eager_method.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"

20
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
21 22
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
23
#include "paddle/fluid/eager/utils.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
#include "paddle/pten/common/data_type.h"
#include "paddle/pten/core/convert_utils.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/include/core.h"
namespace paddle {
namespace pybind {

extern PyTypeObject* pEagerTensorType;

static PyObject* eager_tensor_method_numpy(EagerTensorObject* self,
                                           PyObject* args, PyObject* kwargs) {
J
Jiabin Yang 已提交
41 42
  EAGER_SYNC_TRY
  if (!self->eager_tensor.initialized()) {
43 44 45
    Py_INCREF(Py_None);
    return Py_None;
  }
J
Jiabin Yang 已提交
46 47 48
  auto tensor_dims = self->eager_tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->eager_tensor.type());
  auto sizeof_dtype = pten::DataTypeSize(self->eager_tensor.type());
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }
  auto& api = pybind11::detail::npy_api::get();
  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_, api.PyArray_DescrFromType_(numpy_dtype),
      tensor_dims.size(), py_dims, py_strides, nullptr,
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

J
Jiabin Yang 已提交
65
  if (self->eager_tensor.is_cpu()) {
66
    auto dense_tensor =
J
Jiabin Yang 已提交
67
        std::dynamic_pointer_cast<pten::DenseTensor>(self->eager_tensor.impl());
68 69 70 71 72 73
    platform::CPUPlace place;
    // deep copy
    paddle::memory::Copy(place, reinterpret_cast<void*>(
                                    pybind11::detail::array_proxy(array)->data),
                         place, dense_tensor->data(), sizeof_dtype * numel);
#if defined(PADDLE_WITH_CUDA)
J
Jiabin Yang 已提交
74
  } else if (self->eager_tensor.is_cuda()) {
75
    auto dense_tensor =
J
Jiabin Yang 已提交
76
        std::dynamic_pointer_cast<pten::DenseTensor>(self->eager_tensor.impl());
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

    paddle::platform::GpuMemcpySync(
        pybind11::detail::array_proxy(array)->data, dense_tensor->data(),
        pten::DataTypeSize(dense_tensor->dtype()) * dense_tensor->numel(),
        cudaMemcpyDeviceToHost);
#endif
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
    Py_INCREF(Py_None);
    return Py_None;
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

94 95 96
static PyObject* eager_tensor_method__is_initialized(EagerTensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
J
Jiabin Yang 已提交
97 98
  EAGER_SYNC_TRY
  return ToPyObject(self->eager_tensor.initialized());
99 100 101
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
static PyObject* eager_tensor_method__copy_to(EagerTensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_SYNC_TRY
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 1), 1);
  auto cp_tensor =
      self->eager_tensor.copy_to(pten::TransToPtenBackend(place), blocking);
  egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
  egr::EagerUtils::autograd_meta(&cp_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->eager_tensor))->Persistable());
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor_method_copy_(EagerTensorObject* self,
                                           PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
  egr::EagerTensor src_tensor =
      CastPyArg2EagerTensor(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
124 125
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
          << self->eager_tensor.name();
126 127 128 129 130 131 132
  self->eager_tensor.copy_(src_tensor, blocking);
  egr::EagerUtils::autograd_meta(&(self->eager_tensor))
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
  egr::EagerUtils::autograd_meta(&(self->eager_tensor))
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
133 134 135 136 137 138 139 140 141 142
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
          << self->eager_tensor.name();
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor_retain_grads(EagerTensorObject* self,
                                           PyObject* args, PyObject* kwargs) {
  EAGER_TRY
143 144 145 146 147 148 149 150
  if (egr::Controller::Instance().HasGrad()) {
    auto meta = egr::EagerUtils::autograd_meta(&(self->eager_tensor));
    if (!meta->GetMutableGradNode()) {
      VLOG(6) << "Make grad node of tensor: " << self->eager_tensor.name()
              << "become accumulation node";
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>());
    }
    egr::egr_utils_api::RetainGradForTensor(self->eager_tensor);
151
  }
152 153 154 155 156
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

157 158 159 160
PyMethodDef variable_methods[] = {
    {"numpy", (PyCFunction)(void (*)(void))eager_tensor_method_numpy,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_initialized",
161 162 163 164 165
     (PyCFunction)(void (*)(void))eager_tensor_method__is_initialized,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_copy_to", (PyCFunction)(void (*)(void))eager_tensor_method__copy_to,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"copy_", (PyCFunction)(void (*)(void))eager_tensor_method_copy_,
166
     METH_VARARGS | METH_KEYWORDS, NULL},
167 168
    {"retain_grads", (PyCFunction)(void (*)(void))eager_tensor_retain_grads,
     METH_VARARGS | METH_KEYWORDS, NULL},
169 170 171 172
    {NULL, NULL, 0, NULL}};

}  // namespace pybind
}  // namespace paddle