common.py 55.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define the common classes to build a neural network
16
import paddle
17
from ...fluid.dygraph import Flatten  #DEFINE_ALIAS
18
from ...fluid.dygraph import layers
T
tangwei12 已提交
19
from ...fluid.framework import in_dygraph_mode
20
from .. import functional as F
21
from ...fluid.framework import _dygraph_tracer
22

C
ceci3 已提交
23
__all__ = [
24 25
    'Embedding',
    'Linear',
26
    'Upsample',
L
littletomatodonkey 已提交
27
    'Pad1D',
28
    'Pad2D',
L
littletomatodonkey 已提交
29
    'Pad3D',
X
xiaoting 已提交
30 31
    'UpsamplingNearest2D',
    'UpsamplingBilinear2D',
32 33
    'CosineSimilarity',
    'Dropout',
C
cnn 已提交
34 35
    'Dropout2D',
    'Dropout3D',
36 37
    'Bilinear',
    'AlphaDropout',
C
ceci3 已提交
38
]
39 40


41 42 43 44 45 46 47
def _npairs(x, n):
    if isinstance(x, (paddle.Tensor, list)):
        return x
    x = [x] * (n * 2)
    return x


48
class Linear(layers.Layer):
49
    r"""
50 51 52

    Fully-connected linear transformation layer. For each input :math:`X` ,
    the equation is:
53 54 55

    .. math::

56
        Out = XW + b
57

58
    where :math:`W` is the weight and :math:`b` is the bias.
59

60 61 62 63 64 65 66
    Linear layer takes only one multi-dimensional tensor as input with the
    shape :math:`[batch\_size, *, in\_features]` , where :math:`*` means any
    number of additional dimensions. It multiplies input tensor with the weight
    (a 2-D tensor of shape :math:`[in\_features, out\_features]` ) and produces
    an output tensor of shape :math:`[batch\_size, *, out\_features]` .
    If :math:`bias\_attr` is not False, the bias (a 1-D tensor of
    shape :math:`[out\_features]` ) will be created and added to the output.
67 68

    Parameters:
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        in_features (int): The number of input units.
        out_features (int): The number of output units.
        weight_attr (ParamAttr, optional): The attribute for the learnable
            weight of this layer. The default value is None and the weight will be
            initialized to zero. For detailed information, please refer to
            paddle.ParamAttr.
        bias_attr (ParamAttr|bool, optional): The attribute for the learnable bias
            of this layer. If it is set to False, no bias will be added to the output.
            If it is set to None or one kind of ParamAttr, a bias parameter will
            be created according to ParamAttr. For detailed information, please refer
            to paddle.ParamAttr. The default value is None and the bias will be
            initialized to zero.
        name (str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Attribute:
        **weight** (Parameter): the learnable weight of this layer.

        **bias** (Parameter): the learnable bias of this layer.

    Shape:
        - input: Multi-dimentional tensor with shape :math:`[batch\_size, *, in\_features]` .
        - output: Multi-dimentional tensor with shape :math:`[batch\_size, *, out\_features]` .
92 93 94 95 96

    Examples:
        .. code-block:: python

          import paddle
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

          # Define the linear layer.
          weight_attr = paddle.ParamAttr(
              name="weight",
              initializer=paddle.nn.initializer.Constant(value=0.5))
          bias_attr = paddle.ParamAttr(
              name="bias",
              initializer=paddle.nn.initializer.Constant(value=1.0))
          linear = paddle.nn.Linear(2, 4, weight_attr=weight_attr, bias_attr=bias_attr)
          # linear.weight: [[0.5 0.5 0.5 0.5]
          #                 [0.5 0.5 0.5 0.5]]
          # linear.bias: [1. 1. 1. 1.]

          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          y = linear(x)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(Linear, self).__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True)
        self.name = name

    def forward(self, input):
        out = F.linear(
            x=input, weight=self.weight, bias=self.bias, name=self.name)
        return out

147 148 149 150 151
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str)

152

153
class Upsample(layers.Layer):
154 155
    """
    This op resizes a batch of images.
156

157 158 159
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
160 161
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
162
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
163

164
    Supporting resample methods:
165 166 167 168 169 170
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation

T
tangwei12 已提交
171 172 173
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

174 175 176 177 178 179 180 181 182
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
T
tangwei12 已提交
183

184 185 186 187
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
188 189 190 191 192

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
193
    align_corners and align_mode are optional parameters,the calculation method
194 195
    of interpolation can be selected by them.

196 197 198 199 200 201
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

202 203 204 205
    Example:

    .. code-block:: text

206
        For scale_factor:
207 208 209 210 211
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

212 213 214 215 216 217 218 219 220 221
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
222 223 224 225 226 227 228 229 230 231 232 233 234 235

        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
T
tangwei12 已提交
236

237 238 239
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
240

241 242 243 244 245
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
246

247 248 249 250 251 252 253 254 255 256 257 258
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

281 282
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
T
tangwei12 已提交
283

284 285
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
T
tangwei12 已提交
286

287 288
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
T
tangwei12 已提交
289

290 291
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
T
tangwei12 已提交
292

293 294
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
T
tangwei12 已提交
295

296
    Parameters:
X
xiaoting 已提交
297
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
298
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
299
        size (list|tuple|Tensor|None): Output shape of image resize
300 301
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
X
xiaoting 已提交
302 303
             Default: None. If a list, each element can be an integer or a Tensor of shape: [1].
             If a Tensor , its dimensions size should be a 1.
304 305 306
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`. Has to match input size if it is either a list or a tuple or a Tensor.
307
             Default: None.
308 309
        mode (str): The resample method. It supports 'linear', 'nearst', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
310 311 312
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
313 314 315 316
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
317
        data_format (str, optional): Specify the data format of the input, and the data format of the output
318
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
319 320 321
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
322 323 324
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
325 326 327
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
328
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
329
    Raises:
X
xiaoting 已提交
330
        TypeError: size should be a list or tuple or Tensor.
331 332 333 334 335 336 337 338 339 340
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
                    'trilinear', 'bicubic', or 'nearest' currently.
        ValueError: 'linear' only support 3-D tensor.
        ValueError: 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
341 342
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
343
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
344 345 346

    Examples:
        .. code-block:: python
C
Chen Long 已提交
347
            
348
            import paddle
X
xiaoting 已提交
349
            import paddle.nn as nn
350
            import numpy as np
X
xiaoting 已提交
351

352
            input_data = np.random.rand(2,3,6,10).astype("float32")
353
            upsample_out  = paddle.nn.Upsample(size=[12,12])
X
xiaoting 已提交
354 355 356 357 358 359

            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]

360 361 362
    """

    def __init__(self,
363 364 365 366
                 size=None,
                 scale_factor=None,
                 mode='nearest',
                 align_corners=False,
X
xiaoting 已提交
367 368 369
                 align_mode=0,
                 data_format='NCHW',
                 name=None):
370
        super(Upsample, self).__init__()
371 372 373
        self.size = size
        self.scale_factor = scale_factor
        self.mode = mode.lower()
374 375 376
        self.align_corners = align_corners
        self.align_mode = align_mode
        self.data_format = data_format
X
xiaoting 已提交
377
        self.name = name
378

X
xiaoting 已提交
379
    def forward(self, x):
380
        out = F.interpolate(
X
xiaoting 已提交
381
            x,
382 383 384
            size=self.size,
            scale_factor=self.scale_factor,
            mode=self.mode,
385 386
            align_corners=self.align_corners,
            align_mode=self.align_mode,
X
xiaoting 已提交
387 388
            data_format=self.data_format,
            name=self.name)
X
xiaoting 已提交
389 390 391

        return out

392 393 394 395 396 397 398 399 400 401
    def extra_repr(self):
        if self.scale_factor is not None:
            main_str = 'scale_factor={}'.format(self.scale_factor)
        else:
            main_str = 'size={}'.format(self.size)
        name_str = ', name={}'.format(self.name) if self.name else ''
        return '{}, mode={}, align_corners={}, align_mode={}, data_format={}{}'.format(
            main_str, self.mode, self.align_corners, self.align_mode,
            self.data_format, name_str)

X
xiaoting 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

class UpsamplingNearest2D(layers.Layer):
    """
    This op upsamples a batch of images, using nearest neighbours' pixel values.
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w),
    where in_w is width of the input tensor, in_h is the height of the input tensor.
    And the upsampling only applies on the two dimensions(height and width).
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    Parameters:
        x (Tensor): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor.
             Default: None. If a list, each element can be an integer or a Tensor of shape: [1].
             If a Tensor , its dimensions size should be a 1.
        scale_factor (float|int|list|tuple|Tensor|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.
             Has to match input size if it is either a list or a tuple or a Tensor.
             Default: None.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),


    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

X
xiaoting 已提交
446
            input_data = paddle.rand(shape=(2,3,6,10)).astype("float32")
X
xiaoting 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
            upsample_out  = paddle.nn.UpsamplingNearest2D(size=[12,12])
            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
    """

    def __init__(self,
                 size=None,
                 scale_factor=None,
                 data_format='NCHW',
                 name=None):
        super(UpsamplingNearest2D, self).__init__()
        self.size = size
        self.scale_factor = scale_factor
        self.data_format = data_format
        self.name = name

    def forward(self, x):
        out = F.interpolate(
            x,
            size=self.size,
            scale_factor=self.scale_factor,
            mode='nearest',
            align_corners=False,
            align_mode=0,
            data_format=self.data_format,
            name=self.name)

        return out

478 479 480 481 482 483 484 485 486
    def extra_repr(self):
        if self.scale_factor is not None:
            main_str = 'scale_factor={}'.format(self.scale_factor)
        else:
            main_str = 'size={}'.format(self.size)
        name_str = ', name={}'.format(self.name) if self.name else ''
        return '{}, data_format={}{}'.format(main_str, self.data_format,
                                             name_str)

X
xiaoting 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

class UpsamplingBilinear2D(layers.Layer):
    """
    This op upsamples a batch of images, using bilinear' pixel values.
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w),
    where in_w is width of the input tensor, in_h is the height of the input tensor.
    And the upsampling only applies on the two dimensions(height and width).
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

    Parameters:
        x (Tensor): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor.
             Default: None. If a list, each element can be an integer or a Tensor  of shape: [1].
             If a Tensor , its dimensions size should be a 1.
        scale_factor (float|int|list|tuple|Tensor|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.
             Has to match input size if it is either a list or a tuple or a Tensor.
             Default: None.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

X
xiaoting 已提交
532
            input_data = paddle.rand(shape=(2,3,6,10)).astype("float32")
X
xiaoting 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
            upsample_out  = paddle.nn.UpsamplingBilinear2D(size=[12,12])
            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
    """

    def __init__(self,
                 size=None,
                 scale_factor=None,
                 data_format='NCHW',
                 name=None):
        super(UpsamplingBilinear2D, self).__init__()
        self.size = size
        self.scale_factor = scale_factor
        self.data_format = data_format
        self.name = name

    def forward(self, x):
        out = F.interpolate(
            x,
            size=self.size,
            scale_factor=self.scale_factor,
            mode='bilinear',
            align_corners=True,
            align_mode=0,
            data_format=self.data_format,
            name=self.name)
X
xiaoting 已提交
561 562 563

        return out

564 565 566 567 568 569 570 571 572
    def extra_repr(self):
        if self.scale_factor is not None:
            main_str = 'scale_factor={}'.format(self.scale_factor)
        else:
            main_str = 'size={}'.format(self.size)
        name_str = ', name={}'.format(self.name) if self.name else ''
        return '{}, data_format={}{}'.format(main_str, self.data_format,
                                             name_str)

X
xiaoting 已提交
573

574
class Bilinear(layers.Layer):
575
    r"""
576 577 578 579

    This layer performs bilinear on two inputs.

    .. math::
580

581
      out_{i} = x1 * W_{i} * {x2^\mathrm{T}}, i=0,1,...,outfeatures-1
582

583 584 585 586 587 588
      out = out + b

    In this formula:
     - :math:`x1`: the first input contains in1_features elements, shape is [batch_size, in1_features].
     - :math:`x2`: the second input contains in2_features elements, shape is [batch_size, in2_features].
     - :math:`W_{i}`: the i-th learned weight, shape is [in1_features, in2_features], and learned weight's shape is [out_features, in1_features, in2_features].
589
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size], and out's shape is [batch_size, out_features].
590 591 592 593 594 595 596
     - :math:`b`: the learned bias, shape is [1, out_features].
     - :math:`x2^\mathrm{T}`: the transpose of :math:`x2`.

    Parameters:
       in1_features (int): The dimension of each first input(`x1`).
       in2_features (int): The dimension of each second input(`x2`).
       out_features (int): The dimension of output of this layer.
T
tangwei12 已提交
597
       weight_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
598 599 600
       this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
           of this layer. If it is set to False, no bias will be added to the output units.
T
tangwei12 已提交
601
           If it is set to None, the bias is initialized zero. The default value is None.
602 603 604 605 606 607 608 609 610
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.

    Returns:
611
       Tensor: A 2-D Tensor of shape [batch_size, out_features].
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

    Examples:
       .. code-block:: python

        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinear = paddle.nn.Bilinear(
            in1_features=5, in2_features=4, out_features=1000)
        result = bilinear(paddle.to_tensor(layer1),
                        paddle.to_tensor(layer2))     # result shape [5, 1000]

    """

    def __init__(self,
                 in1_features,
                 in2_features,
                 out_features,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(Bilinear, self).__init__()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._name = name
        self._in1_features = in1_features
        self._in2_features = in2_features
        self._out_features = out_features
        self._dtype = self._helper.get_default_dtype()

        weight_shape = [
            self._out_features, self._in1_features, self._in2_features
        ]
        self.weight = self.create_parameter(
            attr=self._weight_attr,
            shape=weight_shape,
            dtype=self._dtype,
            is_bias=False)
        bias_shape = [1, self._out_features]
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_shape,
            dtype=self._dtype,
            is_bias=True)

    def forward(self, x1, x2):
        return F.bilinear(x1, x2, self.weight, self.bias, self._name)

662 663 664 665 666 667
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'in1_features={}, in2_features={}, out_features={}, dtype={}{}'.format(
            self._in1_features, self._in2_features, self._out_features,
            self._dtype, name_str)

668

669 670 671 672
class Dropout(layers.Layer):
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training as described in the paper:
T
tangwei12 已提交
673
    `Improving neural networks by preventing co-adaptation of feature detectors <https://arxiv.org/abs/1207.0580>`_
674 675 676 677
    The dropout operator randomly sets the outputs of some units to zero, while upscale others
    according to the given dropout probability.

    See ``paddle.nn.functional.dropout`` for more details.
678 679

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
        axis (int | list): The axis along which the dropout is performed. Default None.
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer']

                               1. upscale_in_train(default), upscale the output at training time

                                  - train: out = input * mask / ( 1.0 - p )
                                  - inference: out = input

                               2. downscale_in_infer, downscale the output at inference

                                  - train: out = input * mask
                                  - inference: out = input * (1.0 - p)
695
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
696 697 698 699 700

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

701

702 703
    Examples:
        .. code-block:: python
704

705 706 707 708 709 710 711 712 713
            import paddle
            import numpy as np

            x = np.array([[1,2,3], [4,5,6]]).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Dropout(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
714 715 716
            print(x)
            print(y_train)
            print(y_test)
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
   """

    def __init__(self, p=0.5, axis=None, mode="upscale_in_train", name=None):
        super(Dropout, self).__init__()

        self.p = p
        self.axis = axis
        self.mode = mode
        self.name = name

    def forward(self, input):
        out = F.dropout(
            input,
            p=self.p,
            axis=self.axis,
            training=self.training,
            mode=self.mode,
            name=self.name)
        return out

737 738 739 740 741
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}, axis={}, mode={}{}'.format(self.p, self.axis, self.mode,
                                                 name_str)

742

C
cnn 已提交
743
class Dropout2D(layers.Layer):
744 745 746 747
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW`). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
C
cnn 已提交
748
    Dropout2D will help promote independence between feature maps as described in the paper:
T
tangwei12 已提交
749
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
750 751 752

    See ``paddle.nn.functional.dropout2d`` for more details.

753 754
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

755 756
    Parameters:
        p (float, optional): Probability of setting units to zero. Default: 0.5
757
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC`. The default is `NCHW`. When it is `NCHW`, the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
758 759 760 761 762 763
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: 4-D tensor.
        - output: 4-D tensor, the same shape as input.

764

765 766
    Examples:
        .. code-block:: python
767

768 769 770 771 772
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5)).astype('float32')
            x = paddle.to_tensor(x)
C
cnn 已提交
773
            m = paddle.nn.Dropout2D(p=0.5)
774 775 776
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
777 778 779
            print(x)
            print(y_train)
            print(y_test)
780 781 782
   """

    def __init__(self, p=0.5, data_format='NCHW', name=None):
C
cnn 已提交
783
        super(Dropout2D, self).__init__()
784 785 786 787 788 789 790 791 792 793 794 795 796 797

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
        out = F.dropout2d(
            input,
            p=self.p,
            training=self.training,
            data_format=self.data_format,
            name=self.name)
        return out

798 799 800 801 802
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}, data_format={}{}'.format(self.p, self.data_format,
                                               name_str)

803

C
cnn 已提交
804
class Dropout3D(layers.Layer):
805 806 807 808
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
C
cnn 已提交
809
    Dropout3D will help promote independence between feature maps as described in the paper:
T
tangwei12 已提交
810
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
811 812 813

    See ``paddle.nn.functional.dropout3d`` for more details.

814 815
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

816 817
    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
818
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCDHW` or `NDHWC`. The default is `NCDHW`. When it is `NCDHW`, the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
819 820 821 822 823 824
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: 5-D tensor.
        - output: 5-D tensor, the same shape as input.

825

826 827
    Examples:
        .. code-block:: python
828

829 830 831 832 833
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5, 6)).astype('float32')
            x = paddle.to_tensor(x)
C
cnn 已提交
834
            m = paddle.nn.Dropout3D(p=0.5)
835 836 837
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
838 839 840
            print(x)
            print(y_train)
            print(y_test)
841 842 843
   """

    def __init__(self, p=0.5, data_format='NCDHW', name=None):
C
cnn 已提交
844
        super(Dropout3D, self).__init__()
845 846 847 848 849 850 851 852 853 854 855 856 857 858

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
        out = F.dropout3d(
            input,
            p=self.p,
            training=self.training,
            data_format=self.data_format,
            name=self.name)
        return out

859 860 861 862 863
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}, data_format={}{}'.format(self.p, self.data_format,
                                               name_str)

864

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
class AlphaDropout(layers.Layer):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property. For an input with
    zero mean and unit standard deviation, the output of Alpha Dropout maintains the original mean and
    standard deviation of the input. Alpha Dropout fits well to SELU activate function by randomly setting
    activations to the negative saturation value.

    For more information, please refer to:
    `Self-Normalizing Neural Networks <https://arxiv.org/abs/1706.02515>`_

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

    Examples:
        .. code-block:: python
887

888 889 890 891 892 893 894 895 896
            import paddle
            import numpy as np

            x = np.array([[-1, 1], [-1, 1]]).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.AlphaDropout(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
897 898
            print(x)
            print(y_train)
899
            # [[-0.10721093, 1.6655989 ], [-0.7791938, -0.7791938]] (randomly)
900
            print(y_test)
901 902 903 904 905 906 907 908 909 910 911 912
   """

    def __init__(self, p=0.5, name=None):
        super(AlphaDropout, self).__init__()
        self.p = p
        self.name = name

    def forward(self, input):
        out = F.alpha_dropout(
            input, p=self.p, training=self.training, name=self.name)
        return out

913 914 915 916
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}{}'.format(self.p, name_str)

917

L
littletomatodonkey 已提交
918
class Pad1D(layers.Layer):
L
littletomatodonkey 已提交
919
    """
L
littletomatodonkey 已提交
920 921 922
    This interface is used to construct a callable object of the ``Pad1D`` class.
    Pad tensor according to 'pad', 'mode' and 'value'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater than width-1.
L
littletomatodonkey 已提交
923 924

    Parameters:
925 926
        padding (Tensor | List[int] | int): The padding size with data type int. If is int, use the
            same padding in both dimensions. Else [len(padding)/2] dimensions
L
littletomatodonkey 已提交
927
            of input will be padded. The pad has the form (pad_left, pad_right).
L
littletomatodonkey 已提交
928 929 930 931 932 933
        mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
            When in 'constant' mode, this op uses a constant value to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'constant'.
L
littletomatodonkey 已提交
934 935 936 937 938
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
           Default is  "NCL"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
939 940

    Returns:
L
littletomatodonkey 已提交
941 942 943 944 945 946 947 948
        None

    Examples:
        .. code-block:: text

            x = [[[1., 2., 3.],
                  [4., 5., 6.]]]
            padding = [1, 2],
L
littletomatodonkey 已提交
949
            mode = "constant"
L
littletomatodonkey 已提交
950 951 952 953 954 955
            value = 0.0
            Out = [[[0. 1. 2. 3. 0. 0.]
                    [0. 4. 5. 6. 0. 0.]]]

    Code Examples:
        .. code-block:: python
956

L
littletomatodonkey 已提交
957 958 959 960 961 962
            import paddle
            import paddle.nn as nn
            import numpy as np

            input_shape = (1, 2, 3)
            pad = [1, 2]
L
littletomatodonkey 已提交
963 964 965
            mode = "constant"
            data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1
            my_pad = nn.Pad1D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
966
            result = my_pad(data)
L
littletomatodonkey 已提交
967
            print(result)
L
littletomatodonkey 已提交
968 969 970 971
            # [[[0. 1. 2. 3. 0. 0.]
            #   [0. 4. 5. 6. 0. 0.]]]
    """

L
littletomatodonkey 已提交
972 973 974 975 976 977 978
    def __init__(self,
                 padding,
                 mode='constant',
                 value=0.0,
                 data_format="NCL",
                 name=None):
        super(Pad1D, self).__init__()
979
        self._pad = _npairs(padding, 1)
L
littletomatodonkey 已提交
980
        self._mode = mode
L
littletomatodonkey 已提交
981
        self._value = value
L
littletomatodonkey 已提交
982
        self._data_format = data_format
L
littletomatodonkey 已提交
983 984 985 986 987 988 989 990 991 992
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     value=self._value,
                     data_format=self._data_format,
                     name=self._name)

993 994 995 996 997
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
            self._pad, self._mode, self._value, self._data_format, name_str)

L
littletomatodonkey 已提交
998

L
littletomatodonkey 已提交
999
class Pad2D(layers.Layer):
L
littletomatodonkey 已提交
1000
    """
L
littletomatodonkey 已提交
1001 1002 1003 1004
    This interface is used to construct a callable object of the ``Pad2D`` class.
    Pad tensor according to 'pad', 'mode' and 'value'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height dimension has the same condition.
L
littletomatodonkey 已提交
1005 1006

    Parameters:
1007 1008 1009
        padding (Tensor | List[int] | int): The padding size with data type int. If is int, use the
            same padding in all dimensions. Else [len(padding)/2] dimensions of input will be padded. 
            The pad has the form (pad_left, pad_right, pad_top, pad_bottom). 
L
littletomatodonkey 已提交
1010 1011 1012 1013 1014 1015
        mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
            When in 'constant' mode, this op uses a constant value to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'constant'.
L
littletomatodonkey 已提交
1016 1017 1018 1019 1020
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1021 1022

    Returns:
L
littletomatodonkey 已提交
1023 1024 1025 1026 1027 1028 1029 1030
        None

    Examples:
        .. code-block:: text

            x = [[[[1., 2., 3.],
                   [4., 5., 6.]]]]
            padding = [1, 1, 0, 0]
L
littletomatodonkey 已提交
1031
            mode = "constant"
L
littletomatodonkey 已提交
1032 1033 1034 1035 1036 1037
            value = 0.0
            Out = [[[[0. 1. 2. 3. 0.]
                     [0. 4. 5. 6. 0.]]]]

    Code Examples:
        .. code-block:: python
1038

L
littletomatodonkey 已提交
1039 1040 1041 1042 1043
            import paddle
            import paddle.nn as nn
            import numpy as np
            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
L
littletomatodonkey 已提交
1044 1045 1046
            mode = "constant"
            data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1
            my_pad = nn.Pad2D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
1047
            result = my_pad(data)
L
littletomatodonkey 已提交
1048
            print(result)
L
littletomatodonkey 已提交
1049 1050 1051 1052 1053 1054 1055
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

L
littletomatodonkey 已提交
1056 1057 1058 1059 1060 1061 1062
    def __init__(self,
                 padding,
                 mode='constant',
                 value=0.0,
                 data_format="NCHW",
                 name=None):
        super(Pad2D, self).__init__()
1063
        self._pad = _npairs(padding, 2)
L
littletomatodonkey 已提交
1064
        self._mode = mode
L
littletomatodonkey 已提交
1065 1066 1067 1068 1069 1070 1071 1072
        self._value = value
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
L
littletomatodonkey 已提交
1073
                     value=self._value,
L
littletomatodonkey 已提交
1074 1075 1076
                     data_format=self._data_format,
                     name=self._name)

1077 1078 1079 1080 1081
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
            self._pad, self._mode, self._value, self._data_format, name_str)

L
littletomatodonkey 已提交
1082

L
littletomatodonkey 已提交
1083
class Pad3D(layers.Layer):
L
littletomatodonkey 已提交
1084
    """
L
littletomatodonkey 已提交
1085 1086 1087 1088
    This interface is used to construct a callable object of the ``Pad3D`` class.
    Pad tensor according to 'pad', 'mode' and 'value'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.
L
littletomatodonkey 已提交
1089 1090

    Parameters:
1091 1092
        padding (Tensor | List[int] | int): The padding size with data type int. If is int, use the
            same padding in all dimensions. Else [len(padding)/2] dimensions
L
littletomatodonkey 已提交
1093
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
L
littletomatodonkey 已提交
1094 1095 1096 1097 1098 1099
        mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
            When in 'constant' mode, this op uses a constant value to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'constant'.
L
littletomatodonkey 已提交
1100 1101 1102 1103 1104
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCDHW", "NDHWC". Specify the data format of the input data.
           Default is  "NCDHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1105 1106

    Returns:
L
littletomatodonkey 已提交
1107 1108 1109 1110 1111 1112 1113 1114
        None

    Examples:
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]
            padding = [1, 2, 0, 0, 0, 0]
L
littletomatodonkey 已提交
1115
            mode = "constant"
L
littletomatodonkey 已提交
1116 1117 1118 1119 1120 1121
            value = 0.0
            Out = [[[[[0. 1. 2. 3. 0. 0.]
                      [0. 4. 5. 6. 0. 0.]]]]]

    Code Examples:
        .. code-block:: python
1122

L
littletomatodonkey 已提交
1123 1124 1125 1126 1127
            import paddle
            import paddle.nn as nn
            import numpy as np
            input_shape = (1, 1, 1, 2, 3)
            pad = [1, 0, 1, 2, 0, 0]
L
littletomatodonkey 已提交
1128 1129 1130
            mode = "constant"
            data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1
            my_pad = nn.Pad3D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
1131
            result = my_pad(data)
L
littletomatodonkey 已提交
1132
            print(result)
L
littletomatodonkey 已提交
1133 1134 1135 1136 1137 1138 1139
            # [[[[[0. 0. 0. 0.]
            #     [0. 1. 2. 3.]
            #     [0. 4. 5. 6.]
            #     [0. 0. 0. 0.]
            #     [0. 0. 0. 0.]]]]]
    """

L
littletomatodonkey 已提交
1140 1141 1142 1143 1144 1145 1146
    def __init__(self,
                 padding,
                 mode='constant',
                 value=0.0,
                 data_format="NCDHW",
                 name=None):
        super(Pad3D, self).__init__()
1147
        self._pad = _npairs(padding, 3)
L
littletomatodonkey 已提交
1148
        self._mode = mode
L
littletomatodonkey 已提交
1149 1150 1151 1152 1153 1154 1155 1156
        self._value = value
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
L
littletomatodonkey 已提交
1157
                     value=self._value,
L
littletomatodonkey 已提交
1158 1159 1160
                     data_format=self._data_format,
                     name=self._name)

1161 1162 1163 1164 1165
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
            self._pad, self._mode, self._value, self._data_format, name_str)

L
littletomatodonkey 已提交
1166 1167 1168

class CosineSimilarity(layers.Layer):
    """
1169
    This interface is used to compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1170 1171

    Parameters:
1172
        axis (int): Dimension of vectors to compute cosine similarity. Default is 1.
L
littletomatodonkey 已提交
1173
        eps(float): Small value to avoid division by zero. Default is 1e-8.
1174
    Returns:
L
littletomatodonkey 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
        None

    Examples:
        .. code-block:: text

            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
1189
                axis = 1
L
littletomatodonkey 已提交
1190 1191 1192 1193 1194
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1195

L
littletomatodonkey 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
            import paddle
            import paddle.nn as nn
            import numpy as np

            np.random.seed(0)
            x1 = np.random.rand(2,3)
            x2 = np.random.rand(2,3)
            x1 = paddle.to_tensor(x1)
            x2 = paddle.to_tensor(x2)

1206
            cos_sim_func = nn.CosineSimilarity(axis=0)
L
littletomatodonkey 已提交
1207
            result = cos_sim_func(x1, x2)
L
littletomatodonkey 已提交
1208
            print(result)
L
littletomatodonkey 已提交
1209 1210 1211
            # [0.99806249 0.9817672  0.94987036]
    """

1212
    def __init__(self, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1213
        super(CosineSimilarity, self).__init__()
1214
        self._axis = axis
L
littletomatodonkey 已提交
1215 1216 1217
        self._eps = eps

    def forward(self, x1, x2):
1218
        return F.cosine_similarity(x1, x2, axis=self._axis, eps=self._eps)
T
tangwei12 已提交
1219

1220 1221 1222
    def extra_repr(self):
        return 'axis={_axis}, eps={_eps}'.format(**self.__dict__)

T
tangwei12 已提交
1223 1224

class Embedding(layers.Layer):
1225
    r"""
T
tangwei12 已提交
1226 1227 1228 1229
    **Embedding Layer**

    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
T
tangwei12 已提交
1230
    This layer is used to lookup embeddings vector of ids provided by :attr:`x` .
T
tangwei12 已提交
1231
    It automatically constructs a 2D embedding matrix based on the
T
tangwei12 已提交
1232
    input :attr:`num_embeddings` and attr:`embedding_dim`.
T
tangwei12 已提交
1233 1234 1235 1236

    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.

T
tangwei12 已提交
1237
    **Note:** The id in :attr:`x` must satisfy :math:`0 =< id < num_embeddings` ,
T
tangwei12 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],

                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.

    Parameters:
        num_embeddings (int): Just one element which indicate the size
            of the dictionary of embeddings.
        embedding_dim:  Just one element which indicate the size of each embedding vector respectively.
T
tangwei12 已提交
1265
        padding_idx(int|long|None): padding_idx needs to be in the interval [-num_embeddings, num_embeddings).
T
tangwei12 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_optimizer_AdadeltaOptimizer` , :ref:`api_optimizer_AdamaxOptimizer` ,
            :ref:`api_optimizer_DecayedAdagradOptimizer` , :ref:`api_optimizer_FtrlOptimizer` ,
            :ref:`api_optimizer_LambOptimizer` and :ref:`api_optimizer_LarsMomentumOptimizer` .
T
tangwei12 已提交
1276
            In these case, sparse must be False. Default: False.
T
tangwei12 已提交
1277
        weight_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
T
tangwei12 已提交
1278
            default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
T
tangwei12 已提交
1279 1280
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tangwei12 已提交
1281 1282
            vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example for details.
T
tangwei12 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
        name(str|None): For detailed information, please refer
               to :ref:`api_guide_Name`. Usually name is no need to set and
               None by default.

    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

    Returns:
        None

    Examples:

        .. code-block:: python

T
tangwei12 已提交
1297 1298 1299 1300 1301
            import paddle
            import numpy as np

            x_data = np.arange(3, 6).reshape((3, 1)).astype(np.int64)
            y_data = np.arange(6, 12).reshape((3, 2)).astype(np.float32)
T
tangwei12 已提交
1302

T
tangwei12 已提交
1303 1304 1305 1306 1307 1308 1309
            x = paddle.to_tensor(x_data, stop_gradient=False)
            y = paddle.to_tensor(y_data, stop_gradient=False)

            embedding = paddle.nn.Embedding(10, 3, sparse=True)

            w0=np.full(shape=(10, 3), fill_value=2).astype(np.float32)
            embedding.weight.set_value(w0)
T
tangwei12 已提交
1310

T
tangwei12 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
            adam = paddle.optimizer.Adam(parameters=[embedding.weight], learning_rate=0.01)
            adam.clear_grad()

            # weight.shape = [10, 3]

            # x.data = [[3],[4],[5]]
            # x.shape = [3, 1]

            # out.data = [[2,2,2], [2,2,2], [2,2,2]]
            # out.shape = [3, 1, 3]
            out=embedding(x)
            out.backward()
            adam.step()
T
tangwei12 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

    """

    def __init__(self,
                 num_embeddings,
                 embedding_dim,
                 padding_idx=None,
                 sparse=False,
                 weight_attr=None,
                 name=None):
        super(Embedding, self).__init__()
        self._num_embeddings = num_embeddings
        self._embedding_dim = embedding_dim
        self._sparse = sparse
        self._is_distributed = False
1339
        self._padding_idx = padding_idx
T
tangwei12 已提交
1340 1341 1342 1343 1344 1345 1346

        if self._num_embeddings <= 0:
            raise ValueError("num_embeddings must be gather than 0")

        if self._embedding_dim <= 0:
            raise ValueError("embedding_dim must be gather than 0")

1347 1348 1349 1350
        padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
            num_embeddings + padding_idx)

        if padding_idx >= num_embeddings or padding_idx < -num_embeddings:
T
tangwei12 已提交
1351 1352 1353
            raise ValueError("padding_idx must be within [-{}, {})".format(
                num_embeddings, num_embeddings))

T
tangwei12 已提交
1354 1355 1356 1357 1358 1359
        self._dtype = self._helper.get_default_dtype()
        self._size = [self._num_embeddings, self._embedding_dim]

        self._weight_attr = weight_attr
        self._remote_prefetch = False
        self._name = name
T
tangwei12 已提交
1360
        self.weight = self.create_parameter(
T
tangwei12 已提交
1361 1362 1363 1364 1365
            attr=self._weight_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

T
tangwei12 已提交
1366 1367 1368
        if in_dygraph_mode() and padding_idx != -1:
            self.weight[padding_idx] = 0.0

T
tangwei12 已提交
1369 1370 1371
    def forward(self, x):
        return F.embedding(
            x,
T
tangwei12 已提交
1372
            weight=self.weight,
T
tangwei12 已提交
1373 1374 1375
            padding_idx=self._padding_idx,
            sparse=self._sparse,
            name=self._name)
1376 1377 1378 1379 1380 1381 1382 1383 1384

    def extra_repr(self):
        main_str = '{_num_embeddings}, {_embedding_dim}'
        if self._padding_idx is not None:
            main_str += ', padding_idx={_padding_idx}'
        main_str += ', sparse={_sparse}'
        if self._name is not None:
            main_str += ', name={_name}'
        return main_str.format(**self.__dict__)