conv_grad_kernel.cu 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangkaihuo 已提交
15
#include "paddle/phi/kernels/sparse/conv_grad_kernel.h"
16

17
#include "glog/logging.h"
18 19 20 21
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
22
#include "paddle/phi/core/tensor_utils.h"
23
#include "paddle/phi/core/visit_type.h"
24 25
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
26
#include "paddle/phi/kernels/sparse/gpu/conv.cu.h"
27 28 29 30 31 32 33 34 35 36 37 38

namespace phi {
namespace sparse {

// rulebook[3, rulebook_len]:
//[
//  [kernel_index],
//  [in_i],
//  [out_i],
//]
// x_grad = out_grad * transpose(kenrel)
// kernel_grad = transpose(x) * out_grad
39
template <typename T, typename IntT>
Z
zhangkaihuo 已提交
40 41 42
void Conv3dCooGradGPUKernel(const GPUContext& dev_ctx,
                            const SparseCooTensor& x,
                            const DenseTensor& kernel,
43
                            const SparseCooTensor& out,
Z
zhangkaihuo 已提交
44
                            const DenseTensor& rulebook,
45
                            const DenseTensor& counter,
Z
zhangkaihuo 已提交
46 47 48 49 50 51
                            const SparseCooTensor& out_grad,
                            const std::vector<int>& paddings,
                            const std::vector<int>& dilations,
                            const std::vector<int>& strides,
                            const int groups,
                            const bool subm,
52
                            const std::string& key,
Z
zhangkaihuo 已提交
53 54
                            SparseCooTensor* x_grad,
                            DenseTensor* kernel_grad) {
55 56 57 58 59
  const auto& kernel_dims = kernel.dims();
  const int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];

60 61 62 63
  int rulebook_len = 0;
  const IntT* rulebook_ptr = phi::funcs::sparse::GetRulebookPtr<IntT>(
      out, rulebook, key, &rulebook_len);
  const int* counter_ptr = phi::funcs::sparse::GetCounterPtr(out, counter, key);
64 65

  phi::DenseTensor in_features =
66
      phi::Empty<T>(dev_ctx, {rulebook_len, in_channels});
67
  phi::DenseTensor d_x_features =
68
      phi::Empty<T>(dev_ctx, {rulebook_len, in_channels});
69
  phi::DenseTensor out_grad_features =
70
      phi::Empty<T>(dev_ctx, {rulebook_len, out_channels});
71 72 73 74

  T* in_features_ptr = in_features.data<T>();
  T* d_x_features_ptr = d_x_features.data<T>();
  T* out_grad_features_ptr = out_grad_features.data<T>();
75
  *kernel_grad = phi::EmptyLike<T>(dev_ctx, kernel);
76
  T* d_kernel_ptr = kernel_grad->data<T>();
77 78
  phi::backends::gpu::GpuMemsetAsync(
      d_kernel_ptr, 0, sizeof(T) * kernel_grad->numel(), dev_ctx.stream());
79

Z
zhangkaihuo 已提交
80
  int half_kernel_size = kernel_size / 2;
81
  auto blas = phi::funcs::GetBlas<GPUContext, T>(dev_ctx);
82
  DenseTensor x_grad_indices =
83
      phi::EmptyLike<IntT>(dev_ctx, x.non_zero_indices());
84 85
  DenseTensor x_grad_values = phi::EmptyLike<T>(dev_ctx, x.non_zero_elements());
  T* x_grad_values_ptr = x_grad_values.data<T>();
86 87 88 89 90 91
  phi::backends::gpu::GpuMemsetAsync(x_grad_values_ptr,
                                     0,
                                     sizeof(T) * x_grad_values.numel(),
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemsetAsync(
      d_x_features_ptr, 0, sizeof(T) * d_x_features.numel(), dev_ctx.stream());
92 93 94 95 96
  phi::Copy<GPUContext>(dev_ctx,
                        x.non_zero_indices(),
                        dev_ctx.GetPlace(),
                        false,
                        &x_grad_indices);
97
  x_grad->SetMember(x_grad_indices, x_grad_values, x.dims(), true);
Z
zhangkaihuo 已提交
98

99
  std::vector<int> offsets(kernel_size + 1);
100

101
  int offset = 0, max_count = 0;
102 103
  for (int i = 0; i < kernel_size; i++) {
    offsets[i] = offset;
104
    offset += counter_ptr[i];
Z
zhangkaihuo 已提交
105
    if (i < half_kernel_size) {
106
      max_count = std::max(max_count, counter_ptr[i]);
Z
zhangkaihuo 已提交
107
    }
108 109 110
  }
  offsets[kernel_size] = offset;

Z
zhangkaihuo 已提交
111
  if (subm) {
112 113 114 115 116 117 118 119 120 121
    phi::funcs::sparse::SubmPreProcess<T, GPUContext>(
        dev_ctx,
        x,
        kernel,
        out_grad.non_zero_elements(),
        in_channels,
        out_channels,
        half_kernel_size,
        kernel_grad,
        &x_grad_values);
Z
zhangkaihuo 已提交
122 123 124 125 126
    if (max_count == 0) {
      return;
    }
  }

127 128 129 130 131 132 133 134 135 136
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rulebook_len, 1);
  DenseTensor unique_value = phi::Empty<int>(
      dev_ctx, {static_cast<int>(x_grad->nnz() * kernel_size * 2)});
  DenseTensor out_index =
      phi::Empty<int>(dev_ctx, {static_cast<int>(x.nnz() * 2)});
  int* out_index_ptr = out_index.data<int>();
  int* unique_value_ptr = unique_value.data<int>();
  phi::backends::gpu::GpuMemsetAsync(
      out_index_ptr, 0, sizeof(int) * x.nnz() * 2, dev_ctx.stream());
Z
zhangkaihuo 已提交
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
  GroupIndexsV2<<<config.block_per_grid,
                  config.thread_per_block,
                  0,
                  dev_ctx.stream()>>>(rulebook_len,
                                      x.nnz(),
                                      kernel_size,
                                      offsets[kernel_size / 2],
                                      rulebook_ptr,
                                      out_index_ptr,
                                      unique_value_ptr);

  GatherV2<T, IntT>(dev_ctx,
                    x.non_zero_elements().data<T>(),
                    out_index_ptr,
                    unique_value_ptr,
                    x.nnz(),
                    kernel_size,
                    in_channels,
                    2,
                    in_features_ptr);

  Gather<T, IntT>(dev_ctx,
                  out_grad.non_zero_elements().data<T>(),
                  rulebook_ptr + rulebook_len,
                  rulebook_len,
                  out_channels,
                  out_grad_features_ptr);
Z
zhangkaihuo 已提交
165

166 167
  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
168
    if (counter_ptr[i] <= 0 || (subm && i == half_kernel_size)) {
169 170 171
      continue;
    }

172
    const int M = counter_ptr[i];
173 174 175 176 177
    const int K = in_channels;
    const int N = out_channels;
    T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels;
    T* tmp_out_grad_ptr = out_grad_features_ptr + offsets[i] * out_channels;
    const T* tmp_kernel_ptr = kernel_ptr + i * in_channels * out_channels;
178
    T* tmp_d_x_ptr = d_x_features_ptr + offsets[i] * in_channels;
179 180 181 182 183 184 185
    T* tmp_d_kernel_ptr = d_kernel_ptr + i * in_channels * out_channels;

    // call gemm: d_kernel = transpose(x) * out_grad
    // (in_channels, n) * (n, out_channels)
    blas.GEMM(CblasTrans,
              CblasNoTrans,
              K,
186 187
              N,
              M,
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
              static_cast<T>(1),
              tmp_in_ptr,
              tmp_out_grad_ptr,
              static_cast<T>(0),
              tmp_d_kernel_ptr);

    // call gemm: d_x = out_grad * transpose(kernel)
    // (n, out_channels) * (out_channels, in_channels)
    blas.GEMM(CblasNoTrans,
              CblasTrans,
              M,
              K,
              N,
              static_cast<T>(1),
              tmp_out_grad_ptr,
              tmp_kernel_ptr,
              static_cast<T>(0),
              tmp_d_x_ptr);
  }

  // 4. scatter
209 210 211 212 213 214 215 216 217
  phi::funcs::sparse::ScatterV2<T>(dev_ctx,
                                   d_x_features_ptr,
                                   out_index.data<int>(),
                                   unique_value.data<int>(),
                                   x_grad->nnz(),
                                   kernel_size,
                                   in_channels,
                                   2,
                                   x_grad_values_ptr);
218 219
}

220
template <typename T, typename Context>
Z
zhangkaihuo 已提交
221 222 223
void Conv3dCooGradKernel(const Context& dev_ctx,
                         const SparseCooTensor& x,
                         const DenseTensor& kernel,
224
                         const SparseCooTensor& out,
Z
zhangkaihuo 已提交
225
                         const DenseTensor& rulebook,
226
                         const DenseTensor& counter,
Z
zhangkaihuo 已提交
227 228 229 230 231 232
                         const SparseCooTensor& out_grad,
                         const std::vector<int>& paddings,
                         const std::vector<int>& dilations,
                         const std::vector<int>& strides,
                         const int groups,
                         const bool subm,
233
                         const std::string& key,
Z
zhangkaihuo 已提交
234 235
                         SparseCooTensor* x_grad,
                         DenseTensor* kernel_grad) {
236
  PD_VISIT_INTEGRAL_TYPES(
Z
zhangkaihuo 已提交
237 238 239 240
      x.non_zero_indices().dtype(), "Conv3dCooGradGPUKernel", ([&] {
        Conv3dCooGradGPUKernel<T, data_t>(dev_ctx,
                                          x,
                                          kernel,
241
                                          out,
Z
zhangkaihuo 已提交
242
                                          rulebook,
243
                                          counter,
Z
zhangkaihuo 已提交
244 245 246 247 248 249
                                          out_grad,
                                          paddings,
                                          dilations,
                                          strides,
                                          groups,
                                          subm,
250
                                          key,
Z
zhangkaihuo 已提交
251 252
                                          x_grad,
                                          kernel_grad);
253 254 255
      }));
}

256 257 258
}  // namespace sparse
}  // namespace phi

Z
zhangkaihuo 已提交
259
PD_REGISTER_KERNEL(conv3d_coo_grad,
260 261
                   GPU,
                   ALL_LAYOUT,
Z
zhangkaihuo 已提交
262
                   phi::sparse::Conv3dCooGradKernel,
263 264 265 266 267
                   float,
                   double,
                   phi::dtype::float16) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}