conv_grad_kernel.cu 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangkaihuo 已提交
15
#include "paddle/phi/kernels/sparse/conv_grad_kernel.h"
16

17
#include "glog/logging.h"
18 19 20 21 22
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
23
#include "paddle/phi/core/tensor_utils.h"
24
#include "paddle/phi/core/visit_type.h"
25 26
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
Z
zhangkaihuo 已提交
27
#include "paddle/phi/kernels/funcs/scatter.cu.h"
28 29 30 31 32 33 34 35 36 37 38 39 40
#include "paddle/phi/kernels/sparse/gpu/convolution.cu.h"

namespace phi {
namespace sparse {

// rulebook[3, rulebook_len]:
//[
//  [kernel_index],
//  [in_i],
//  [out_i],
//]
// x_grad = out_grad * transpose(kenrel)
// kernel_grad = transpose(x) * out_grad
41
template <typename T, typename IntT>
Z
zhangkaihuo 已提交
42 43 44 45 46 47 48 49 50 51 52 53
void Conv3dCooGradGPUKernel(const GPUContext& dev_ctx,
                            const SparseCooTensor& x,
                            const DenseTensor& kernel,
                            const DenseTensor& rulebook,
                            const SparseCooTensor& out_grad,
                            const std::vector<int>& paddings,
                            const std::vector<int>& dilations,
                            const std::vector<int>& strides,
                            const int groups,
                            const bool subm,
                            SparseCooTensor* x_grad,
                            DenseTensor* kernel_grad) {
54 55 56 57
  const auto& kernel_dims = kernel.dims();
  const int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];
58
  const IntT* rulebook_ptr = rulebook.data<IntT>();
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

  const int rulebook_len = rulebook.dims()[1];

  DenseTensorMeta in_features_meta(
      x.dtype(), {rulebook_len, in_channels}, DataLayout::NCHW);
  DenseTensorMeta d_x_features_meta(
      x.dtype(), {rulebook_len, in_channels}, DataLayout::NCHW);
  DenseTensorMeta out_grad_features_meta(
      x.dtype(), {rulebook_len, out_channels}, DataLayout::NCHW);
  phi::DenseTensor in_features =
      phi::Empty(dev_ctx, std::move(in_features_meta));
  phi::DenseTensor d_x_features =
      phi::Empty(dev_ctx, std::move(d_x_features_meta));
  phi::DenseTensor out_grad_features =
      phi::Empty(dev_ctx, std::move(out_grad_features_meta));

  T* in_features_ptr = in_features.data<T>();
  T* d_x_features_ptr = d_x_features.data<T>();
  T* out_grad_features_ptr = out_grad_features.data<T>();
78
  *kernel_grad = phi::EmptyLike<T>(dev_ctx, kernel);
79
  T* d_kernel_ptr = kernel_grad->data<T>();
80
  phi::funcs::SetConstant<GPUContext, T> set_zero;
81 82
  set_zero(dev_ctx, kernel_grad, static_cast<T>(0.0f));

Z
zhangkaihuo 已提交
83
  int half_kernel_size = kernel_size / 2;
84
  auto blas = phi::funcs::GetBlas<GPUContext, T>(dev_ctx);
85
  DenseTensor x_grad_indices =
86
      phi::EmptyLike<IntT>(dev_ctx, x.non_zero_indices());
87 88 89
  DenseTensor x_grad_values = phi::EmptyLike<T>(dev_ctx, x.non_zero_elements());
  T* x_grad_values_ptr = x_grad_values.data<T>();
  set_zero(dev_ctx, &x_grad_values, static_cast<T>(0.0f));
Z
zhangkaihuo 已提交
90
  set_zero(dev_ctx, &d_x_features, static_cast<T>(0.0f));
91 92 93 94 95
  phi::Copy<GPUContext>(dev_ctx,
                        x.non_zero_indices(),
                        dev_ctx.GetPlace(),
                        false,
                        &x_grad_indices);
96
  x_grad->SetMember(x_grad_indices, x_grad_values, x.dims(), true);
Z
zhangkaihuo 已提交
97

98
  std::vector<IntT> offsets(kernel_size + 1), counter(kernel_size, 0),
99 100 101
      h_counter(rulebook_len, 0);
  phi::backends::gpu::GpuMemcpyAsync(&h_counter[0],
                                     rulebook_ptr,
102
                                     rulebook_len * sizeof(IntT),
103 104 105 106 107 108 109 110 111 112 113 114
#ifdef PADDLE_WITH_HIP
                                     hipMemcpyDeviceToHost,
#else
                                     cudaMemcpyDeviceToHost,
#endif

                                     dev_ctx.stream());
  dev_ctx.Wait();

  for (int i = 0; i < rulebook_len; i++) {
    counter[h_counter[i]] += 1;
  }
115
  IntT offset = 0, max_count = 0;
116 117 118
  for (int i = 0; i < kernel_size; i++) {
    offsets[i] = offset;
    offset += counter[i];
Z
zhangkaihuo 已提交
119 120 121
    if (i < half_kernel_size) {
      max_count = std::max(max_count, counter[i]);
    }
122 123 124
  }
  offsets[kernel_size] = offset;

Z
zhangkaihuo 已提交
125
  if (subm) {
126 127 128 129 130 131 132 133 134 135
    phi::funcs::sparse::SubmPreProcess<T, GPUContext>(
        dev_ctx,
        x,
        kernel,
        out_grad.non_zero_elements(),
        in_channels,
        out_channels,
        half_kernel_size,
        kernel_grad,
        &x_grad_values);
Z
zhangkaihuo 已提交
136 137 138 139 140 141 142
    if (max_count == 0) {
      return;
    }
  }

  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(
      dev_ctx, rulebook_len * in_channels, 1);
143 144 145 146 147 148 149 150
  GatherKernel<T, IntT><<<config.block_per_grid.x,
                          config.thread_per_block.x,
                          0,
                          dev_ctx.stream()>>>(x.non_zero_elements().data<T>(),
                                              rulebook_ptr + rulebook_len,
                                              in_features_ptr,
                                              rulebook_len,
                                              in_channels);
Z
zhangkaihuo 已提交
151 152 153

  config = phi::backends::gpu::GetGpuLaunchConfig1D(
      dev_ctx, rulebook_len * out_channels, 1);
154 155 156 157 158 159 160 161 162
  GatherKernel<T, IntT>
      <<<config.block_per_grid.x,
         config.thread_per_block.x,
         0,
         dev_ctx.stream()>>>(out_grad.non_zero_elements().data<T>(),
                             rulebook_ptr + rulebook_len * 2,
                             out_grad_features_ptr,
                             rulebook_len,
                             out_channels);
Z
zhangkaihuo 已提交
163

164 165
  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
Z
zhangkaihuo 已提交
166
    if (counter[i] <= 0 || (subm && i == half_kernel_size)) {
167 168 169 170 171 172 173 174 175
      continue;
    }

    const int M = counter[i];
    const int K = in_channels;
    const int N = out_channels;
    T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels;
    T* tmp_out_grad_ptr = out_grad_features_ptr + offsets[i] * out_channels;
    const T* tmp_kernel_ptr = kernel_ptr + i * in_channels * out_channels;
176
    T* tmp_d_x_ptr = d_x_features_ptr + offsets[i] * in_channels;
177 178 179 180 181 182 183
    T* tmp_d_kernel_ptr = d_kernel_ptr + i * in_channels * out_channels;

    // call gemm: d_kernel = transpose(x) * out_grad
    // (in_channels, n) * (n, out_channels)
    blas.GEMM(CblasTrans,
              CblasNoTrans,
              K,
184 185
              N,
              M,
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
              static_cast<T>(1),
              tmp_in_ptr,
              tmp_out_grad_ptr,
              static_cast<T>(0),
              tmp_d_kernel_ptr);

    // call gemm: d_x = out_grad * transpose(kernel)
    // (n, out_channels) * (out_channels, in_channels)
    blas.GEMM(CblasNoTrans,
              CblasTrans,
              M,
              K,
              N,
              static_cast<T>(1),
              tmp_out_grad_ptr,
              tmp_kernel_ptr,
              static_cast<T>(0),
              tmp_d_x_ptr);
  }

  // 4. scatter
  config = phi::backends::gpu::GetGpuLaunchConfig1D(
      dev_ctx, rulebook_len * in_channels, 1);

Z
zhangkaihuo 已提交
210 211 212 213
  phi::funcs::ScatterCUDAKernel<<<config.block_per_grid,
                                  config.thread_per_block,
                                  0,
                                  dev_ctx.stream()>>>(
214
      d_x_features_ptr,
Z
zhangkaihuo 已提交
215 216
      rulebook_ptr + rulebook_len,
      x_grad_values_ptr,
217 218
      rulebook_len,
      in_channels,
Z
zhangkaihuo 已提交
219
      false);
220 221
}

222
template <typename T, typename Context>
Z
zhangkaihuo 已提交
223 224 225 226 227 228 229 230 231 232 233 234
void Conv3dCooGradKernel(const Context& dev_ctx,
                         const SparseCooTensor& x,
                         const DenseTensor& kernel,
                         const DenseTensor& rulebook,
                         const SparseCooTensor& out_grad,
                         const std::vector<int>& paddings,
                         const std::vector<int>& dilations,
                         const std::vector<int>& strides,
                         const int groups,
                         const bool subm,
                         SparseCooTensor* x_grad,
                         DenseTensor* kernel_grad) {
235
  PD_VISIT_INTEGRAL_TYPES(
Z
zhangkaihuo 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248
      x.non_zero_indices().dtype(), "Conv3dCooGradGPUKernel", ([&] {
        Conv3dCooGradGPUKernel<T, data_t>(dev_ctx,
                                          x,
                                          kernel,
                                          rulebook,
                                          out_grad,
                                          paddings,
                                          dilations,
                                          strides,
                                          groups,
                                          subm,
                                          x_grad,
                                          kernel_grad);
249 250 251
      }));
}

252 253 254
}  // namespace sparse
}  // namespace phi

Z
zhangkaihuo 已提交
255
PD_REGISTER_KERNEL(conv3d_coo_grad,
256 257
                   GPU,
                   ALL_LAYOUT,
Z
zhangkaihuo 已提交
258
                   phi::sparse::Conv3dCooGradKernel,
259 260 261 262 263
                   float,
                   double,
                   phi::dtype::float16) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}