norm.py 54.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

28
# TODO: define normalization api
29

30
import numbers
31
import os
32
import warnings
C
ceci3 已提交
33

34
import numpy as np
35

36 37 38
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
from paddle.device import get_all_custom_device_type
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
39

40 41 42 43
from ...fluid.data_feeder import check_variable_and_dtype
from ...fluid.dygraph import BatchNorm  # noqa: F401
from ...fluid.dygraph import SpectralNorm  # noqa: F401
from ...framework import ParamAttr, get_default_dtype, no_grad
Z
zhiboniu 已提交
44
from .. import Layer
45 46 47
from .. import functional as F
from ..functional import batch_norm, instance_norm, layer_norm
from ..initializer import Constant
48

49 50
__all__ = []

C
ceci3 已提交
51

Z
zhiboniu 已提交
52
class _InstanceNormBase(Layer):
53
    """
54
    This class is based class for InstanceNorm1D, 2d, 3d.
55

C
cnn 已提交
56
    See InstaceNorm1D, InstanceNorm2D or InstanceNorm3D for more details.
57 58
    """

59 60 61 62 63 64 65 66 67 68
    def __init__(
        self,
        num_features,
        epsilon=1e-5,
        momentum=0.9,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
        name=None,
    ):
69
        super().__init__()
70

71
        if weight_attr is False or bias_attr is False:
72 73
            assert (
                weight_attr == bias_attr
74
            ), "weight_attr and bias_attr must be set to False at the same time in InstanceNorm"
75 76 77
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
78
        self._num_features = num_features
79

80
        if weight_attr is not False and bias_attr is not False:
81 82 83 84
            self.scale = self.create_parameter(
                attr=self._weight_attr,
                shape=[num_features],
                default_initializer=Constant(1.0),
85 86 87 88 89 90 91 92
                is_bias=False,
            )
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_features],
                default_initializer=Constant(0.0),
                is_bias=True,
            )
93 94 95 96 97 98 99 100 101 102
        else:
            self.scale = None
            self.bias = None

    def _check_input_dim(self, input):
        raise NotImplementedError("InstanceNorm Base error")

    def forward(self, input):
        self._check_input_dim(input)

103 104 105
        return instance_norm(
            input, weight=self.scale, bias=self.bias, eps=self._epsilon
        )
106

107
    def extra_repr(self):
108 109 110
        return 'num_features={}, epsilon={}'.format(
            self._num_features, self._epsilon
        )
111

112

C
cnn 已提交
113
class InstanceNorm1D(_InstanceNormBase):
114
    r"""
115
    Create a callable object of `InstanceNorm1D`. Applies Instance Normalization over a 3D input (a mini-batch of 1D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
116 117 118 119 120 121

    DataLayout: NCL `[batch, in_channels, length]`

    :math:`input` is the input features over a mini-batch.

    ..  math::
122

123 124 125 126 127 128 129
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
130

131
Where `H` means height of feature map, `W` means width of feature map.
132 133 134 135 136 137 138

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
139 140 141 142
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
143
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
144 145 146 147
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
            If it is set to False, will not create bias_attr. Default: None.
148
        data_format(str, optional): Specify the input data format, may be "NC", "NCL". Default "NCL".
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..


    Shape:
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length).
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

          import paddle

166
          x = paddle.rand((2, 2, 3))
C
cnn 已提交
167
          instance_norm = paddle.nn.InstanceNorm1D(2)
168 169
          instance_norm_out = instance_norm(x)

Z
zhang wenhui 已提交
170
          print(instance_norm_out)
171 172 173 174 175

    """

    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
176 177 178 179 180
            raise ValueError(
                'expected 2D or 3D input (got {}D input)'.format(
                    len(input.shape)
                )
            )
181 182


C
cnn 已提交
183
class InstanceNorm2D(_InstanceNormBase):
184
    r"""
185
    Create a callable object of `InstanceNorm2D`. Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
186 187 188 189 190 191 192

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
193

194 195 196 197 198 199 200
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
201

202
Where `H` means height of feature map, `W` means width of feature map.
203 204 205 206 207 208 209

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
210 211 212 213
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
214
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
215 216 217 218
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
    `       If it is set to False, will not create bias_attr. Default: None.
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
        data_format(str, optional): Specify the input data format, could be "NCHW". Default: NCHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 4-D tensor with shape: (batch, num_features, height, weight).
        - output: 4-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

234
            import paddle
235

236 237 238
            x = paddle.rand((2, 2, 2, 3))
            instance_norm = paddle.nn.InstanceNorm2D(2)
            instance_norm_out = instance_norm(x)
239

240
            print(instance_norm_out)
241 242 243 244
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 4:
245 246 247
            raise ValueError(
                'expected 4D input (got {}D input)'.format(len(input.shape))
            )
248 249


C
cnn 已提交
250
class InstanceNorm3D(_InstanceNormBase):
251
    r"""
252
    Create a callable object of `InstanceNorm3D`. Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
253 254 255 256 257 258 259

    DataLayout: NCHW `[batch, in_channels, D, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
260

261 262 263 264 265 266 267
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
268

269
Where `H` means height of feature map, `W` means width of feature map.
270 271 272 273 274 275 276

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
277 278 279 280
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
281
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
282 283 284 285
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
            If it is set to False, will not create bias_attr. Default: None.
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        data_format(str, optional): Specify the input data format, could be "NCDHW". Default: NCDHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight).
        - output: 5-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

301
            import paddle
302

303 304 305
            x = paddle.rand((2, 2, 2, 2, 3))
            instance_norm = paddle.nn.InstanceNorm3D(2)
            instance_norm_out = instance_norm(x)
306

307
            print(instance_norm_out.numpy)
308 309 310 311
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 5:
312 313 314
            raise ValueError(
                'expected 5D input (got {}D input)'.format(len(input.shape))
            )
315 316


Z
zhiboniu 已提交
317
class GroupNorm(Layer):
318
    """
319

320 321 322 323 324 325 326
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
        num_groups(int): The number of groups that divided from channels.
327
        num_channels(int): The number of channels of input.
328
        epsilon(float, optional): The small value added to the variance to prevent
329
            division by zero. Default: 1e-05.
330
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
331 332
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
333
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
334 335
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
336 337 338 339
        data_format(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.
        name(str, optional): Name for the GroupNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
340
        - x: Tensor with shape: attr:`(batch, num_features, *)`.
341
        - output: The same shape as input x.
342 343 344 345 346 347

    Returns:
        None

    Examples:
        .. code-block:: python
Z
zhang wenhui 已提交
348

349
            import paddle
350

351
            x = paddle.arange(48, dtype="float32").reshape((2, 6, 2, 2))
352 353
            group_norm = paddle.nn.GroupNorm(num_channels=6, num_groups=6)
            group_norm_out = group_norm(x)
354

355
            print(group_norm_out)
356 357
    """

358 359 360 361 362 363 364 365 366 367
    def __init__(
        self,
        num_groups,
        num_channels,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        name=None,
    ):
368
        super().__init__()
369 370 371 372 373
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
        self._num_channels = num_channels
        self._num_groups = num_groups
374
        if data_format not in ['NCHW', 'NHWC']:
375
            raise ValueError("unsupported data layout:" + data_format)
376
        self._data_format = data_format
377 378 379

        param_shape = [self._num_channels]

380
        if weight_attr is False:
381
            self.weight = self.create_parameter(
382 383
                attr=None, shape=param_shape, default_initializer=Constant(1.0)
            )
384 385 386 387 388
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
389 390 391
                default_initializer=Constant(1.0),
            )
            self.weight.stop_gradient = (
392
                self._weight_attr is not None
393 394
                and self._weight_attr.learning_rate == 0.0
            )
395

396
        if bias_attr is False:
397 398 399 400 401 402
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
403 404
            self.bias.stop_gradient = True
        else:
405 406 407 408
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True
            )
            self.bias.stop_gradient = (
409 410
                self._bias_attr is not None
                and self._bias_attr.learning_rate == 0.0
411
            )
412 413

    def forward(self, input):
414
        if in_dygraph_mode():
415
            return _C_ops.group_norm(
416 417 418 419 420
                input,
                self.weight,
                self.bias,
                self._epsilon,
                self._num_groups,
421
                self._data_format,
422
            )
423

424 425 426 427 428 429
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=input.dtype, stop_gradient=True
        )
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=input.dtype, stop_gradient=True
        )
430

431
        if _in_legacy_dygraph():
432
            pre_act, _, _ = _legacy_C_ops.group_norm(
433 434 435 436 437 438 439 440
                input,
                self.weight,
                self.bias,
                mean_out,
                variance_out,
                'epsilon',
                self._epsilon,
                'groups',
441 442
                self._num_groups,
            )
443
            return pre_act
444

445 446 447 448 449 450 451 452
        inputs = {'X': input}
        if self.bias is not None:
            inputs['Bias'] = self.bias
        if self.weight is not None:
            inputs['Scale'] = self.weight

        # create output
        group_norm_out = self._helper.create_variable_for_type_inference(
453 454 455 456 457 458 459 460 461 462 463 464 465
            dtype=input.dtype
        )

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon, "groups": self._num_groups},
        )
466 467 468

        return self._helper.append_activation(group_norm_out, None)

469 470
    def extra_repr(self):
        return 'num_groups={}, num_channels={}, epsilon={}'.format(
471 472
            self._num_groups, self._num_channels, self._epsilon
        )
473

474

Z
zhiboniu 已提交
475
class LayerNorm(Layer):
476
    r"""
477
    Construct a callable object of the ``LayerNorm`` class.
478 479 480 481 482 483 484 485
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    ..  math::

486
        \mu & = \frac{1}{H}\sum_{i=1}^{H} x_i
487

488
        \sigma & = \sqrt{\frac{1}{H}\sum_{i=1}^{H}{(x_i - \mu)^2} + \epsilon}
489

490
        y & = f(\frac{g}{\sigma}(x - \mu) + b)
491 492 493

    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
494
    - :math:`\epsilon`: the small value added to the variance to prevent division by zero.
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.

    Parameters:
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            gain :math:`g`. If False, weight is None. If is None, a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 2-D, 3-D, 4-D or 5-D tensor.
        - output: same shape as input x.

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

526 527
          x = paddle.rand((2, 2, 2, 3))
          layer_norm = paddle.nn.LayerNorm(x.shape[1:])
528 529
          layer_norm_out = layer_norm(x)

Z
zhang wenhui 已提交
530
          print(layer_norm_out)
531 532
    """

533 534 535 536 537 538 539 540
    def __init__(
        self,
        normalized_shape,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        name=None,
    ):
541
        super().__init__()
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]

        self._normalized_shape = list(normalized_shape)
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        param_shape = [np.prod(self._normalized_shape)]

        if weight_attr is False:
            self.weight = None
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
557 558
                default_initializer=Constant(1.0),
            )
559 560 561 562

        if bias_attr is False:
            self.bias = None
        else:
563 564 565
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True
            )
566 567

    def forward(self, input):
568 569 570 571 572 573 574
        return layer_norm(
            input,
            normalized_shape=self._normalized_shape,
            weight=self.weight,
            bias=self.bias,
            epsilon=self._epsilon,
        )
575

576
    def extra_repr(self):
577 578 579
        return 'normalized_shape={}, epsilon={}'.format(
            self._normalized_shape, self._epsilon
        )
580

581

Z
zhiboniu 已提交
582
class _BatchNormBase(Layer):
583 584 585 586
    """
    BatchNorm base .
    """

587 588 589 590 591 592 593 594 595 596 597
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        use_global_stats=None,
        name=None,
    ):
598
        super().__init__()
599 600 601
        self._num_features = num_features
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
C
ceci3 已提交
602
        self._use_global_stats = use_global_stats
603 604

        if get_default_dtype() == 'float16':
G
Guoxia Wang 已提交
605 606 607
            self._dtype = 'float32'
        else:
            self._dtype = get_default_dtype()
608 609 610 611

        param_shape = [num_features]

        # create parameter
612
        if weight_attr is False:
613
            self.weight = self.create_parameter(
G
Guoxia Wang 已提交
614 615 616
                attr=None,
                shape=param_shape,
                dtype=self._dtype,
617 618
                default_initializer=Constant(1.0),
            )
619 620 621 622 623
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
G
Guoxia Wang 已提交
624
                dtype=self._dtype,
625 626 627
                default_initializer=Constant(1.0),
            )
            self.weight.stop_gradient = (
628
                self._weight_attr is not None
629 630
                and self._weight_attr.learning_rate == 0.0
            )
631

632
        if bias_attr is False:
633 634 635 636 637 638 639
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
640 641
            self.bias.stop_gradient = True
        else:
642 643 644 645 646 647 648
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True,
            )
            self.bias.stop_gradient = (
649 650
                self._bias_attr is not None
                and self._bias_attr.learning_rate == 0.0
651
            )
652 653 654 655 656 657 658 659

        moving_mean_name = None
        moving_variance_name = None

        if name is not None:
            moving_mean_name = name + "_mean"
            moving_variance_name = name + "_variance"

660 661 662 663 664 665 666 667 668 669
        self._mean = self.create_parameter(
            dtype=self._dtype,
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=True,
            ),
            shape=param_shape,
        )
670 671
        self._mean.stop_gradient = True

672 673 674 675 676 677 678 679 680 681
        self._variance = self.create_parameter(
            dtype=self._dtype,
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=True,
            ),
            shape=param_shape,
        )
682 683
        self._variance.stop_gradient = True

684
        # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
685 686 687 688 689
        if (
            os.environ.get('FLAGS_npu_storage_format', None)
            in [1, '1', True, 'True', 'true']
            and 'npu' in get_all_custom_device_type()
        ):
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
            with no_grad():
                weight_trans = _C_ops.npu_identity(
                    self.weight, 3
                )  # ACL_FORMAT_NC1HWC0 = 3
                bias_trans = _C_ops.npu_identity(
                    self.bias, 3
                )  # ACL_FORMAT_NC1HWC0 = 3
                mean_trans = _C_ops.npu_identity(
                    self._mean, 3
                )  # ACL_FORMAT_NC1HWC0 = 3
                var_trans = _C_ops.npu_identity(
                    self._variance, 3
                )  # ACL_FORMAT_NC1HWC0 = 3
                weight_trans._share_underline_tensor_to(self.weight)
                bias_trans._share_underline_tensor_to(self.bias)
                mean_trans._share_underline_tensor_to(self._mean)
                var_trans._share_underline_tensor_to(self._variance)

708 709 710 711 712
        self._data_format = data_format
        self._in_place = False
        self._momentum = momentum
        self._epsilon = epsilon
        self._fuse_with_relu = False
713
        self._name = name
714 715 716 717

    def _check_input_dim(self, input):
        raise NotImplementedError("BatchNorm Base error")

718 719 720
    def _check_data_format(self, input):
        raise NotImplementedError("BatchNorm Base data format error")

721 722
    def forward(self, input):

723 724
        self._check_data_format(self._data_format)

725 726
        self._check_input_dim(input)

727
        if self.training:
728
            warnings.warn(
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
                "When training, we now always track global mean and variance."
            )

        return batch_norm(
            input,
            self._mean,
            self._variance,
            weight=self.weight,
            bias=self.bias,
            training=self.training,
            momentum=self._momentum,
            epsilon=self._epsilon,
            data_format=self._data_format,
            use_global_stats=self._use_global_stats,
        )
744

745 746
    def extra_repr(self):
        main_str = 'num_features={}, momentum={}, epsilon={}'.format(
747 748
            self._num_features, self._momentum, self._epsilon
        )
749
        if self._data_format != 'NCHW':
750 751 752 753 754
            main_str += ', data_format={}'.format(self._data_format)
        if self._name is not None:
            main_str += ', name={}'.format(self._name)
        return main_str

755

C
cnn 已提交
756
class BatchNorm1D(_BatchNormBase):
757
    r"""
758 759
    Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

760 761
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
762 763 764 765
    Calculated as follows:

    ..  math::

766 767 768 769
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
770

771 772
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
773 774 775 776
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
777 778
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
779 780 781 782 783

    The normalization function formula is as follows:

    ..  math::

784 785
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
786

787 788 789
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
790 791 792 793 794 795 796

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
797
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
798
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
799 800
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
801
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
802
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
803
        data_format(str, optional): Specify the input data format, may be "NC", "NCL" or "NLC". Default "NCL".
C
ceci3 已提交
804
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
805 806 807
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
808 809
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length) when data_format is "NC" or "NCL",
            (batch, length, num_features) when data_format is "NLC".
810 811 812 813
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.
814

815 816 817 818 819 820

    Examples:
        .. code-block:: python

          import paddle

821
          x = paddle.rand((2, 1, 3))
C
cnn 已提交
822
          batch_norm = paddle.nn.BatchNorm1D(1)
823 824
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
825
          print(batch_norm_out)
826 827
    """

828 829 830 831 832 833 834 835 836 837 838
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCL',
        use_global_stats=None,
        name=None,
    ):
839
        super().__init__(
840 841 842 843 844 845 846 847 848
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            use_global_stats,
            name,
        )
C
ceci3 已提交
849

850 851 852
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NC' or input == 'NCL':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
853 854
        elif input == "NHWC" or input == 'NLC':
            self._data_format = "NHWC"
855
        else:
F
Feiyu Chan 已提交
856
            raise ValueError(
857 858
                'expected NC , NCL, NLC or None for data_format input'
            )
859

860 861
    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
862 863 864 865 866
            raise ValueError(
                'expected 2D or 3D input (got {}D input)'.format(
                    len(input.shape)
                )
            )
867 868


C
cnn 已提交
869
class BatchNorm2D(_BatchNormBase):
870
    r"""
871 872
    Applies Batch Normalization over a 4D input (a mini-batch of 2D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

873 874
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
875 876 877 878
    Calculated as follows:

    ..  math::

879 880
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//
        \ mini-batch\ mean \\
881
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i -
882
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
883

884 885
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
886 887 888 889
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
890 891
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
892 893 894 895 896

    The normalization function formula is as follows:

    ..  math::

897 898
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
899

900 901 902
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
903 904 905 906 907 908 909

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
910
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
911
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
912 913
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
914
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
915
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
916
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
C
ceci3 已提交
917
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
918 919 920
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
921 922
        - x: 4-D tensor with shape: (batch, num_features, height, weight) when data_format is "NCHW",
            or (batch, height, weight, num_features) when data_format is "NHWC".
923 924 925 926 927 928 929 930 931 932
        - output: 4-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

933
          x = paddle.rand((2, 1, 2, 3))
C
cnn 已提交
934
          batch_norm = paddle.nn.BatchNorm2D(1)
935 936
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
937
          print(batch_norm_out)
938 939
    """

940
    def _check_data_format(self, input):
941
        if input == 'NCHW':
942
            self._data_format = input
F
Feiyu Chan 已提交
943 944
        elif input == "NHWC":
            self._data_format = input
945
        else:
F
Feiyu Chan 已提交
946
            raise ValueError('expected NCHW or NHWC for data_format input')
947

948 949
    def _check_input_dim(self, input):
        if len(input.shape) != 4:
950 951 952
            raise ValueError(
                'expected 4D input (got {}D input)'.format(len(input.shape))
            )
953 954


C
cnn 已提交
955
class BatchNorm3D(_BatchNormBase):
956
    r"""
957 958
    Applies Batch Normalization over a 5D input (a mini-batch of 3D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

959 960
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
961 962 963 964
    Calculated as follows:

    ..  math::

965 966 967 968
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
969

C
ceci3 已提交
970
    When use_global_stats = True, the :math:`\\mu_{\\beta}`
971 972 973 974 975
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
976 977
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
978 979 980 981 982

    The normalization function formula is as follows:

    ..  math::

983 984
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
985

986 987 988
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
989 990 991 992 993 994 995

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
996
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
997
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
998 999
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
1000
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
1001
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
1002
        data_format(str, optional): Specify the input data format, the data format can be "NCDHW" or "NDHWC. Default: NCDHW.
C
ceci3 已提交
1003
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
1004 1005 1006
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
1007 1008
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight) when data_format is "NCDHW",
            or (batch, dims, height, weight, num_features) when data_format is "NDHWC".
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
        - output: 5-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

1019
          x = paddle.rand((2, 1, 2, 2, 3))
C
cnn 已提交
1020
          batch_norm = paddle.nn.BatchNorm3D(1)
1021 1022
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
1023
          print(batch_norm_out)
1024 1025
    """

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCDHW',
        use_global_stats=None,
        name=None,
    ):
1037
        super().__init__(
1038 1039 1040 1041 1042 1043 1044 1045 1046
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            use_global_stats,
            name,
        )
C
ceci3 已提交
1047

1048 1049 1050
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NCDHW':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
1051 1052
        elif input == "NHWC" or input == "NDHWC":
            self._data_format = 'NHWC'
1053
        else:
F
Feiyu Chan 已提交
1054
            raise ValueError(
1055 1056
                'expected NCDHW, NDHWC or None for data_format input'
            )
1057

1058 1059
    def _check_input_dim(self, input):
        if len(input.shape) != 5:
1060 1061 1062
            raise ValueError(
                'expected 5D input (got {}D input)'.format(len(input.shape))
            )
1063 1064


1065
class SyncBatchNorm(_BatchNormBase):
1066
    r"""
1067

C
ceci3 已提交
1068
    This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
1069 1070
    It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can
    be used as a normalizer function for other operations, such as conv2d and fully connected
C
ceci3 已提交
1071 1072 1073 1074 1075 1076 1077
    operations.
    The data is normalized by the mean and variance of the channel based on whole mini-batch
    , which including data in all gpus.
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1078
    When model in training mode, the :math:`\\mu_{\\beta}`
C
ceci3 已提交
1079 1080 1081 1082 1083
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of whole mini-batch data in all gpus.
    Calculated as follows:

    ..  math::

1084 1085 1086 1087
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
C
ceci3 已提交
1088 1089 1090 1091 1092

    - :math:`x` : whole mini-batch data in all gpus
    - :math:`m` : the size of the whole mini-batch data

    When model in evaluation mode, the :math:`\\mu_{\\beta}`
1093
    and :math:`\sigma_{\beta}^{2}` are global statistics (moving_mean and moving_variance,
C
ceci3 已提交
1094 1095 1096
    which usually got from the pre-trained model). Global statistics calculated as follows:

    .. math::
1097 1098
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
C
ceci3 已提交
1099 1100

    The formula of normalization is as follows:
1101

C
ceci3 已提交
1102 1103
    ..  math::

1104 1105 1106
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
C
ceci3 已提交
1107

1108 1109
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable scale parameter vector
1110
    - :math:`\beta` : trainable shift parameter vector
C
ceci3 已提交
1111

1112
    Note:
1113 1114 1115
        If you want to use container to pack your model and has :ref:`api_paddle_nn_SyncBatchNorm` in the
        evaluation phase, please use :ref:`api_paddle_nn_LayerList` or :ref:`api_paddle_nn_Sequential` instead of
        :ref:`api_paddle_hub_list` to pack the model.
1116

C
ceci3 已提交
1117 1118 1119 1120 1121 1122 1123
    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of this layer. If it is set to None or one attribute of ParamAttr, this layerr
             will create ParamAttr as param_attr. If the Initializer of the param_attr
1124
             is not set, the parameter is initialized with ones. If it is set to False,
C
ceci3 已提交
1125 1126 1127 1128
             this layer will not have trainable scale parameter. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer.
             If it is set to None or one attribute of ParamAttr, this layer
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
1129
             is not set, the bias is initialized zero. If it is set to False, this layer will not
C
ceci3 已提交
1130 1131 1132
             have trainable bias parameter. Default: None.

    Shapes:
1133 1134
        - input: Tensor that the dimension from 2 to 5.
        - output: Tensor with the same shape as input.
C
ceci3 已提交
1135 1136 1137 1138

    Examples:
        .. code-block:: python

1139
            # required: gpu
1140

1141 1142
            import paddle
            import paddle.nn as nn
C
ceci3 已提交
1143

1144
            x = paddle.to_tensor([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
C
ceci3 已提交
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
            if paddle.is_compiled_with_cuda():
                sync_batch_norm = nn.SyncBatchNorm(2)
                hidden1 = sync_batch_norm(x)
                print(hidden1)
                # Tensor(shape=[1, 2, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=False,
                #        [[[[ 0.26824948,  1.09363246],
                #           [ 0.26824948, -1.63013160]],

                #          [[ 0.80956620, -0.66528702],
                #           [-1.27446556,  1.13018656]]]])
1156

C
ceci3 已提交
1157 1158
    """

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        name=None,
    ):
1169
        super().__init__(
1170 1171 1172 1173 1174 1175 1176 1177 1178
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            None,
            name,
        )
C
ceci3 已提交
1179

C
ceci3 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    def _check_data_format(self):
        if self._data_format in ['NCHW', 'NCDHW', 'NC', 'NCL']:
            self._data_format = 'NCHW'
        elif self._data_format in ["NHWC", "NDHWC", 'NLC']:
            self._data_format = 'NHWC'
        else:
            raise ValueError(
                'expected \'NCDHW\', \'NDHWC\', \'NCL\', \'NLC\', \'NC\', \'NCHW\', \'NHWC\' for data_format'
            )

C
ceci3 已提交
1190
    def forward(self, x):
C
ceci3 已提交
1191
        self._check_data_format()
C
ceci3 已提交
1192 1193 1194 1195 1196 1197
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

1198 1199
        # train mode: use mini-batch stats, eval mode: use global stats
        # use_global_stats only support False in sync_batch_norm
1200
        if in_dygraph_mode():
1201
            sync_batch_norm_out, _, _, _, _, _ = _C_ops.sync_batch_norm_(
1202 1203 1204
                x,
                self._mean,
                self._variance,
1205 1206 1207
                self.weight,
                self.bias,
                not self.training,
1208 1209 1210 1211 1212 1213
                self._momentum,
                self._epsilon,
                self._data_format,
                False,
                False,
            )
1214 1215 1216
            return sync_batch_norm_out

        elif in_dynamic_mode():
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
            attrs = (
                "momentum",
                self._momentum,
                "epsilon",
                self._epsilon,
                "is_test",
                not self.training,
                "data_layout",
                self._data_format,
                "use_mkldnn",
                False,
                "fuse_with_relu",
                False,
                "use_global_stats",
                False,
                'trainable_statistics',
                False,
            )
1235
            sync_batch_norm_out, _, _, _, _, _ = _legacy_C_ops.sync_batch_norm(
1236 1237 1238 1239 1240 1241 1242 1243 1244
                x,
                self.weight,
                self.bias,
                self._mean,
                self._variance,
                mean_out,
                variance_out,
                *attrs
            )
C
ceci3 已提交
1245 1246
            return sync_batch_norm_out

1247 1248 1249
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'SyncBatchNorm'
        )
C
ceci3 已提交
1250 1251 1252 1253 1254

        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": not self.training,
1255
            "data_layout": self._data_format,
C
ceci3 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": False,
            "trainable_statistics": False,
        }

        inputs = {
            "X": [x],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
1267
            "Variance": [self._variance],
C
ceci3 已提交
1268 1269 1270
        }

        saved_mean = self._helper.create_variable_for_type_inference(
1271 1272
            dtype=self._dtype, stop_gradient=True
        )
C
ceci3 已提交
1273
        saved_variance = self._helper.create_variable_for_type_inference(
1274 1275
            dtype=self._dtype, stop_gradient=True
        )
C
ceci3 已提交
1276
        sync_batch_norm_out = self._helper.create_variable_for_type_inference(
1277 1278
            self._dtype
        )
C
ceci3 已提交
1279 1280 1281 1282 1283 1284

        outputs = {
            "Y": [sync_batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
1285
            "SavedVariance": [saved_variance],
C
ceci3 已提交
1286 1287
        }

1288 1289 1290
        self._helper.append_op(
            type="sync_batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
C
ceci3 已提交
1291
        return sync_batch_norm_out
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

    @classmethod
    def convert_sync_batchnorm(cls, layer):
        """
        Helper function to convert :class: `paddle.nn.BatchNorm*d` layers in the model to :class: `paddle.nn.SyncBatchNorm` layers.

        Parameters:
            layer(paddle.nn.Layer): model containing one or more `BatchNorm*d` layers.

        Returns:
            The original model with converted SyncBatchNorm layers. If BatchNorm*d layer in the model, use SyncBatchNorm layer instead.

        Examples:
            .. code-block:: python
1306

1307 1308 1309
                import paddle
                import paddle.nn as nn

C
cnn 已提交
1310
                model = nn.Sequential(nn.Conv2D(3, 5, 3), nn.BatchNorm2D(5))
1311 1312 1313 1314 1315
                sync_model = nn.SyncBatchNorm.convert_sync_batchnorm(model)

        """
        layer_output = layer
        if isinstance(layer, _BatchNormBase):
1316
            if (
1317
                layer._weight_attr is not None
1318
                and not isinstance(layer._weight_attr, bool)
1319
                and layer._weight_attr.name is not None
1320
            ):
C
ceci3 已提交
1321
                layer._weight_attr.name = layer._weight_attr.name + '_sync'
1322
            if (
1323
                layer._bias_attr is not None
1324
                and not isinstance(layer._bias_attr, bool)
1325
                and layer._bias_attr.name is not None
1326
            ):
C
ceci3 已提交
1327 1328
                layer._bias_attr.name = layer._bias_attr.name + '_sync'

1329 1330 1331 1332 1333 1334 1335 1336 1337
            layer_output = SyncBatchNorm(
                layer._num_features,
                layer._momentum,
                layer._epsilon,
                layer._weight_attr,
                layer._bias_attr,
                layer._data_format,
                layer._name,
            )
1338

1339 1340 1341 1342
            if (
                layer._weight_attr is not False
                and layer._bias_attr is not False
            ):
1343 1344 1345 1346 1347 1348
                with no_grad():
                    layer_output.weight = layer.weight
                    layer_output.bias = layer.bias
            layer_output._mean = layer._mean
            layer_output._variance = layer._variance

C
ceci3 已提交
1349
        for name, sublayer in layer.named_children():
1350 1351 1352
            layer_output.add_sublayer(
                name, cls.convert_sync_batchnorm(sublayer)
            )
1353 1354
        del layer
        return layer_output
1355 1356


Z
zhiboniu 已提交
1357
class LocalResponseNorm(Layer):
1358
    """
1359 1360
    Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
1361

1362
    See more details in :ref:`api_paddle_nn_functional_local_response_norm` .
1363

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
    Parameters:
        size (int): The number of channels to sum over.
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
        k (float, optional): An offset, positive. Default: 1.0
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:
            If input is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
            the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
            If input is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            If input is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name (str, optional): Name for the operation (optional, default is None). For more information,
            please refer to :ref:`api_guide_Name`.
1379

1380 1381 1382
    Shape:
        - input: 3-D/4-D/5-D tensor.
        - output: 3-D/4-D/5-D tensor, the same shape as input.
1383

1384
    Examples:
1385

1386
    .. code-block:: python
1387

1388 1389 1390 1391 1392 1393 1394
        import paddle

        x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
        m = paddle.nn.LocalResponseNorm(size=5)
        y = m(x)
        print(y.shape)  # [3, 3, 112, 112]
    """
1395

1396 1397 1398 1399 1400 1401 1402 1403 1404
    def __init__(
        self,
        size,
        alpha=0.0001,
        beta=0.75,
        k=1.0,
        data_format="NCHW",
        name=None,
    ):
1405
        super().__init__()
1406 1407 1408 1409 1410 1411 1412 1413
        self.size = size
        self.alpha = alpha
        self.beta = beta
        self.k = k
        self.data_format = data_format
        self.name = name

    def forward(self, input):
1414 1415 1416 1417 1418 1419 1420 1421 1422
        out = F.local_response_norm(
            input,
            self.size,
            self.alpha,
            self.beta,
            self.k,
            self.data_format,
            self.name,
        )
1423
        return out
1424 1425 1426

    def extra_repr(self):
        main_str = 'size={}, alpha={}, beta={}, k={}'.format(
1427 1428
            self.size, self.alpha, self.beta, self.k
        )
1429
        if self.data_format != 'NCHW':
1430 1431 1432 1433
            main_str += ', data_format={}'.format(self.data_format)
        if self.name is not None:
            main_str += ', name={}'.format(self.name)
        return main_str