common.py 44.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define the common classes to build a neural network
16 17 18 19
from ...fluid.dygraph import BilinearTensorProduct  #DEFINE_ALIAS
from ...fluid.dygraph import Pool2D  #DEFINE_ALIAS
from ...fluid.dygraph import Embedding  #DEFINE_ALIAS
from ...fluid.dygraph import Linear  #DEFINE_ALIAS
20
from ...fluid.dygraph import Flatten  #DEFINE_ALIAS
21 22
from ...fluid.dygraph import layers
from .. import functional as F
23
from ...fluid.framework import _dygraph_tracer
24

C
ceci3 已提交
25
__all__ = [
26 27 28 29 30
    'BilinearTensorProduct', 'Pool2D', 'Embedding', 'Linear', 'UpSample',
    'Pad2D', 'ReflectionPad1d', 'ReplicationPad1d', 'ConstantPad1d',
    'ReflectionPad2d', 'ReplicationPad2d', 'ConstantPad2d', 'ZeroPad2d',
    'ConstantPad3d', 'ReplicationPad3d', 'CosineSimilarity', 'Dropout',
    'Dropout2D', 'Dropout3D', 'AlphaDropout'
C
ceci3 已提交
31
]
32 33 34 35 36 37 38 39 40 41 42 43


class UpSample(layers.Layer):
    """
    This op resizes a batch of images.
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
    and the resizing only applies on the three dimensions(depth, height and width).
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
    future and only use :attr:`out_shape` instead.
    Supporting resample methods:
44 45 46 47 48 49
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation

50 51 52 53 54 55 56 57 58 59 60 61
    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
62 63 64 65 66
    
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
67 68 69 70 71 72 73 74 75 76 77 78

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
    Align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.

    Example:

    .. code-block:: text

79
        For scale_factor:
80 81 82 83 84
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

85 86 87 88 89 90 91 92 93 94
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
95 96 97 98 99 100 101 102 103 104 105 106 107 108

        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
109
        
110 111 112
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
113

114 115 116 117 118
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
119

120 121 122 123 124 125 126 127 128 129 130 131
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

154 155 156
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
    
157 158
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
159
    
160 161
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
162 163 164 165
    
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
    
166 167
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
168
    
169 170 171
    Parameters:
        input (Variable): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
172 173 174 175
        size (list|tuple|Variable|None): Output shape of image resize
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
             Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
176
             If a Tensor Variable, its dimensions size should be a 1.
177 178 179
        scale_factor (float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale_factor` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale_factor`.
180
             Default: None.
181 182
        mode (str): The resample method. It supports 'linear', 'nearst', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
183 184 185
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
186 187 188 189
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
190
        data_format (str, optional): Specify the data format of the input, and the data format of the output
191
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
192 193 194
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
195 196 197
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
198 199 200
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
201
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
202
    Raises:
203 204 205 206 207 208 209 210 211 212 213
        TypeError: size should be a list or tuple or Variable.
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
                    'trilinear', 'bicubic', or 'nearest' currently.
        ValueError: 'linear' only support 3-D tensor.
        ValueError: 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
214 215
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
216
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
217 218 219 220 221 222

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
            import paddle.fluid.dygraph as dg
223
            upsample_op = paddle.nn.UpSample(size=[12,12])
224 225 226 227 228 229 230 231 232 233
            input_data = np.random.rand(2,3,6,10).astype("float32")
            place = paddle.fluid.CPUPlace()
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = upsample_op(input=input)
                print(output.shape)
                # [2L, 3L, 12L, 12L]
    """

    def __init__(self,
234 235 236 237
                 size=None,
                 scale_factor=None,
                 mode='nearest',
                 align_corners=False,
238 239 240
                 align_mode=1,
                 data_format='NCHW'):
        super(UpSample, self).__init__()
241 242 243
        self.size = size
        self.scale_factor = scale_factor
        self.mode = mode.lower()
244 245 246 247 248 249 250
        self.align_corners = align_corners
        self.align_mode = align_mode
        self.data_format = data_format

    def forward(self, input):
        out = F.interpolate(
            input,
251 252 253
            size=self.size,
            scale_factor=self.scale_factor,
            mode=self.mode,
254 255 256 257 258
            align_corners=self.align_corners,
            align_mode=self.align_mode,
            data_format=self.data_format)

        return out
C
ceci3 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338


class Pad2D(layers.Layer):
    """
        :alias_main: paddle.nn.Pad2D
        :alias: paddle.nn.Pad2D,paddle.nn.layer.Pad2D,paddle.nn.layer.common.Pad2D
    This interface is used to construct a callable object of the ``Pad2D``  class.
    The Pad2D layer pads the input tensor boundaries according to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.
    Parameters:
        paddings (int | List[int32]): The padding size. If padding is a int, uses the same 
            padding in all boundaries, if padding is a List, it must contain four integers, 
            (padding_top, padding_bottom, padding_left, padding_right).
            Default is [0, 0, 0, 0].
        mode (str): Three modes: 'constant' (default), 'reflect', 'edge' .
        	When in 'constant' mode, this op uses a constant value to pad the input tensor.
        	When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
        	When in 'edge' mode, uses input boundaries to pad the input tensor.
        	Default is 'constant'
        pad_value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default is  "NCHW"
    Returns: 
        None
    Examples:
        .. code-block:: text
            Input = [[[[1., 2., 3.],
                       [4., 5., 6.]]]]
            Case 0:
                paddings = [0, 1, 2, 3],
                mode = 'constant'
                pad_value = 0
                Out = [[[[0., 0., 1., 2., 3., 0., 0., 0.],
                         [0., 0., 4., 5., 6., 0., 0., 0.],
                         [0., 0., 0., 0., 0., 0., 0., 0.]]]]
            Case 1:
                paddings = [0, 1, 2, 1],
                mode = 'reflect'
                Out = [[[[3., 2., 1., 2., 3., 2.],
                         [6., 5., 4., 5., 6., 5.],
                         [3., 2., 1., 2., 3., 2.]]]]
            Case 2:
                paddings = [0, 1, 2, 1],
                mode = 'edge'
                Out = [[[[1., 1., 1., 2., 3., 3.],
                         [4., 4., 4., 5., 6., 6.],
                         [4., 4., 4., 5., 6., 6.]]]]
    Code Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            import paddle.nn as nn
            import numpy as np
            data = np.ones((2, 2, 2, 2)).astype('float32')
            my_pad = nn.Pad2D(paddings=[1, 1, 1, 1])
            with fluid.dygraph.guard():
                data = fluid.dygraph.to_variable(data)
                result = my_pad(data)
    """

    def __init__(self,
                 paddings=0,
                 mode='constant',
                 pad_value=0.0,
                 data_format="NCHW"):
        super(Pad2D, self).__init__()
        self._mode = mode
        self._pad_value = pad_value
        self._data_format = data_format
        self._paddings = [paddings] * 4 if isinstance(paddings,
                                                      int) else paddings

    def forward(self, input):
        return F.pad2d(
            input,
            paddings=self._paddings,
            mode=self._mode,
            pad_value=self._pad_value,
            data_format=self._data_format)
L
littletomatodonkey 已提交
339 340


341 342 343 344 345 346 347 348 349
class Dropout(layers.Layer):
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training as described in the paper:
    `Improving neural networks by preventing co-adaptation of feature detectors <https://arxiv.org/abs/1207.0580>`_ 
    The dropout operator randomly sets the outputs of some units to zero, while upscale others
    according to the given dropout probability.

    See ``paddle.nn.functional.dropout`` for more details.
350 351

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
        axis (int | list): The axis along which the dropout is performed. Default None.
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer']

                               1. upscale_in_train(default), upscale the output at training time

                                  - train: out = input * mask / ( 1.0 - p )
                                  - inference: out = input

                               2. downscale_in_infer, downscale the output at inference

                                  - train: out = input * mask
                                  - inference: out = input * (1.0 - p)
367
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np

            paddle.disable_static()
            x = np.array([[1,2,3], [4,5,6]]).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Dropout(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
            print(x.numpy())
            print(y_train.numpy())
            print(y_test.numpy())
   """

    def __init__(self, p=0.5, axis=None, mode="upscale_in_train", name=None):
        super(Dropout, self).__init__()

        self.p = p
        self.axis = axis
        self.mode = mode
        self.name = name

    def forward(self, input):
        out = F.dropout(
            input,
            p=self.p,
            axis=self.axis,
            training=self.training,
            mode=self.mode,
            name=self.name)
        return out


class Dropout2D(layers.Layer):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW`). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
    Dropout2d will help promote independence between feature maps as described in the paper: 
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_ 

    See ``paddle.nn.functional.dropout2d`` for more details.

419 420
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    Parameters:
        p (float, optional): Probability of setting units to zero. Default: 0.5
        data_format (str, optional): Specify the data format of the input, and the data format of the output
                                     will be consistent with that of the input. An optional string from:
                                    `NCHW`, `NHWC`. The default is `NCHW`. When it is `NCHW`, the data is
                                     stored in the order of: [batch_size, input_channels, input_height, input_width].
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: 4-D tensor.
        - output: 4-D tensor, the same shape as input.

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np

            paddle.disable_static()
            x = np.random.random(size=(2, 3, 4, 5)).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Dropout2D(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
            print(x.numpy())
            print(y_train.numpy())
            print(y_test.numpy())
   """

    def __init__(self, p=0.5, data_format='NCHW', name=None):
        super(Dropout2D, self).__init__()

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
        out = F.dropout2d(
            input,
            p=self.p,
            training=self.training,
            data_format=self.data_format,
            name=self.name)
        return out


class Dropout3D(layers.Layer):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
    Dropout3d will help promote independence between feature maps as described in the paper: 
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_ 

    See ``paddle.nn.functional.dropout3d`` for more details.

477 478
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
        data_format (str, optional): Specify the data format of the input, and the data format of the output
                                     will be consistent with that of the input. An optional string from:
                                    `NCDHW`, `NDHWC`. The default is `NCDHW`. When it is `NCDHW`, the data is
                                     stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: 5-D tensor.
        - output: 5-D tensor, the same shape as input.

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np

            paddle.disable_static()
            x = np.random.random(size=(2, 3, 4, 5, 6)).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Dropout3D(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
            print(x.numpy())
            print(y_train.numpy())
            print(y_test.numpy())
   """

    def __init__(self, p=0.5, data_format='NCDHW', name=None):
        super(Dropout3D, self).__init__()

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
        out = F.dropout3d(
            input,
            p=self.p,
            training=self.training,
            data_format=self.data_format,
            name=self.name)
        return out


525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
class AlphaDropout(layers.Layer):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property. For an input with
    zero mean and unit standard deviation, the output of Alpha Dropout maintains the original mean and
    standard deviation of the input. Alpha Dropout fits well to SELU activate function by randomly setting
    activations to the negative saturation value.

    For more information, please refer to:
    `Self-Normalizing Neural Networks <https://arxiv.org/abs/1706.02515>`_

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np

            paddle.disable_static()
            x = np.array([[-1, 1], [-1, 1]]).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.AlphaDropout(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
            print(x.numpy())
            print(y_train.numpy())
            # [[-0.10721093, 1.6655989 ], [-0.7791938, -0.7791938]] (randomly)
            print(y_test.numpy())
   """

    def __init__(self, p=0.5, name=None):
        super(AlphaDropout, self).__init__()
        self.p = p
        self.name = name

    def forward(self, input):
        out = F.alpha_dropout(
            input, p=self.p, training=self.training, name=self.name)
        return out


L
littletomatodonkey 已提交
574 575 576 577 578 579 580 581 582 583 584 585
class ReflectionPad1d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ReflectionPad1d`` class.
    Uses reflection of the input boundaries to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right).
        data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
           Default is  "NCL"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
586 587

    Returns:
L
littletomatodonkey 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
        None

    Examples:
        .. code-block:: text

            x = [[[1., 2., 3.],
                  [4., 5., 6.]]]
            padding = [1, 2],
            Out = [[[2. 1. 2. 3. 2. 1.]
                    [5. 4. 5. 6. 5. 4.]]]

    Code Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 2, 3)
            pad = [1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ReflectionPad1d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[2. 1. 2. 3. 2. 1.]
            #   [5. 4. 5. 6. 5. 4.]]]
    """

    def __init__(self, padding, data_format="NCL", name=None):
        super(ReflectionPad1d, self).__init__()
        self._mode = "reflect"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class ReplicationPad1d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ReplicationPad1d`` class.
    Uses input boundaries to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right).
        data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
           Default is  "NCL"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
645 646

    Returns:
L
littletomatodonkey 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659
        None

    Examples:
        .. code-block:: text

            x = [[[1., 2., 3.],
                  [4., 5., 6.]]]
            padding = [1, 2],
            Out = [[[2. 1. 2. 3. 2. 1.]
                    [5. 4. 5. 6. 5. 4.]]]

    Code Examples:
        .. code-block:: python
660

L
littletomatodonkey 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 2, 3)
            pad = [1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ReplicationPad1d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[1. 1. 2. 3. 3. 3.]
            #   [1. 4. 5. 6. 6. 6.]]]
    """

    def __init__(self, padding, data_format="NCL", name=None):
        super(ReplicationPad1d, self).__init__()
        self._mode = "replicate"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class ConstantPad1d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ConstantPad1d`` class.
    Uses a constant value to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right).
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
           Default is  "NCL"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
705 706

    Returns:
L
littletomatodonkey 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720
        None

    Examples:
        .. code-block:: text

            x = [[[1., 2., 3.],
                  [4., 5., 6.]]]
            padding = [1, 2],
            value = 0.0
            Out = [[[0. 1. 2. 3. 0. 0.]
                    [0. 4. 5. 6. 0. 0.]]]

    Code Examples:
        .. code-block:: python
721

L
littletomatodonkey 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 2, 3)
            pad = [1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ConstantPad1d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[0. 1. 2. 3. 0. 0.]
            #   [0. 4. 5. 6. 0. 0.]]]
    """

    def __init__(self, padding, value=0.0, data_format="NCL", name=None):
        super(ConstantPad1d, self).__init__()
        self._mode = "constant"
        self._data_format = data_format
        self._pad = padding
        self._value = value
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     value=self._value,
                     data_format=self._data_format,
                     name=self._name)


class ConstantPad2d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ConstantPad2d`` class.
    Uses a constant value to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
768 769

    Returns:
L
littletomatodonkey 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783
        None

    Examples:
        .. code-block:: text

            x = [[[[1., 2., 3.],
                   [4., 5., 6.]]]]
            padding = [1, 1, 0, 0]
            value = 0.0
            Out = [[[[0. 1. 2. 3. 0.]
                     [0. 4. 5. 6. 0.]]]]

    Code Examples:
        .. code-block:: python
784

L
littletomatodonkey 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ConstantPad2d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

    def __init__(self, padding, value=0.0, data_format="NCHW", name=None):
        super(ConstantPad2d, self).__init__()
        self._mode = "constant"
        self._data_format = data_format
        self._pad = padding
        self._value = value
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     value=self._value,
                     data_format=self._data_format,
                     name=self._name)


class ZeroPad2d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ZeroPad2d`` class.
    Uses 0 to pad the input tensor.

    Parameters:
        padding (Variable | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
833 834

    Returns:
L
littletomatodonkey 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847
        None

    Examples:
        .. code-block:: text

            x = [[[[1., 2., 3.],
                   [4., 5., 6.]]]]
            padding = [1, 1, 0, 0]
            Out = [[[[0. 1. 2. 3. 0.]
                     [0. 4. 5. 6. 0.]]]]

    Code Examples:
        .. code-block:: python
848

L
littletomatodonkey 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ZeroPad2d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

    def __init__(self, padding, data_format="NCHW", name=None):
        super(ZeroPad2d, self).__init__()
        self._mode = "constant"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class ReplicationPad2d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ReplicationPad2d`` class.
    Uses input boundaries to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
895 896

    Returns:
L
littletomatodonkey 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909
        None

    Examples:
        .. code-block:: text

            x = [[[[1., 2., 3.],
                   [4., 5., 6.]]]]
            padding = [1, 1, 0, 0]
            Out = [[[[1. 1. 2. 3. 3.]
                     [4. 4. 5. 6. 6.]]]]

    Code Examples:
        .. code-block:: python
910

L
littletomatodonkey 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ReplicationPad2d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[1. 1. 2. 3.]
            #    [1. 1. 2. 3.]
            #    [4. 4. 5. 6.]
            #    [4. 4. 5. 6.]
            #    [4. 4. 5. 6.]]]]
    """

    def __init__(self, padding, data_format="NCHW", name=None):
        super(ReplicationPad2d, self).__init__()
        self._mode = "replicate"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class ReflectionPad2d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ReflectionPad2d`` class.
    Uses reflection of the input boundaries to pad the input tensor.

    Parameters:
        padding (Variable | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
957 958

    Returns:
L
littletomatodonkey 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971
        None

    Examples:
        .. code-block:: text

            x = [[[[1., 2., 3.],
                   [4., 5., 6.]]]]
            padding = [1, 1, 0, 0]
            Out = [[[[2. 1. 2. 3. 2.]
                     [5. 4. 5. 6. 5.]]]]

    Code Examples:
        .. code-block:: python
972

L
littletomatodonkey 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 4, 3)
            pad = [1, 0, 1, 2]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ReflectionPad2d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[ 5.  4.  5.  6.]
            #    [ 2.  1.  2.  3.]
            #    [ 5.  4.  5.  6.]
            #    [ 8.  7.  8.  9.]
            #    [11. 10. 11. 12.]
            #    [ 8.  7.  8.  9.]
            #    [ 5.  4.  5.  6.]]]]
    """

    def __init__(self, padding, data_format="NCHW", name=None):
        super(ReflectionPad2d, self).__init__()
        self._mode = "reflect"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class ConstantPad3d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ConstantPad3d`` class.
    Uses a constant value to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
        value (float32): The value to fill the padded areas. Default is 0.0
        data_format (str): An string from: "NCDHW", "NDHWC". Specify the data format of the input data.
           Default is  "NCDHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1022 1023

    Returns:
L
littletomatodonkey 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
        None

    Examples:
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]
            padding = [1, 2, 0, 0, 0, 0]
            value = 0.0
            Out = [[[[[0. 1. 2. 3. 0. 0.]
                      [0. 4. 5. 6. 0. 0.]]]]]

    Code Examples:
        .. code-block:: python
1038

L
littletomatodonkey 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 1, 2, 3)
            pad = [1, 0, 1, 2, 0, 0]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ConstantPad3d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[[0. 0. 0. 0.]
            #     [0. 1. 2. 3.]
            #     [0. 4. 5. 6.]
            #     [0. 0. 0. 0.]
            #     [0. 0. 0. 0.]]]]]
    """

    def __init__(self, padding, value=0.0, data_format="NCDHW", name=None):
        super(ConstantPad3d, self).__init__()
        self._mode = "constant"
        self._data_format = data_format
        self._pad = padding
        self._value = value
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     value=self._value,
                     data_format=self._data_format,
                     name=self._name)


class ReplicationPad3d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ReplicationPad3d`` class.
    Uses input boundaries to pad the input tensor.

    Parameters:
        padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
        data_format (str): An string from: "NCDHW", "NDHWC". Specify the data format of the input data.
           Default is  "NCDHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1087 1088

    Returns:
L
littletomatodonkey 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
        None

    Examples:
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]
            padding = [1, 2, 0, 0, 0, 0]
            Out = [[[[[1. 1. 2. 3. 3. 3.]
                      [4. 4. 5. 6. 6. 6.]]]]]

    Code Examples:
        .. code-block:: python
1102

L
littletomatodonkey 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            input_shape = (1, 1, 1, 2, 3)
            pad = [1, 0, 1, 2, 0, 0]
            data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
            my_pad = nn.ReplicationPad3d(padding=pad)
            data = paddle.to_tensor(data)
            result = my_pad(data)
            print(result.numpy())
            # [[[[[1. 1. 2. 3.]
            #     [1. 1. 2. 3.]
            #     [4. 4. 5. 6.]
            #     [4. 4. 5. 6.]
            #     [4. 4. 5. 6.]]]]]
    """

    def __init__(self, padding, data_format="NCDHW", name=None):
        super(ReplicationPad3d, self).__init__()
        self._mode = "replicate"
        self._data_format = data_format
        self._pad = padding
        self._name = name

    def forward(self, x):
        return F.pad(x,
                     pad=self._pad,
                     mode=self._mode,
                     data_format=self._data_format,
                     name=self._name)


class CosineSimilarity(layers.Layer):
    """
1139
    This interface is used to compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1140 1141

    Parameters:
1142
        axis (int): Dimension of vectors to compute cosine similarity. Default is 1.
L
littletomatodonkey 已提交
1143
        eps(float): Small value to avoid division by zero. Default is 1e-8.
1144
    Returns:
L
littletomatodonkey 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
        None

    Examples:
        .. code-block:: text

            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
1159
                axis = 1
L
littletomatodonkey 已提交
1160 1161 1162 1163 1164
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1165

L
littletomatodonkey 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            np.random.seed(0)
            x1 = np.random.rand(2,3)
            x2 = np.random.rand(2,3)
            x1 = paddle.to_tensor(x1)
            x2 = paddle.to_tensor(x2)

1177
            cos_sim_func = nn.CosineSimilarity(axis=0)
L
littletomatodonkey 已提交
1178 1179 1180 1181 1182
            result = cos_sim_func(x1, x2)
            print(result.numpy())
            # [0.99806249 0.9817672  0.94987036]
    """

1183
    def __init__(self, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1184
        super(CosineSimilarity, self).__init__()
1185
        self._axis = axis
L
littletomatodonkey 已提交
1186 1187 1188
        self._eps = eps

    def forward(self, x1, x2):
1189
        return F.cosine_similarity(x1, x2, axis=self._axis, eps=self._eps)