conv_grad_kernel.cu 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangkaihuo 已提交
15
#include "paddle/phi/kernels/sparse/conv_grad_kernel.h"
16

17
#include "glog/logging.h"
18 19 20 21
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
22
#include "paddle/phi/core/tensor_utils.h"
23
#include "paddle/phi/core/visit_type.h"
24 25
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
26
#include "paddle/phi/kernels/sparse/gpu/conv.cu.h"
27 28 29 30 31 32 33 34 35 36 37 38

namespace phi {
namespace sparse {

// rulebook[3, rulebook_len]:
//[
//  [kernel_index],
//  [in_i],
//  [out_i],
//]
// x_grad = out_grad * transpose(kenrel)
// kernel_grad = transpose(x) * out_grad
39
template <typename T, typename IntT>
Z
zhangkaihuo 已提交
40 41 42
void Conv3dCooGradGPUKernel(const GPUContext& dev_ctx,
                            const SparseCooTensor& x,
                            const DenseTensor& kernel,
43
                            const SparseCooTensor& out,
Z
zhangkaihuo 已提交
44
                            const DenseTensor& rulebook,
45
                            const DenseTensor& counter,
Z
zhangkaihuo 已提交
46 47 48 49 50 51
                            const SparseCooTensor& out_grad,
                            const std::vector<int>& paddings,
                            const std::vector<int>& dilations,
                            const std::vector<int>& strides,
                            const int groups,
                            const bool subm,
52
                            const std::string& key,
Z
zhangkaihuo 已提交
53 54
                            SparseCooTensor* x_grad,
                            DenseTensor* kernel_grad) {
55 56 57 58 59
  const auto& kernel_dims = kernel.dims();
  const int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];

60 61 62 63
  int rulebook_len = 0;
  const IntT* rulebook_ptr = phi::funcs::sparse::GetRulebookPtr<IntT>(
      out, rulebook, key, &rulebook_len);
  const int* counter_ptr = phi::funcs::sparse::GetCounterPtr(out, counter, key);
64 65

  phi::DenseTensor in_features =
66
      phi::Empty<T>(dev_ctx, {rulebook_len, in_channels});
67
  phi::DenseTensor d_x_features =
68
      phi::Empty<T>(dev_ctx, {rulebook_len, in_channels});
69
  phi::DenseTensor out_grad_features =
70
      phi::Empty<T>(dev_ctx, {rulebook_len, out_channels});
71 72 73 74

  T* in_features_ptr = in_features.data<T>();
  T* d_x_features_ptr = d_x_features.data<T>();
  T* out_grad_features_ptr = out_grad_features.data<T>();
75
  *kernel_grad = phi::EmptyLike<T>(dev_ctx, kernel);
76
  T* d_kernel_ptr = kernel_grad->data<T>();
77 78
  phi::backends::gpu::GpuMemsetAsync(
      d_kernel_ptr, 0, sizeof(T) * kernel_grad->numel(), dev_ctx.stream());
79

Z
zhangkaihuo 已提交
80
  int half_kernel_size = kernel_size / 2;
81
  auto blas = phi::funcs::GetBlas<GPUContext, T>(dev_ctx);
82
  DenseTensor x_grad_indices =
83
      phi::EmptyLike<IntT>(dev_ctx, x.non_zero_indices());
84 85
  DenseTensor x_grad_values = phi::EmptyLike<T>(dev_ctx, x.non_zero_elements());
  T* x_grad_values_ptr = x_grad_values.data<T>();
86 87 88 89 90 91
  phi::backends::gpu::GpuMemsetAsync(x_grad_values_ptr,
                                     0,
                                     sizeof(T) * x_grad_values.numel(),
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemsetAsync(
      d_x_features_ptr, 0, sizeof(T) * d_x_features.numel(), dev_ctx.stream());
92 93 94 95 96
  phi::Copy<GPUContext>(dev_ctx,
                        x.non_zero_indices(),
                        dev_ctx.GetPlace(),
                        false,
                        &x_grad_indices);
97
  x_grad->SetMember(x_grad_indices, x_grad_values, x.dims(), true);
Z
zhangkaihuo 已提交
98

99
  std::vector<int> offsets(kernel_size + 1);
100

101
  int offset = 0, max_count = 0;
102 103
  for (int i = 0; i < kernel_size; i++) {
    offsets[i] = offset;
104
    offset += counter_ptr[i];
Z
zhangkaihuo 已提交
105
    if (i < half_kernel_size) {
106
      max_count = std::max(max_count, counter_ptr[i]);
Z
zhangkaihuo 已提交
107
    }
108 109 110
  }
  offsets[kernel_size] = offset;

Z
zhangkaihuo 已提交
111
  if (subm) {
112 113 114 115 116 117 118 119 120 121
    phi::funcs::sparse::SubmPreProcess<T, GPUContext>(
        dev_ctx,
        x,
        kernel,
        out_grad.non_zero_elements(),
        in_channels,
        out_channels,
        half_kernel_size,
        kernel_grad,
        &x_grad_values);
Z
zhangkaihuo 已提交
122 123 124 125 126
    if (max_count == 0) {
      return;
    }
  }

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  int max_voxel = counter_ptr[kernel_size];
  if (!subm) {
    const auto& x_dims = x.dims();
    Dims4D d_x_dims(x_dims[0], x_dims[3], x_dims[2], x_dims[1]);
    int64_t table_size = 1;
    for (int i = 0; i < x_dims.size() - 1; i++) {
      table_size *= x_dims[i];
    }
    DenseTensor in_index_table = phi::Empty<int>(dev_ctx, {table_size + 1});
    int* in_index_table_ptr = in_index_table.data<int>();
    phi::backends::gpu::GpuMemsetAsync(in_index_table_ptr,
                                       0,
                                       sizeof(int) * (table_size + 1),
                                       dev_ctx.stream());
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, x.nnz(), 1);
    GetOutIndexTable<IntT, false>
        <<<config.block_per_grid,
           config.thread_per_block,
           0,
           dev_ctx.stream()>>>(x.non_zero_indices().data<IntT>(),
                               x.nnz(),
                               d_x_dims,
                               nullptr,
                               in_index_table_ptr,
                               in_index_table_ptr + table_size);

    phi::backends::gpu::GpuMemcpyAsync(&max_voxel,
                                       in_index_table_ptr + table_size,
                                       sizeof(int),
                                       gpuMemcpyDeviceToHost,
                                       dev_ctx.stream());
    dev_ctx.Wait();
  }

161 162 163
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rulebook_len, 1);
  DenseTensor unique_value = phi::Empty<int>(
164
      dev_ctx, {static_cast<int>(x_grad->nnz() * max_voxel * kernel_size * 2)});
165 166 167 168 169 170
  DenseTensor out_index =
      phi::Empty<int>(dev_ctx, {static_cast<int>(x.nnz() * 2)});
  int* out_index_ptr = out_index.data<int>();
  int* unique_value_ptr = unique_value.data<int>();
  phi::backends::gpu::GpuMemsetAsync(
      out_index_ptr, 0, sizeof(int) * x.nnz() * 2, dev_ctx.stream());
Z
zhangkaihuo 已提交
171

172 173 174 175 176
  GroupIndexsV2<<<config.block_per_grid,
                  config.thread_per_block,
                  0,
                  dev_ctx.stream()>>>(rulebook_len,
                                      x.nnz(),
177
                                      kernel_size * max_voxel,
178 179 180 181 182 183 184 185 186 187 188
                                      offsets[kernel_size / 2],
                                      rulebook_ptr,
                                      out_index_ptr,
                                      unique_value_ptr);

  GatherV2<T, IntT>(dev_ctx,
                    x.non_zero_elements().data<T>(),
                    out_index_ptr,
                    unique_value_ptr,
                    x.nnz(),
                    kernel_size,
189
                    max_voxel,
190 191 192 193 194 195 196 197 198 199
                    in_channels,
                    2,
                    in_features_ptr);

  Gather<T, IntT>(dev_ctx,
                  out_grad.non_zero_elements().data<T>(),
                  rulebook_ptr + rulebook_len,
                  rulebook_len,
                  out_channels,
                  out_grad_features_ptr);
Z
zhangkaihuo 已提交
200

201 202
  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
203
    if (counter_ptr[i] <= 0 || (subm && i == half_kernel_size)) {
204 205 206
      continue;
    }

207
    const int M = counter_ptr[i];
208 209 210 211 212
    const int K = in_channels;
    const int N = out_channels;
    T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels;
    T* tmp_out_grad_ptr = out_grad_features_ptr + offsets[i] * out_channels;
    const T* tmp_kernel_ptr = kernel_ptr + i * in_channels * out_channels;
213
    T* tmp_d_x_ptr = d_x_features_ptr + offsets[i] * in_channels;
214 215 216 217 218 219 220
    T* tmp_d_kernel_ptr = d_kernel_ptr + i * in_channels * out_channels;

    // call gemm: d_kernel = transpose(x) * out_grad
    // (in_channels, n) * (n, out_channels)
    blas.GEMM(CblasTrans,
              CblasNoTrans,
              K,
221 222
              N,
              M,
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
              static_cast<T>(1),
              tmp_in_ptr,
              tmp_out_grad_ptr,
              static_cast<T>(0),
              tmp_d_kernel_ptr);

    // call gemm: d_x = out_grad * transpose(kernel)
    // (n, out_channels) * (out_channels, in_channels)
    blas.GEMM(CblasNoTrans,
              CblasTrans,
              M,
              K,
              N,
              static_cast<T>(1),
              tmp_out_grad_ptr,
              tmp_kernel_ptr,
              static_cast<T>(0),
              tmp_d_x_ptr);
  }

  // 4. scatter
244 245 246 247 248 249
  phi::funcs::sparse::ScatterV2<T>(dev_ctx,
                                   d_x_features_ptr,
                                   out_index.data<int>(),
                                   unique_value.data<int>(),
                                   x_grad->nnz(),
                                   kernel_size,
250
                                   max_voxel,
251 252 253
                                   in_channels,
                                   2,
                                   x_grad_values_ptr);
254 255
}

256
template <typename T, typename Context>
Z
zhangkaihuo 已提交
257 258 259
void Conv3dCooGradKernel(const Context& dev_ctx,
                         const SparseCooTensor& x,
                         const DenseTensor& kernel,
260
                         const SparseCooTensor& out,
Z
zhangkaihuo 已提交
261
                         const DenseTensor& rulebook,
262
                         const DenseTensor& counter,
Z
zhangkaihuo 已提交
263 264 265 266 267 268
                         const SparseCooTensor& out_grad,
                         const std::vector<int>& paddings,
                         const std::vector<int>& dilations,
                         const std::vector<int>& strides,
                         const int groups,
                         const bool subm,
269
                         const std::string& key,
Z
zhangkaihuo 已提交
270 271
                         SparseCooTensor* x_grad,
                         DenseTensor* kernel_grad) {
Z
zhangkaihuo 已提交
272
  PD_VISIT_BASE_INTEGRAL_TYPES(
Z
zhangkaihuo 已提交
273 274 275 276
      x.non_zero_indices().dtype(), "Conv3dCooGradGPUKernel", ([&] {
        Conv3dCooGradGPUKernel<T, data_t>(dev_ctx,
                                          x,
                                          kernel,
277
                                          out,
Z
zhangkaihuo 已提交
278
                                          rulebook,
279
                                          counter,
Z
zhangkaihuo 已提交
280 281 282 283 284 285
                                          out_grad,
                                          paddings,
                                          dilations,
                                          strides,
                                          groups,
                                          subm,
286
                                          key,
Z
zhangkaihuo 已提交
287 288
                                          x_grad,
                                          kernel_grad);
289 290 291
      }));
}

292 293 294
}  // namespace sparse
}  // namespace phi

Z
zhangkaihuo 已提交
295
PD_REGISTER_KERNEL(conv3d_coo_grad,
296 297
                   GPU,
                   ALL_LAYOUT,
Z
zhangkaihuo 已提交
298
                   phi::sparse::Conv3dCooGradKernel,
299 300 301 302 303
                   float,
                   double,
                   phi::dtype::float16) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}