/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/sparse/conv_grad_kernel.h" #include "glog/logging.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/backends/gpu/gpu_info.h" #include "paddle/phi/backends/gpu/gpu_launch_config.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/core/visit_type.h" #include "paddle/phi/kernels/funcs/blas/blas.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/sparse/gpu/conv.cu.h" namespace phi { namespace sparse { // rulebook[3, rulebook_len]: //[ // [kernel_index], // [in_i], // [out_i], //] // x_grad = out_grad * transpose(kenrel) // kernel_grad = transpose(x) * out_grad template void Conv3dCooGradGPUKernel(const GPUContext& dev_ctx, const SparseCooTensor& x, const DenseTensor& kernel, const SparseCooTensor& out, const DenseTensor& rulebook, const DenseTensor& counter, const SparseCooTensor& out_grad, const std::vector& paddings, const std::vector& dilations, const std::vector& strides, const int groups, const bool subm, const std::string& key, SparseCooTensor* x_grad, DenseTensor* kernel_grad) { const auto& kernel_dims = kernel.dims(); const int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2]; const int in_channels = kernel_dims[3]; const int out_channels = kernel_dims[4]; int rulebook_len = 0; const IntT* rulebook_ptr = phi::funcs::sparse::GetRulebookPtr( out, rulebook, key, &rulebook_len); const int* counter_ptr = phi::funcs::sparse::GetCounterPtr(out, counter, key); phi::DenseTensor in_features = phi::Empty(dev_ctx, {rulebook_len, in_channels}); phi::DenseTensor d_x_features = phi::Empty(dev_ctx, {rulebook_len, in_channels}); phi::DenseTensor out_grad_features = phi::Empty(dev_ctx, {rulebook_len, out_channels}); T* in_features_ptr = in_features.data(); T* d_x_features_ptr = d_x_features.data(); T* out_grad_features_ptr = out_grad_features.data(); *kernel_grad = phi::EmptyLike(dev_ctx, kernel); T* d_kernel_ptr = kernel_grad->data(); phi::backends::gpu::GpuMemsetAsync( d_kernel_ptr, 0, sizeof(T) * kernel_grad->numel(), dev_ctx.stream()); int half_kernel_size = kernel_size / 2; auto blas = phi::funcs::GetBlas(dev_ctx); DenseTensor x_grad_indices = phi::EmptyLike(dev_ctx, x.non_zero_indices()); DenseTensor x_grad_values = phi::EmptyLike(dev_ctx, x.non_zero_elements()); T* x_grad_values_ptr = x_grad_values.data(); phi::backends::gpu::GpuMemsetAsync(x_grad_values_ptr, 0, sizeof(T) * x_grad_values.numel(), dev_ctx.stream()); phi::backends::gpu::GpuMemsetAsync( d_x_features_ptr, 0, sizeof(T) * d_x_features.numel(), dev_ctx.stream()); phi::Copy(dev_ctx, x.non_zero_indices(), dev_ctx.GetPlace(), false, &x_grad_indices); x_grad->SetMember(x_grad_indices, x_grad_values, x.dims(), true); std::vector offsets(kernel_size + 1); int offset = 0, max_count = 0; for (int i = 0; i < kernel_size; i++) { offsets[i] = offset; offset += counter_ptr[i]; if (i < half_kernel_size) { max_count = std::max(max_count, counter_ptr[i]); } } offsets[kernel_size] = offset; if (subm) { phi::funcs::sparse::SubmPreProcess( dev_ctx, x, kernel, out_grad.non_zero_elements(), in_channels, out_channels, half_kernel_size, kernel_grad, &x_grad_values); if (max_count == 0) { return; } } int max_voxel = counter_ptr[kernel_size]; if (!subm) { const auto& x_dims = x.dims(); Dims4D d_x_dims(x_dims[0], x_dims[3], x_dims[2], x_dims[1]); int64_t table_size = 1; for (int i = 0; i < x_dims.size() - 1; i++) { table_size *= x_dims[i]; } DenseTensor in_index_table = phi::Empty(dev_ctx, {table_size + 1}); int* in_index_table_ptr = in_index_table.data(); phi::backends::gpu::GpuMemsetAsync(in_index_table_ptr, 0, sizeof(int) * (table_size + 1), dev_ctx.stream()); auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, x.nnz(), 1); GetOutIndexTable <<>>(x.non_zero_indices().data(), x.nnz(), d_x_dims, nullptr, in_index_table_ptr, in_index_table_ptr + table_size); phi::backends::gpu::GpuMemcpyAsync(&max_voxel, in_index_table_ptr + table_size, sizeof(int), gpuMemcpyDeviceToHost, dev_ctx.stream()); dev_ctx.Wait(); } auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rulebook_len, 1); DenseTensor unique_value = phi::Empty( dev_ctx, {static_cast(x_grad->nnz() * max_voxel * kernel_size * 2)}); DenseTensor out_index = phi::Empty(dev_ctx, {static_cast(x.nnz() * 2)}); int* out_index_ptr = out_index.data(); int* unique_value_ptr = unique_value.data(); phi::backends::gpu::GpuMemsetAsync( out_index_ptr, 0, sizeof(int) * x.nnz() * 2, dev_ctx.stream()); GroupIndexsV2<<>>(rulebook_len, x.nnz(), kernel_size * max_voxel, offsets[kernel_size / 2], rulebook_ptr, out_index_ptr, unique_value_ptr); GatherV2(dev_ctx, x.non_zero_elements().data(), out_index_ptr, unique_value_ptr, x.nnz(), kernel_size, max_voxel, in_channels, 2, in_features_ptr); Gather(dev_ctx, out_grad.non_zero_elements().data(), rulebook_ptr + rulebook_len, rulebook_len, out_channels, out_grad_features_ptr); const T* kernel_ptr = kernel.data(); for (int i = 0; i < kernel_size; i++) { if (counter_ptr[i] <= 0 || (subm && i == half_kernel_size)) { continue; } const int M = counter_ptr[i]; const int K = in_channels; const int N = out_channels; T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels; T* tmp_out_grad_ptr = out_grad_features_ptr + offsets[i] * out_channels; const T* tmp_kernel_ptr = kernel_ptr + i * in_channels * out_channels; T* tmp_d_x_ptr = d_x_features_ptr + offsets[i] * in_channels; T* tmp_d_kernel_ptr = d_kernel_ptr + i * in_channels * out_channels; // call gemm: d_kernel = transpose(x) * out_grad // (in_channels, n) * (n, out_channels) blas.GEMM(CblasTrans, CblasNoTrans, K, N, M, static_cast(1), tmp_in_ptr, tmp_out_grad_ptr, static_cast(0), tmp_d_kernel_ptr); // call gemm: d_x = out_grad * transpose(kernel) // (n, out_channels) * (out_channels, in_channels) blas.GEMM(CblasNoTrans, CblasTrans, M, K, N, static_cast(1), tmp_out_grad_ptr, tmp_kernel_ptr, static_cast(0), tmp_d_x_ptr); } // 4. scatter phi::funcs::sparse::ScatterV2(dev_ctx, d_x_features_ptr, out_index.data(), unique_value.data(), x_grad->nnz(), kernel_size, max_voxel, in_channels, 2, x_grad_values_ptr); } template void Conv3dCooGradKernel(const Context& dev_ctx, const SparseCooTensor& x, const DenseTensor& kernel, const SparseCooTensor& out, const DenseTensor& rulebook, const DenseTensor& counter, const SparseCooTensor& out_grad, const std::vector& paddings, const std::vector& dilations, const std::vector& strides, const int groups, const bool subm, const std::string& key, SparseCooTensor* x_grad, DenseTensor* kernel_grad) { PD_VISIT_BASE_INTEGRAL_TYPES( x.non_zero_indices().dtype(), "Conv3dCooGradGPUKernel", ([&] { Conv3dCooGradGPUKernel(dev_ctx, x, kernel, out, rulebook, counter, out_grad, paddings, dilations, strides, groups, subm, key, x_grad, kernel_grad); })); } } // namespace sparse } // namespace phi PD_REGISTER_KERNEL(conv3d_coo_grad, GPU, ALL_LAYOUT, phi::sparse::Conv3dCooGradKernel, float, double, phi::dtype::float16) { kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); }