交
720 721 722 723 724 725 726
            upsample_out  = paddle.nn.UpsamplingBilinear2D(size=[12,12])
            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
    """

727 728 729
    def __init__(
        self, size=None, scale_factor=None, data_format='NCHW', name=None
    ):
730
        super().__init__()
X
xiaoting 已提交
731 732 733 734 735 736
        self.size = size
        self.scale_factor = scale_factor
        self.data_format = data_format
        self.name = name

    def forward(self, x):
737 738 739 740 741 742 743 744 745 746
        out = F.interpolate(
            x,
            size=self.size,
            scale_factor=self.scale_factor,
            mode='bilinear',
            align_corners=True,
            align_mode=0,
            data_format=self.data_format,
            name=self.name,
        )
X
xiaoting 已提交
747 748 749

        return out

750 751
    def extra_repr(self):
        if self.scale_factor is not None:
752
            main_str = f'scale_factor={self.scale_factor}'
753
        else:
754 755
            main_str = f'size={self.size}'
        name_str = f', name={self.name}' if self.name else ''
756 757 758
        return '{}, data_format={}{}'.format(
            main_str, self.data_format, name_str
        )
759

X
xiaoting 已提交
760

Z
zhiboniu 已提交
761
class Bilinear(Layer):
762
    r"""
763 764 765 766

    This layer performs bilinear on two inputs.

    .. math::
767

768
      out_{i} = x1 * W_{i} * {x2^\mathrm{T}}, i=0,1,...,outfeatures-1
769

770 771 772 773 774 775
      out = out + b

    In this formula:
     - :math:`x1`: the first input contains in1_features elements, shape is [batch_size, in1_features].
     - :math:`x2`: the second input contains in2_features elements, shape is [batch_size, in2_features].
     - :math:`W_{i}`: the i-th learned weight, shape is [in1_features, in2_features], and learned weight's shape is [out_features, in1_features, in2_features].
776
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size], and out's shape is [batch_size, out_features].
777 778 779 780 781 782 783
     - :math:`b`: the learned bias, shape is [1, out_features].
     - :math:`x2^\mathrm{T}`: the transpose of :math:`x2`.

    Parameters:
       in1_features (int): The dimension of each first input(`x1`).
       in2_features (int): The dimension of each second input(`x2`).
       out_features (int): The dimension of output of this layer.
T
tangwei12 已提交
784
       weight_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
785 786 787
       this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
           of this layer. If it is set to False, no bias will be added to the output units.
T
tangwei12 已提交
788
           If it is set to None, the bias is initialized zero. The default value is None.
789 790 791 792 793 794 795 796 797
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.

    Returns:
798
       Tensor: A 2-D Tensor of shape [batch_size, out_features].
799 800 801 802 803 804

    Examples:
       .. code-block:: python

        import paddle

805 806
        layer1 = paddle.rand((5, 5)).astype('float32')
        layer2 = paddle.rand((5, 4)).astype('float32')
807 808
        bilinear = paddle.nn.Bilinear(
            in1_features=5, in2_features=4, out_features=1000)
809
        result = bilinear(layer1,layer2)    # result shape [5, 1000]
810 811 812

    """

813 814 815 816 817 818 819 820 821
    def __init__(
        self,
        in1_features,
        in2_features,
        out_features,
        weight_attr=None,
        bias_attr=None,
        name=None,
    ):
822
        super().__init__()
823 824 825 826 827 828 829 830 831
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._name = name
        self._in1_features = in1_features
        self._in2_features = in2_features
        self._out_features = out_features
        self._dtype = self._helper.get_default_dtype()

        weight_shape = [
832 833 834
            self._out_features,
            self._in1_features,
            self._in2_features,
835
        ]
836 837 838 839 840 841
        self.weight = self.create_parameter(
            attr=self._weight_attr,
            shape=weight_shape,
            dtype=self._dtype,
            is_bias=False,
        )
842
        bias_shape = [1, self._out_features]
843 844 845 846 847 848
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_shape,
            dtype=self._dtype,
            is_bias=True,
        )
849 850 851 852

    def forward(self, x1, x2):
        return F.bilinear(x1, x2, self.weight, self.bias, self._name)

853
    def extra_repr(self):
854
        name_str = f', name={self._name}' if self._name else ''
855
        return 'in1_features={}, in2_features={}, out_features={}, dtype={}{}'.format(
856 857 858 859 860 861
            self._in1_features,
            self._in2_features,
            self._out_features,
            self._dtype,
            name_str,
        )
862

863

Z
zhiboniu 已提交
864
class Dropout(Layer):
865
    r"""
866 867
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training as described in the paper:
T
tangwei12 已提交
868
    `Improving neural networks by preventing co-adaptation of feature detectors <https://arxiv.org/abs/1207.0580>`_
869 870 871
    The dropout operator randomly sets the outputs of some units to zero, while upscale others
    according to the given dropout probability.

872
    See :ref:`api_paddle_nn_functional_dropout` for more details.
873 874

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.
875 876

    Parameters:
877 878
        p (float|int, optional): Probability of setting units to zero. Default: 0.5
        axis (int|list|tuple, optional): The axis along which the dropout is performed. Default: None.
879 880
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer']

881
                               1. upscale_in_train (default), upscale the output at training time
882

883 884
                                  - train: :math:`out = input \times \frac{mask}{(1.0 - p)}`
                                  - inference: :math:`out = input`
885 886 887

                               2. downscale_in_infer, downscale the output at inference

888 889 890
                                  - train: :math:`out = input \times mask`
                                  - inference: :math:`out = input \times (1.0 - p)`
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
891 892 893 894 895

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

896

897 898
    Examples:
        .. code-block:: python
899

900 901
            import paddle

902
            x = paddle.to_tensor([[1,2,3], [4,5,6]], dtype="float32")
903
            m = paddle.nn.Dropout(p=0.5)
904

905
            y_train = m(x)
906 907 908 909 910
            print(y_train)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 0., 6.],
            #         [0., 0., 0.]])

911 912
            m.eval()  # switch the model to test phase
            y_test = m(x)
913
            print(y_test)
914 915 916
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
917
    """
918 919

    def __init__(self, p=0.5, axis=None, mode="upscale_in_train", name=None):
920
        super().__init__()
921 922 923 924 925 926 927

        self.p = p
        self.axis = axis
        self.mode = mode
        self.name = name

    def forward(self, input):
928 929 930 931 932 933 934 935
        out = F.dropout(
            input,
            p=self.p,
            axis=self.axis,
            training=self.training,
            mode=self.mode,
            name=self.name,
        )
936 937
        return out

938
    def extra_repr(self):
939
        name_str = f', name={self.name}' if self.name else ''
940 941 942
        return 'p={}, axis={}, mode={}{}'.format(
            self.p, self.axis, self.mode, name_str
        )
943

944

Z
zhiboniu 已提交
945
class Dropout2D(Layer):
946 947 948 949
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW`). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
C
cnn 已提交
950
    Dropout2D will help promote independence between feature maps as described in the paper:
T
tangwei12 已提交
951
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
952

953
    See :ref:`api_paddle_nn_functional_dropout2d` for more details.
954

955 956
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

957
    Parameters:
958 959 960
        p (float, optional): Probability of setting units to zero. Default: 0.5.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC`. When it is `NCHW`, the data is stored in the order of: [batch_size, input_channels, input_height, input_width]. Default: `NCHW`.
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
961 962 963 964 965

    Shape:
        - input: 4-D tensor.
        - output: 4-D tensor, the same shape as input.

966

967 968
    Examples:
        .. code-block:: python
969

970 971
            import paddle

972 973 974 975 976 977 978 979 980
            x = paddle.rand([2, 2, 1, 3], dtype="float32")
            print(x)
            # Tensor(shape=[2, 2, 1, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[0.10052059, 0.93890846, 0.45351565]],
            #          [[0.47507706, 0.45021373, 0.11331241]]],

            #         [[[0.53358698, 0.97375143, 0.34997326]],
            #          [[0.24758087, 0.52628899, 0.17970420]]]])

C
cnn 已提交
981
            m = paddle.nn.Dropout2D(p=0.5)
982
            y_train = m(x)
983 984 985 986 987 988 989 990
            print(y_train)
            # Tensor(shape=[2, 2, 1, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[0.        , 0.        , 0.        ]],
            #          [[0.95015413, 0.90042746, 0.22662482]]],

            #         [[[1.06717396, 1.94750285, 0.69994652]],
            #          [[0.        , 0.        , 0.        ]]]])

991 992
            m.eval()  # switch the model to test phase
            y_test = m(x)
993
            print(y_test)
994 995 996 997 998 999
            # Tensor(shape=[2, 2, 1, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[0.10052059, 0.93890846, 0.45351565]],
            #          [[0.47507706, 0.45021373, 0.11331241]]],

            #         [[[0.53358698, 0.97375143, 0.34997326]],
            #          [[0.24758087, 0.52628899, 0.17970420]]]])
1000
    """
1001 1002

    def __init__(self, p=0.5, data_format='NCHW', name=None):
1003
        super().__init__()
1004 1005 1006 1007 1008 1009

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
1010 1011 1012 1013 1014 1015 1016
        out = F.dropout2d(
            input,
            p=self.p,
            training=self.training,
            data_format=self.data_format,
            name=self.name,
        )
1017 1018
        return out

1019
    def extra_repr(self):
1020
        name_str = f', name={self.name}' if self.name else ''
1021 1022 1023
        return 'p={}, data_format={}{}'.format(
            self.p, self.data_format, name_str
        )
1024

1025

Z
zhiboniu 已提交
1026
class Dropout3D(Layer):
1027 1028 1029 1030
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
C
cnn 已提交
1031
    Dropout3D will help promote independence between feature maps as described in the paper:
T
tangwei12 已提交
1032
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
1033

1034
    See :ref:`api_paddle_nn_functional_dropout3d` for more details.
1035

1036 1037
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

1038
    Parameters:
1039 1040 1041
        p (float | int, optional): Probability of setting units to zero. Default: 0.5.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCDHW` or `NDHWC`. When it is `NCDHW`, the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width]. Default: `NCDHW`.
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1042 1043 1044 1045 1046

    Shape:
        - input: 5-D tensor.
        - output: 5-D tensor, the same shape as input.

1047

1048 1049
    Examples:
        .. code-block:: python
1050

1051 1052
            import paddle

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
            x = paddle.arange(24, dtype="float32").reshape((1, 2, 2, 2, 3))
            print(x)
            # Tensor(shape=[1, 2, 2, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[[0. , 1. , 2. ],
            #            [3. , 4. , 5. ]],
            #           [[6. , 7. , 8. ],
            #            [9. , 10., 11.]]],

            #          [[[12., 13., 14.],
            #            [15., 16., 17.]],
            #           [[18., 19., 20.],
            #            [21., 22., 23.]]]]])

C
cnn 已提交
1066
            m = paddle.nn.Dropout3D(p=0.5)
1067
            y_train = m(x)
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
            print(y_train)
            # Tensor(shape=[1, 2, 2, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[[0. , 2. , 4. ],
            #            [6. , 8. , 10.]],
            #           [[12., 14., 16.],
            #            [18., 20., 22.]]],

            #          [[[0. , 0. , 0. ],
            #            [0. , 0. , 0. ]],
            #           [[0. , 0. , 0. ],
            #            [0. , 0. , 0. ]]]]])

1080 1081
            m.eval()  # switch the model to test phase
            y_test = m(x)
1082
            print(y_test)
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
            # Tensor(shape=[1, 2, 2, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[[[0. , 1. , 2. ],
            #            [3. , 4. , 5. ]],
            #           [[6. , 7. , 8. ],
            #            [9. , 10., 11.]]],

            #          [[[12., 13., 14.],
            #            [15., 16., 17.]],
            #           [[18., 19., 20.],
            #            [21., 22., 23.]]]]])
1093
    """
1094 1095

    def __init__(self, p=0.5, data_format='NCDHW', name=None):
1096
        super().__init__()
1097 1098 1099 1100 1101 1102

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
1103 1104 1105 1106 1107 1108 1109
        out = F.dropout3d(
            input,
            p=self.p,
            training=self.training,
            data_format=self.data_format,
            name=self.name,
        )
1110 1111
        return out

1112
    def extra_repr(self):
1113
        name_str = f', name={self.name}' if self.name else ''
1114 1115 1116
        return 'p={}, data_format={}{}'.format(
            self.p, self.data_format, name_str
        )
1117

1118

Z
zhiboniu 已提交
1119
class AlphaDropout(Layer):
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property. For an input with
    zero mean and unit standard deviation, the output of Alpha Dropout maintains the original mean and
    standard deviation of the input. Alpha Dropout fits well to SELU activate function by randomly setting
    activations to the negative saturation value.

    For more information, please refer to:
    `Self-Normalizing Neural Networks <https://arxiv.org/abs/1706.02515>`_

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

    Examples:
        .. code-block:: python
1141

1142 1143
            import paddle

1144
            x = paddle.to_tensor([[-1, 1], [-1, 1]], dtype="float32")
1145 1146
            m = paddle.nn.AlphaDropout(p=0.5)
            y_train = m(x)
1147 1148 1149 1150 1151
            print(y_train)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-0.77919382,  1.66559887],
            #         [-0.77919382, -0.77919382]])

1152 1153
            m.eval()  # switch the model to test phase
            y_test = m(x)
1154
            print(y_test)
1155 1156 1157
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-1.,  1.],
            #         [-1.,  1.]])
1158
    """
1159 1160

    def __init__(self, p=0.5, name=None):
1161
        super().__init__()
1162 1163 1164 1165
        self.p = p
        self.name = name

    def forward(self, input):
1166 1167 1168
        out = F.alpha_dropout(
            input, p=self.p, training=self.training, name=self.name
        )
1169 1170
        return out

1171
    def extra_repr(self):
1172 1173
        name_str = f', name={self.name}' if self.name else ''
        return f'p={self.p}{name_str}'
1174

1175

Z
zhiboniu 已提交
1176
class Pad1D(Layer):
L
littletomatodonkey 已提交
1177
    """
L
littletomatodonkey 已提交
1178
    This interface is used to construct a callable object of the ``Pad1D`` class.
1179 1180
    Pad tensor according to ``pad``, ``mode`` and ``value``.
    If mode is ``reflect``, pad[0] and pad[1] must be no greater than width-1.
L
littletomatodonkey 已提交
1181 1182

    Parameters:
1183
        padding (Tensor|list[int]|int): The padding size with data type ``'int'``. If is ``'int'``, use the
1184
            same padding in both dimensions. Else [len(padding)/2] dimensions
L
littletomatodonkey 已提交
1185
            of input will be padded. The pad has the form (pad_left, pad_right).
1186
        mode (str, optional): Four modes: ``'constant'`` (default), ``'reflect'``, ``'replicate'``, ``'circular'``. Default: ``'constant'``.
1187 1188 1189 1190 1191 1192

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

1193 1194 1195 1196
        value (float, optional): The value to fill the padded areas. Default is :math:`0.0`.
        data_format (str, optional): An string from: ``'NCL'``, ``'NLC'``. Specify the data format of the input data.
           Default: ``'NCL'``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: ``'None'``.
1197 1198

    Returns:
L
littletomatodonkey 已提交
1199 1200 1201 1202
        None

    Examples:
        .. code-block:: python
1203

L
littletomatodonkey 已提交
1204 1205 1206 1207 1208
            import paddle
            import paddle.nn as nn

            input_shape = (1, 2, 3)
            pad = [1, 2]
L
littletomatodonkey 已提交
1209
            mode = "constant"
1210
            data = paddle.arange(paddle.prod(paddle.to_tensor(input_shape)), dtype="float32").reshape(input_shape) + 1
L
littletomatodonkey 已提交
1211
            my_pad = nn.Pad1D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
1212
            result = my_pad(data)
L
littletomatodonkey 已提交
1213
            print(result)
L
littletomatodonkey 已提交
1214 1215 1216 1217
            # [[[0. 1. 2. 3. 0. 0.]
            #   [0. 4. 5. 6. 0. 0.]]]
    """

1218 1219 1220
    def __init__(
        self, padding, mode='constant', value=0.0, data_format="NCL", name=None
    ):
1221
        super().__init__()
1222
        self._pad = _npairs(padding, 1)
L
littletomatodonkey 已提交
1223
        self._mode = mode
L
littletomatodonkey 已提交
1224
        self._value = value
L
littletomatodonkey 已提交
1225
        self._data_format = data_format
L
littletomatodonkey 已提交
1226 1227 1228
        self._name = name

    def forward(self, x):
1229 1230 1231 1232 1233 1234 1235 1236
        return F.pad(
            x,
            pad=self._pad,
            mode=self._mode,
            value=self._value,
            data_format=self._data_format,
            name=self._name,
        )
L
littletomatodonkey 已提交
1237

1238
    def extra_repr(self):
1239
        name_str = f', name={self._name}' if self._name else ''
1240
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
1241 1242
            self._pad, self._mode, self._value, self._data_format, name_str
        )
1243

L
littletomatodonkey 已提交
1244

Z
zhiboniu 已提交
1245
class Pad2D(Layer):
L
littletomatodonkey 已提交
1246
    """
L
littletomatodonkey 已提交
1247
    This interface is used to construct a callable object of the ``Pad2D`` class.
1248 1249
    Pad tensor according to ``pad``, ``mode`` and ``value``.
    If mode is ``'reflect'``, pad[0] and pad[1] must be no greater
L
littletomatodonkey 已提交
1250
    than width-1. The height dimension has the same condition.
L
littletomatodonkey 已提交
1251 1252

    Parameters:
1253
        padding (Tensor|list[int]|int): The padding size with data type ``'int'``. If is ``'int'``, use the
1254 1255
            same padding in all dimensions. Else [len(padding)/2] dimensions of input will be padded.
            The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
1256
        mode (str, optional): Four modes: ``'constant'`` (default), ``'reflect'``, ``'replicate'``, ``'circular'``. Default: ``'constant'``.
1257 1258 1259 1260 1261 1262

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

1263 1264 1265 1266
        value (float, optional): The value to fill the padded areas. Default is :math:`0.0`.
        data_format (str, optional): An string from: ``'NCHW'``, ``'NHWC'``. Specify the data format of the input data.
           Default: ``'NCHW'``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: ``'None'``.
1267 1268

    Returns:
L
littletomatodonkey 已提交
1269 1270 1271 1272
        None

    Examples:
        .. code-block:: python
1273

L
littletomatodonkey 已提交
1274 1275
            import paddle
            import paddle.nn as nn
1276

L
littletomatodonkey 已提交
1277 1278
            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
L
littletomatodonkey 已提交
1279
            mode = "constant"
1280
            data = paddle.arange(paddle.prod(paddle.to_tensor(input_shape)), dtype="float32").reshape(input_shape) + 1
L
littletomatodonkey 已提交
1281
            my_pad = nn.Pad2D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
1282
            result = my_pad(data)
L
littletomatodonkey 已提交
1283
            print(result)
L
littletomatodonkey 已提交
1284 1285 1286 1287 1288 1289 1290
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

1291 1292 1293
    def __init__(
        self, padding, mode='constant', value=0.0, data_format="NCHW", name=None
    ):
1294
        super().__init__()
1295
        self._pad = _npairs(padding, 2)
L
littletomatodonkey 已提交
1296
        self._mode = mode
L
littletomatodonkey 已提交
1297 1298 1299 1300 1301
        self._value = value
        self._data_format = data_format
        self._name = name

    def forward(self, x):
1302 1303 1304 1305 1306 1307 1308 1309
        return F.pad(
            x,
            pad=self._pad,
            mode=self._mode,
            value=self._value,
            data_format=self._data_format,
            name=self._name,
        )
L
littletomatodonkey 已提交
1310

1311
    def extra_repr(self):
1312
        name_str = f', name={self._name}' if self._name else ''
1313
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
1314 1315
            self._pad, self._mode, self._value, self._data_format, name_str
        )
1316

L
littletomatodonkey 已提交
1317

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
class ZeroPad2D(Layer):
    """
    This interface is used to construct a callable object of the ``ZeroPad2D`` class.
    Pads the input tensor boundaries with zero.

    Parameters:
        padding (Tensor | List[int] | int): The padding size with data type int. If is int, use the
            same padding in all dimensions. Else [len(padding)/2] dimensions of input will be padded.
            The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - x(Tensor): The input tensor of zeropad2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of zeropad2d operator, which is a 4-D tensor.
          The data type is same as input x.

    Examples:
        Examples are as follows.

        .. code-block:: python

            import paddle
            import paddle.nn as nn

K
knamg 已提交
1346
            input_shape = paddle.to_tensor([1, 1, 2, 3])
1347
            pad = [1, 0, 1, 2]
K
knamg 已提交
1348
            data = paddle.arange(paddle.prod(input_shape), dtype="float32").reshape(input_shape) + 1
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

            my_pad = nn.ZeroPad2D(padding=pad)
            result = my_pad(data)

            print(result)
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

    def __init__(self, padding, data_format="NCHW", name=None):
1362
        super().__init__()
1363 1364
        self._pad = _npairs(padding, 2)
        self._mode = 'constant'
1365
        self._value = 0.0
1366 1367 1368 1369
        self._data_format = data_format
        self._name = name

    def forward(self, x):
1370 1371 1372 1373 1374 1375 1376 1377
        return F.pad(
            x,
            pad=self._pad,
            mode=self._mode,
            value=self._value,
            data_format=self._data_format,
            name=self._name,
        )
1378 1379

    def extra_repr(self):
1380
        name_str = f', name={self._name}' if self._name else ''
1381 1382 1383
        return 'padding={}, data_format={}{}'.format(
            self._pad, self._data_format, name_str
        )
1384 1385


Z
zhiboniu 已提交
1386
class Pad3D(Layer):
L
littletomatodonkey 已提交
1387
    """
L
littletomatodonkey 已提交
1388
    This interface is used to construct a callable object of the ``Pad3D`` class.
1389 1390
    Pad tensor according to ``'pad'``, ``'mode'`` and ``'value'``.
    If mode is ``'reflect'``, pad[0] and pad[1] must be no greater
L
littletomatodonkey 已提交
1391
    than width-1. The height and depth dimension has the same condition.
L
littletomatodonkey 已提交
1392 1393

    Parameters:
1394
        padding (Tensor|list[int]|int): The padding size with data type ``'int'``. If is ``'int'``, use the
1395
            same padding in all dimensions. Else [len(padding)/2] dimensions
L
littletomatodonkey 已提交
1396
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1397
        mode (str, optional): Four modes: ``'constant'`` (default), ``'reflect'``, ``'replicate'``, ``'circular'``. Default: ``'constant'``.
1398 1399 1400 1401 1402 1403

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

1404 1405 1406 1407
        value (float, optional): The value to fill the padded areas. Default is :math:`0.0`.
        data_format (str, optional): An string from: ``'NCDHW'``, ``'NDHWC'``. Specify the data format of the input data.
           Default:  ``'NCDHW'``。
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: ``'None'``.
1408 1409

    Returns:
L
littletomatodonkey 已提交
1410 1411 1412 1413
        None

    Examples:
        .. code-block:: python
1414

L
littletomatodonkey 已提交
1415 1416
            import paddle
            import paddle.nn as nn
1417

L
littletomatodonkey 已提交
1418 1419
            input_shape = (1, 1, 1, 2, 3)
            pad = [1, 0, 1, 2, 0, 0]
L
littletomatodonkey 已提交
1420
            mode = "constant"
1421
            data = paddle.arange(paddle.prod(paddle.to_tensor(input_shape)), dtype="float32").reshape(input_shape) + 1
L
littletomatodonkey 已提交
1422
            my_pad = nn.Pad3D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
1423
            result = my_pad(data)
L
littletomatodonkey 已提交
1424
            print(result)
L
littletomatodonkey 已提交
1425 1426 1427 1428 1429 1430 1431
            # [[[[[0. 0. 0. 0.]
            #     [0. 1. 2. 3.]
            #     [0. 4. 5. 6.]
            #     [0. 0. 0. 0.]
            #     [0. 0. 0. 0.]]]]]
    """

1432 1433 1434 1435 1436 1437 1438 1439
    def __init__(
        self,
        padding,
        mode='constant',
        value=0.0,
        data_format="NCDHW",
        name=None,
    ):
1440
        super().__init__()
1441
        self._pad = _npairs(padding, 3)
L
littletomatodonkey 已提交
1442
        self._mode = mode
L
littletomatodonkey 已提交
1443 1444 1445 1446 1447
        self._value = value
        self._data_format = data_format
        self._name = name

    def forward(self, x):
1448 1449 1450 1451 1452 1453 1454 1455
        return F.pad(
            x,
            pad=self._pad,
            mode=self._mode,
            value=self._value,
            data_format=self._data_format,
            name=self._name,
        )
L
littletomatodonkey 已提交
1456

1457
    def extra_repr(self):
1458
        name_str = f', name={self._name}' if self._name else ''
1459
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
1460 1461
            self._pad, self._mode, self._value, self._data_format, name_str
        )
1462

L
littletomatodonkey 已提交
1463

Z
zhiboniu 已提交
1464
class CosineSimilarity(Layer):
L
littletomatodonkey 已提交
1465
    """
1466
    This interface is used to compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1467 1468

    Parameters:
1469
        axis (int): Dimension of vectors to compute cosine similarity. Default is 1.
L
littletomatodonkey 已提交
1470
        eps(float): Small value to avoid division by zero. Default is 1e-8.
1471
    Returns:
L
littletomatodonkey 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
        None

    Examples:
        .. code-block:: text

            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
1486
                axis = 1
L
littletomatodonkey 已提交
1487 1488 1489 1490 1491
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1492

L
littletomatodonkey 已提交
1493 1494 1495
            import paddle
            import paddle.nn as nn

1496 1497 1498 1499
            x1 = paddle.to_tensor([[1., 2., 3.],
                                [2., 3., 4.]], dtype="float32")
            x2 = paddle.to_tensor([[8., 3., 3.],
                                [2., 3., 4.]], dtype="float32")
L
littletomatodonkey 已提交
1500

1501
            cos_sim_func = nn.CosineSimilarity(axis=0)
L
littletomatodonkey 已提交
1502
            result = cos_sim_func(x1, x2)
L
littletomatodonkey 已提交
1503
            print(result)
1504 1505
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.65079135, 0.98058069, 1.        ])
L
littletomatodonkey 已提交
1506 1507
    """

1508
    def __init__(self, axis=1, eps=1e-8):
1509
        super().__init__()
1510
        self._axis = axis
L
littletomatodonkey 已提交
1511 1512 1513
        self._eps = eps

    def forward(self, x1, x2):
1514
        return F.cosine_similarity(x1, x2, axis=self._axis, eps=self._eps)
T
tangwei12 已提交
1515

1516 1517 1518
    def extra_repr(self):
        return 'axis={_axis}, eps={_eps}'.format(**self.__dict__)

T
tangwei12 已提交
1519

Z
zhiboniu 已提交
1520
class Embedding(Layer):
1521
    r"""
1522

1523
    Embedding Layer, used to construct a callable object of the ``Embedding`` class.
T
tangwei12 已提交
1524
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
T
tangwei12 已提交
1525
    This layer is used to lookup embeddings vector of ids provided by :attr:`x` .
T
tangwei12 已提交
1526
    It automatically constructs a 2D embedding matrix based on the
T
tangwei12 已提交
1527
    input :attr:`num_embeddings` and :attr:`embedding_dim`.
T
tangwei12 已提交
1528 1529 1530 1531

    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.

1532 1533 1534
    Note:
        The id in :attr:`x` must satisfy :math:`0 =< id < num_embeddings` ,
        otherwise the program will throw an exception and exit.
T
tangwei12 已提交
1535 1536 1537 1538 1539

    .. code-block:: text

        Case 1:

T
tangwei12 已提交
1540 1541 1542
        x is a Tensor. padding_idx = -1
            x.data = [[1, 3], [2, 4], [4, 127]
            x.shape = [3, 2]
T
tangwei12 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],

                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.

    Parameters:
        num_embeddings (int): Just one element which indicate the size
            of the dictionary of embeddings.
T
tangwei12 已提交
1560
        embedding_dim (int):  Just one element which indicate the size of each embedding vector respectively.
1561
        padding_idx(int|long|None, optional): padding_idx needs to be in the interval [-num_embeddings, num_embeddings).
T
tangwei12 已提交
1562 1563 1564 1565
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
1566
        sparse(bool, optional): The flag indicating whether to use sparse update. This parameter only
T
tangwei12 已提交
1567 1568
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizer does not support sparse update,
T
tangwei12 已提交
1569
            such as :ref:`api_paddle_optimizer_adadelta_Adadelta` , :ref:`api_paddle_optimizer_adamax_Adamax` , :ref:`api_paddle_optimizer_lamb_Lamb`.
T
tangwei12 已提交
1570
            In these case, sparse must be False. Default: False.
1571
        weight_attr(ParamAttr, optional): To specify the weight parameter property. Default: None, which means the
T
tangwei12 已提交
1572
            default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
T
tangwei12 已提交
1573 1574
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tangwei12 已提交
1575 1576
            vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example for details.
1577
        name(str|None, optional): For detailed information, please refer
T
tangwei12 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
               to :ref:`api_guide_Name`. Usually name is no need to set and
               None by default.

    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

    Returns:
        None

    Examples:

        .. code-block:: python

T
tangwei12 已提交
1591 1592
            import paddle

1593 1594
            x = paddle.to_tensor([[0], [1], [3]], dtype="int64", stop_gradient=False)
            embedding = paddle.nn.Embedding(4, 3, sparse=True)
T
tangwei12 已提交
1595

1596 1597 1598 1599
            w0 = paddle.to_tensor([[0., 0., 0.],
                                [1., 1., 1.],
                                [2., 2., 2.],
                                [3., 3., 3.]], dtype="float32")
T
tangwei12 已提交
1600
            embedding.weight.set_value(w0)
1601 1602 1603 1604 1605 1606
            print(embedding.weight)
            # Tensor(shape=[4, 3], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[0., 0., 0.],
            #         [1., 1., 1.],
            #         [2., 2., 2.],
            #         [3., 3., 3.]])
T
tangwei12 已提交
1607

T
tangwei12 已提交
1608 1609 1610 1611
            adam = paddle.optimizer.Adam(parameters=[embedding.weight], learning_rate=0.01)
            adam.clear_grad()


1612 1613 1614 1615 1616 1617
            out = embedding(x)
            print(out)
            # Tensor(shape=[3, 1, 3], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[[0., 0., 0.]],
            #         [[1., 1., 1.]],
            #         [[3., 3., 3.]]])
T
tangwei12 已提交
1618 1619 1620

            out.backward()
            adam.step()
T
tangwei12 已提交
1621 1622 1623

    """

1624 1625 1626 1627 1628 1629 1630 1631 1632
    def __init__(
        self,
        num_embeddings,
        embedding_dim,
        padding_idx=None,
        sparse=False,
        weight_attr=None,
        name=None,
    ):
1633
        super().__init__()
T
tangwei12 已提交
1634 1635 1636 1637
        self._num_embeddings = num_embeddings
        self._embedding_dim = embedding_dim
        self._sparse = sparse
        self._is_distributed = False
1638
        self._padding_idx = padding_idx
T
tangwei12 已提交
1639 1640 1641 1642 1643 1644 1645

        if self._num_embeddings <= 0:
            raise ValueError("num_embeddings must be gather than 0")

        if self._embedding_dim <= 0:
            raise ValueError("embedding_dim must be gather than 0")

1646 1647 1648 1649 1650 1651 1652
        padding_idx = (
            -1
            if padding_idx is None
            else padding_idx
            if padding_idx >= 0
            else (num_embeddings + padding_idx)
        )
1653 1654

        if padding_idx >= num_embeddings or padding_idx < -num_embeddings:
1655 1656 1657 1658 1659
            raise ValueError(
                "padding_idx must be within [-{}, {})".format(
                    num_embeddings, num_embeddings
                )
            )
T
tangwei12 已提交
1660

T
tangwei12 已提交
1661 1662 1663 1664 1665 1666
        self._dtype = self._helper.get_default_dtype()
        self._size = [self._num_embeddings, self._embedding_dim]

        self._weight_attr = weight_attr
        self._remote_prefetch = False
        self._name = name
1667 1668 1669 1670 1671 1672
        self.weight = self.create_parameter(
            attr=self._weight_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False,
        )
T
tangwei12 已提交
1673

Z
zhiboniu 已提交
1674
        if in_dynamic_mode() and padding_idx != -1:
1675 1676
            with paddle.no_grad():
                self.weight[padding_idx] = 0.0
T
tangwei12 已提交
1677

T
tangwei12 已提交
1678
    def forward(self, x):
1679 1680 1681 1682 1683 1684 1685
        return F.embedding(
            x,
            weight=self.weight,
            padding_idx=self._padding_idx,
            sparse=self._sparse,
            name=self._name,
        )
1686 1687 1688 1689 1690 1691 1692 1693 1694

    def extra_repr(self):
        main_str = '{_num_embeddings}, {_embedding_dim}'
        if self._padding_idx is not None:
            main_str += ', padding_idx={_padding_idx}'
        main_str += ', sparse={_sparse}'
        if self._name is not None:
            main_str += ', name={_name}'
        return main_str.format(**self.__dict__)
F
FNRE 已提交
1695 1696


Z
zhiboniu 已提交
1697
class Unfold(Layer):
F
FNRE 已提交
1698
    """
1699
    Returns a col buffer of sliding local blocks of input x, also known
F
FNRE 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    See ``paddle.nn.functional.unfold`` for more details.

1709

F
FNRE 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
    Parameters:
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, should be
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

            x = paddle.randn((100,3,224,224))
            unfold = nn.Unfold(kernel_sizes=[3, 3])
            result = unfold(x)
            print(result)
X
xiaoting 已提交
1741
    """
F
FNRE 已提交
1742

1743 1744 1745
    def __init__(
        self, kernel_sizes, dilations=1, paddings=0, strides=1, name=None
    ):
1746
        super().__init__()
F
FNRE 已提交
1747 1748 1749 1750 1751 1752 1753 1754

        self.kernel_sizes = kernel_sizes
        self.dilations = dilations
        self.paddings = paddings
        self.strides = strides
        self.name = name

    def forward(self, input):
1755 1756 1757 1758 1759 1760 1761 1762
        return F.unfold(
            input,
            kernel_sizes=self.kernel_sizes,
            strides=self.strides,
            paddings=self.paddings,
            dilations=self.dilations,
            name=self.name,
        )
F
FNRE 已提交
1763 1764

    def extra_repr(self):
1765
        name_str = f', name={self.name}' if self.name else ''
1766 1767 1768 1769 1770 1771 1772
        return 'kernel_size={}, dilation={}, padding={}, stride={}{}'.format(
            self.kernel_sizes,
            self.dilations,
            self.paddings,
            self.strides,
            name_str,
        )
X
xiaoting 已提交
1773 1774 1775


class Fold(Layer):
1776
    r"""
X
xiaoting 已提交
1777

1778
    Combines an array of sliding local blocks into a large containing
1779 1780
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
    combined value in the resulting large tensor by summing all values from all containing blocks.
X
xiaoting 已提交
1781 1782 1783 1784 1785 1786


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
1787

1788 1789 1790
        H_{out} &= output\_size[0] \\
        W_{out} &= output\_size[1] \\
        C_{out} &= \frac{C_{in}}{kernel\_sizes[0]\times kernel\_sizes[1]} \\
X
xiaoting 已提交
1791 1792 1793 1794

    Parameters:
        output_sizes(list):       The size of output size, should be [output_size_h, output_size_w]
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
1795
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
1796
                                  or an integer k treated as [k, k].
1797
        strides(int|list|tuple, optional):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
1798 1799
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
1800
        paddings(int|list|tuple, optional):       The paddings of each dimension, should be
X
xiaoting 已提交
1801 1802 1803 1804 1805 1806
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
1807
        dilations(int|list|tuple, optional):      the dilations of convolution kernel, should be
X
xiaoting 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn as nn

X
xiaoting 已提交
1826 1827
            x = paddle.randn([2,3*2*2,12])
            fold = nn.Fold(output_sizes=[4, 5], kernel_sizes=2)
X
xiaoting 已提交
1828
            y = fold(x)
X
xiaoting 已提交
1829
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
1830 1831
   """

1832 1833 1834 1835 1836 1837 1838 1839 1840
    def __init__(
        self,
        output_sizes,
        kernel_sizes,
        dilations=1,
        paddings=0,
        strides=1,
        name=None,
    ):
1841
        super().__init__()
X
xiaoting 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850

        self.output_sizes = output_sizes
        self.kernel_sizes = kernel_sizes
        self.dilations = dilations
        self.paddings = paddings
        self.strides = strides
        self.name = name

    def forward(self, input):
1851 1852 1853 1854 1855 1856 1857 1858 1859
        return F.fold(
            input,
            output_sizes=self.output_sizes,
            kernel_sizes=self.kernel_sizes,
            strides=self.strides,
            paddings=self.paddings,
            dilations=self.dilations,
            name=self.name,
        )
X
xiaoting 已提交
1860 1861

    def extra_repr(self):
1862
        name_str = f', name={self.name}' if self.name else ''
1863 1864 1865 1866 1867 1868 1869
        return 'kernel_size={}, dilation={}, padding={}, stride={}{}'.format(
            self.kernel_sizes,
            self.dilations,
            self.paddings,
            self.strides,
            name_str,
        )
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902


class Flatten(Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

          inp = paddle.ones([5, 2, 3, 4]).astype('float32')
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          y = flatten(inp)
          # y.shape = [5, 6, 4]

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super().__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

1903
    def forward(self, input):
1904
        out = paddle.flatten(
1905
            input, start_axis=self.start_axis, stop_axis=self.stop_axis
1906 1907
        )
        return out
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957


class Unflatten(Layer):
    """
    This interface is used to construct a callable object of the ``Unflatten`` class.
    For more details, refer to code examples.
    It a certain dimension of the input x Tensor into a desired shape.

    Parameters:
        axis (int): :attr:`axis` to be unflattened, specified as an index into `x.shape`.
        shape (list|tuple|Tensor): Unflatten :attr:`shape` on the specified :attr:`axis`. At most one dimension of the target :attr:`shape` can be -1.
            If the input :attr:`shape` does not contain -1 , the product of all elements in ``shape`` should be equal to ``x.shape[axis]``.
            The data type is `int` . If :attr:`shape` is a list or tuple, the elements of it should be integers or Tensors with shape [].
            If :attr:`shape` is an Tensor, it should be an 1-D Tensor.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        None

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn(shape=[4, 6, 8])
            shape = [2, 3]
            axis = 1
            unflatten = paddle.nn.Unflatten(axis, shape)
            res = unflatten(x)
            print(res.shape)
            # [4, 2, 3, 8]

    """

    def __init__(self, axis, shape, name=None):
        super().__init__()
        self.axis = axis
        self.shape = shape
        self.name = name

    def forward(self, input):
        out = paddle.unflatten(
            input, axis=self.axis, shape=self.shape, name=self.name
        )
        return out

    def extra_repr(self):
        name_str = f', name={self.name}' if self.name else ''
        return f'axis={self.axis}, shape={self.shape}{name_str}'