Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ad0c106c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
ad0c106c
编写于
4月 02, 2022
作者:
Z
zhangkaihuo
提交者:
GitHub
4月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix sparse conv and verify sparse conv backward (#40961)
上级
9e764d82
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
137 addition
and
58 deletion
+137
-58
paddle/phi/kernels/sparse/convolution_grad_kernel.h
paddle/phi/kernels/sparse/convolution_grad_kernel.h
+17
-20
paddle/phi/kernels/sparse/cpu/convolution_grad_kernel.cc
paddle/phi/kernels/sparse/cpu/convolution_grad_kernel.cc
+18
-10
paddle/phi/kernels/sparse/gpu/convolution_grad_kernel.cu
paddle/phi/kernels/sparse/gpu/convolution_grad_kernel.cu
+26
-15
paddle/phi/tests/kernels/test_sparse_conv3d_dev_api.cc
paddle/phi/tests/kernels/test_sparse_conv3d_dev_api.cc
+21
-12
python/paddle/fluid/tests/unittests/test_sparse_conv_op.py
python/paddle/fluid/tests/unittests/test_sparse_conv_op.py
+54
-0
python/paddle/utils/code_gen/sparse_bw_api.yaml
python/paddle/utils/code_gen/sparse_bw_api.yaml
+1
-1
未找到文件。
paddle/phi/kernels/sparse/convolution_grad_kernel.h
浏览文件 @
ad0c106c
...
...
@@ -25,37 +25,37 @@ namespace sparse {
template
<
typename
T
,
typename
Context
>
void
Conv3dGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
DenseTensor
&
kernel
,
const
DenseTensor
&
out_grad
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
const
int
groups
,
const
bool
subm
,
Dense
Tensor
*
x_grad
,
SparseCoo
Tensor
*
x_grad
,
DenseTensor
*
kernel_grad
);
template
<
typename
T
,
typename
Context
>
std
::
vector
<
DenseTensor
>
Conv3dGrad
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
DenseTensor
&
kernel
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilation
s
,
const
std
::
vector
<
int
>&
stride
s
,
const
int
group
s
,
const
bool
subm
)
{
DenseTensor
x_grad
=
phi
::
Empty
<
Context
>
(
dev_ctx
,
DenseTensorMeta
(
x
.
dtype
(),
{
1
},
x
.
layout
()))
;
std
::
tuple
<
SparseCooTensor
,
DenseTensor
>
Conv3dGrad
(
const
Context
&
dev_ct
x
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
kernel
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
padding
s
,
const
std
::
vector
<
int
>&
dilation
s
,
const
std
::
vector
<
int
>&
stride
s
,
const
int
groups
,
const
bool
subm
)
{
SparseCooTensor
x_grad
;
DenseTensor
kernel_grad
=
phi
::
Empty
<
Context
>
(
dev_ctx
,
DenseTensorMeta
(
kernel
.
dtype
(),
{
1
},
kernel
.
layout
()));
// TODO(zhangkaihuo): call InferMeta func here
Conv3dGradKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
rulebook
,
kernel
,
rulebook
,
out_grad
,
paddings
,
dilations
,
...
...
@@ -64,10 +64,7 @@ std::vector<DenseTensor> Conv3dGrad(const Context& dev_ctx,
subm
,
&
x_grad
,
&
kernel_grad
);
std
::
vector
<
DenseTensor
>
out
(
2
);
out
[
0
]
=
x_grad
;
out
[
1
]
=
kernel_grad
;
return
out
;
return
std
::
make_tuple
(
x_grad
,
kernel_grad
);
}
}
// namespace sparse
...
...
paddle/phi/kernels/sparse/cpu/convolution_grad_kernel.cc
浏览文件 @
ad0c106c
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/convolution_grad_kernel.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/sparse/cpu/convolution.h"
...
...
@@ -31,15 +32,15 @@ namespace sparse {
template
<
typename
T
,
typename
Context
>
void
Conv3dGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
DenseTensor
&
kernel
,
const
DenseTensor
&
out_grad
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
const
int
groups
,
const
bool
subm
,
Dense
Tensor
*
x_grad
,
SparseCoo
Tensor
*
x_grad
,
DenseTensor
*
kernel_grad
)
{
const
auto
&
kernel_dims
=
kernel
.
dims
();
const
int
kernel_size
=
kernel_dims
[
0
]
*
kernel_dims
[
1
]
*
kernel_dims
[
2
];
...
...
@@ -73,11 +74,18 @@ void Conv3dGradKernel(const Context& dev_ctx,
int
half_kernel_size
=
kernel_size
/
2
;
auto
blas
=
phi
::
funcs
::
GetBlas
<
Context
,
T
>
(
dev_ctx
);
x_grad
->
Resize
(
x
.
non_zero_elements
().
dims
());
dev_ctx
.
Alloc
(
x_grad
,
x_grad
->
dtype
(),
sizeof
(
T
)
*
x_grad
->
numel
());
T
*
x_grad_values_ptr
=
x_grad
->
data
<
T
>
();
memset
(
x_grad_values_ptr
,
0
,
sizeof
(
T
)
*
x_grad
->
numel
());
DenseTensor
x_grad_indices
=
phi
::
EmptyLike
<
int
>
(
dev_ctx
,
x
.
non_zero_indices
());
DenseTensor
x_grad_values
=
phi
::
EmptyLike
<
T
>
(
dev_ctx
,
x
.
non_zero_elements
());
T
*
x_grad_values_ptr
=
x_grad_values
.
data
<
T
>
();
memset
(
x_grad_values_ptr
,
0
,
sizeof
(
T
)
*
x_grad_values
.
numel
());
memset
(
d_x_features_ptr
,
0
,
sizeof
(
T
)
*
d_x_features
.
numel
());
phi
::
Copy
<
Context
>
(
dev_ctx
,
x
.
non_zero_indices
(),
dev_ctx
.
GetPlace
(),
false
,
&
x_grad_indices
);
x_grad
->
SetMember
(
x_grad_indices
,
x_grad_values
,
x
.
dims
(),
true
);
std
::
vector
<
int
>
offsets
(
kernel_size
+
1
),
counter
(
kernel_size
,
0
);
for
(
int
i
=
0
;
i
<
rulebook_len
;
i
++
)
{
...
...
@@ -97,12 +105,12 @@ void Conv3dGradKernel(const Context& dev_ctx,
phi
::
funcs
::
sparse
::
SubmPreProcess
<
T
,
Context
>
(
dev_ctx
,
x
,
kernel
,
out_grad
,
out_grad
.
non_zero_elements
()
,
in_channels
,
out_channels
,
half_kernel_size
,
kernel_grad
,
x_grad
);
&
x_grad_values
);
if
(
max_count
==
0
)
{
return
;
}
...
...
@@ -113,7 +121,7 @@ void Conv3dGradKernel(const Context& dev_ctx,
rulebook_len
,
in_channels
,
in_features_ptr
);
Gather
<
T
>
(
out_grad
.
data
<
T
>
(),
Gather
<
T
>
(
out_grad
.
non_zero_elements
().
data
<
T
>
(),
rulebook_ptr
+
rulebook_len
*
2
,
rulebook_len
,
out_channels
,
...
...
paddle/phi/kernels/sparse/gpu/convolution_grad_kernel.cu
浏览文件 @
ad0c106c
...
...
@@ -12,11 +12,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "glog/logging.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/sparse/convolution_grad_kernel.h"
...
...
@@ -36,15 +38,15 @@ namespace sparse {
template
<
typename
T
,
typename
Context
>
void
Conv3dGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
DenseTensor
&
kernel
,
const
DenseTensor
&
out_grad
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
const
int
groups
,
const
bool
subm
,
Dense
Tensor
*
x_grad
,
SparseCoo
Tensor
*
x_grad
,
DenseTensor
*
kernel_grad
)
{
const
auto
&
kernel_dims
=
kernel
.
dims
();
const
int
kernel_size
=
kernel_dims
[
0
]
*
kernel_dims
[
1
]
*
kernel_dims
[
2
];
...
...
@@ -70,17 +72,25 @@ void Conv3dGradKernel(const Context& dev_ctx,
T
*
in_features_ptr
=
in_features
.
data
<
T
>
();
T
*
d_x_features_ptr
=
d_x_features
.
data
<
T
>
();
T
*
out_grad_features_ptr
=
out_grad_features
.
data
<
T
>
();
kernel_grad
->
ResizeAndAllocate
(
kernel_dims
);
*
kernel_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx
,
kernel
);
T
*
d_kernel_ptr
=
kernel_grad
->
data
<
T
>
();
phi
::
funcs
::
SetConstant
<
Context
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
kernel_grad
,
static_cast
<
T
>
(
0.0
f
));
int
half_kernel_size
=
kernel_size
/
2
;
auto
blas
=
phi
::
funcs
::
GetBlas
<
Context
,
T
>
(
dev_ctx
);
x_grad
->
ResizeAndAllocate
(
x
.
non_zero_elements
().
dims
());
T
*
x_grad_values_ptr
=
x_grad
->
data
<
T
>
();
set_zero
(
dev_ctx
,
x_grad
,
static_cast
<
T
>
(
0.0
f
));
DenseTensor
x_grad_indices
=
phi
::
EmptyLike
<
int
>
(
dev_ctx
,
x
.
non_zero_indices
());
DenseTensor
x_grad_values
=
phi
::
EmptyLike
<
T
>
(
dev_ctx
,
x
.
non_zero_elements
());
T
*
x_grad_values_ptr
=
x_grad_values
.
data
<
T
>
();
set_zero
(
dev_ctx
,
&
x_grad_values
,
static_cast
<
T
>
(
0.0
f
));
set_zero
(
dev_ctx
,
&
d_x_features
,
static_cast
<
T
>
(
0.0
f
));
phi
::
Copy
<
Context
>
(
dev_ctx
,
x
.
non_zero_indices
(),
dev_ctx
.
GetPlace
(),
false
,
&
x_grad_indices
);
x_grad
->
SetMember
(
x_grad_indices
,
x_grad_values
,
x
.
dims
(),
true
);
std
::
vector
<
int
>
offsets
(
kernel_size
+
1
),
counter
(
kernel_size
,
0
),
h_counter
(
rulebook_len
,
0
);
...
...
@@ -113,12 +123,12 @@ void Conv3dGradKernel(const Context& dev_ctx,
phi
::
funcs
::
sparse
::
SubmPreProcess
<
T
,
Context
>
(
dev_ctx
,
x
,
kernel
,
out_grad
,
out_grad
.
non_zero_elements
()
,
in_channels
,
out_channels
,
half_kernel_size
,
kernel_grad
,
x_grad
);
&
x_grad_values
);
if
(
max_count
==
0
)
{
return
;
}
...
...
@@ -140,11 +150,12 @@ void Conv3dGradKernel(const Context& dev_ctx,
GatherKernel
<
T
,
int
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
out_grad
.
data
<
T
>
(),
rulebook_ptr
+
rulebook_len
*
2
,
out_grad_features_ptr
,
rulebook_len
,
out_channels
);
dev_ctx
.
stream
()
>>>
(
out_grad
.
non_zero_elements
().
data
<
T
>
(),
rulebook_ptr
+
rulebook_len
*
2
,
out_grad_features_ptr
,
rulebook_len
,
out_channels
);
const
T
*
kernel_ptr
=
kernel
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
kernel_size
;
i
++
)
{
...
...
@@ -189,7 +200,7 @@ void Conv3dGradKernel(const Context& dev_ctx,
}
// 4. scatter
x_grad
->
ResizeAndAllocate
(
x
.
non_zero_elements
().
dims
());
//
x_grad->ResizeAndAllocate(x.non_zero_elements().dims());
DenseTensorMeta
index_meta
(
DataType
::
INT32
,
{
rulebook_len
},
DataLayout
::
NCHW
);
DenseTensor
out_index
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
index_meta
));
DenseTensor
unique_key
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
index_meta
));
...
...
paddle/phi/tests/kernels/test_sparse_conv3d_dev_api.cc
浏览文件 @
ad0c106c
...
...
@@ -71,6 +71,10 @@ void TestConv3dBase(const std::vector<int>& indices,
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
paddle
::
platform
::
CPUPlace
())
.
get
());
dev_ctx_cpu
.
SetHostAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
paddle
::
platform
::
CPUPlace
())
.
get
());
dev_ctx_cpu
.
Init
();
const
int
in_channels
=
kernel_dims
[
3
];
...
...
@@ -132,19 +136,19 @@ void TestConv3dBase(const std::vector<int>& indices,
f_verify
(
out
.
non_zero_elements
().
data
<
T
>
(),
correct_out_features
);
if
(
backward
)
{
std
::
vector
<
DenseTensor
>
grads
=
std
::
tuple
<
SparseCooTensor
,
DenseTensor
>
grads
=
sparse
::
Conv3dGrad
<
T
>
(
dev_ctx_cpu
,
x_tensor
,
rulebook
,
kernel_tensor
,
out
.
non_zero_elements
(),
rulebook
,
out
,
paddings
,
dilations
,
strides
,
1
,
subm
);
f_verify
(
grads
[
0
]
.
data
<
T
>
(),
features_grad
);
f_verify
(
grads
[
1
]
.
data
<
T
>
(),
kernel_grad
);
f_verify
(
std
::
get
<
0
>
(
grads
).
non_zero_elements
()
.
data
<
T
>
(),
features_grad
);
f_verify
(
std
::
get
<
1
>
(
grads
)
.
data
<
T
>
(),
kernel_grad
);
}
}
...
...
@@ -233,23 +237,28 @@ void TestConv3dBase(const std::vector<int>& indices,
f_verify
(
h_features_tensor
.
data
<
T
>
(),
correct_out_features
);
if
(
backward
)
{
std
::
vector
<
DenseTensor
>
grads
=
std
::
tuple
<
SparseCooTensor
,
DenseTensor
>
grads
=
sparse
::
Conv3dGrad
<
T
>
(
dev_ctx_gpu
,
d_x_tensor
,
d_rulebook
,
d_kernel_tensor
,
d_out
.
non_zero_elements
(),
d_rulebook
,
d_out
,
paddings
,
dilations
,
strides
,
1
,
subm
);
DenseTensor
h_features_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx_cpu
,
grads
[
0
]);
phi
::
Copy
(
dev_ctx_gpu
,
grads
[
0
],
phi
::
CPUPlace
(),
true
,
&
h_features_grad
);
DenseTensor
d_features_grad
=
std
::
get
<
0
>
(
grads
).
non_zero_elements
();
DenseTensor
d_kernel_grad
=
std
::
get
<
1
>
(
grads
);
DenseTensor
h_features_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx_cpu
,
d_features_grad
);
phi
::
Copy
(
dev_ctx_gpu
,
d_features_grad
,
phi
::
CPUPlace
(),
true
,
&
h_features_grad
);
f_verify
(
h_features_grad
.
data
<
T
>
(),
features_grad
);
DenseTensor
h_kernel_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx_cpu
,
grads
[
1
]);
phi
::
Copy
(
dev_ctx_gpu
,
grads
[
1
],
phi
::
CPUPlace
(),
true
,
&
h_kernel_grad
);
DenseTensor
h_kernel_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx_cpu
,
d_kernel_grad
);
phi
::
Copy
(
dev_ctx_gpu
,
std
::
get
<
1
>
(
grads
),
phi
::
CPUPlace
(),
true
,
&
h_kernel_grad
);
f_verify
(
h_kernel_grad
.
data
<
T
>
(),
kernel_grad
);
}
#endif
...
...
python/paddle/fluid/tests/unittests/test_sparse_conv_op.py
0 → 100644
浏览文件 @
ad0c106c
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
paddle
import
_C_ops
from
paddle.fluid
import
core
from
paddle.fluid.framework
import
_test_eager_guard
class
TestSparseConv
(
unittest
.
TestCase
):
def
test_conv3d
(
self
):
with
_test_eager_guard
():
kernel
=
[[[[[
1
],
[
1
],
[
1
]],
[[
1
],
[
1
],
[
1
]],
[[
1
],
[
1
],
[
1
]]]]]
dense_kernel
=
paddle
.
to_tensor
(
kernel
,
dtype
=
'float32'
,
stop_gradient
=
False
)
dense_kernel
=
paddle
.
reshape
(
dense_kernel
,
[
1
,
3
,
3
,
1
,
1
])
paddings
=
[
0
,
0
,
0
]
strides
=
[
1
,
1
,
1
]
dilations
=
[
1
,
1
,
1
]
indices
=
[[
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
],
[
0
,
0
,
1
,
2
],
[
1
,
3
,
2
,
3
]]
values
=
[
1
,
2
,
3
,
4
]
indices
=
paddle
.
to_tensor
(
indices
,
dtype
=
'int32'
)
values
=
paddle
.
to_tensor
(
values
,
dtype
=
'float32'
)
dense_shape
=
[
1
,
1
,
3
,
4
,
1
]
correct_out_values
=
[[
4
],
[
10
]]
sparse_input
=
core
.
eager
.
sparse_coo_tensor
(
indices
,
values
,
dense_shape
,
False
)
out
=
_C_ops
.
final_state_sparse_conv3d
(
sparse_input
,
dense_kernel
,
paddings
,
dilations
,
strides
,
1
,
False
)
out
.
backward
(
out
)
#At present, only backward can be verified to work normally
#TODO(zhangkaihuo): compare the result with dense conv
print
(
sparse_input
.
grad
.
non_zero_elements
())
assert
np
.
array_equal
(
correct_out_values
,
out
.
non_zero_elements
().
numpy
())
#TODO: Add more test case
python/paddle/utils/code_gen/sparse_bw_api.yaml
浏览文件 @
ad0c106c
-
backward_api
:
conv3d_grad
forward
:
conv3d (Tensor x, Tensor kernel, int[] paddings, int[] dilations, int[] strides, int groups, bool subm) -> Tensor(out@SparseCooTensor), Tensor(rulebook@DenseTensor)
args
:
(Tensor x, Tensor kernel, Tensor rulebook, Tensor out_grad, int[] paddings, int[] dilations, int[] strides, int groups, bool subm)
output
:
Tensor(x_grad@
Dense
Tensor), Tensor(kernel_grad@DenseTensor)
output
:
Tensor(x_grad@
SparseCoo
Tensor), Tensor(kernel_grad@DenseTensor)
kernel
:
func
:
sparse_conv3d_grad
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录