norm.py 53.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

28
# TODO: define normalization api
29

Z
zhiboniu 已提交
30 31
from ...fluid.dygraph import BatchNorm  # noqa: F401
from ...fluid.dygraph import SpectralNorm  # noqa: F401
C
ceci3 已提交
32

33
from ...framework import get_default_dtype
C
ceci3 已提交
34

Z
zhiboniu 已提交
35 36
from ..initializer import Constant
from ...framework import ParamAttr
37
from ...fluid.data_feeder import check_variable_and_dtype
Z
zhiboniu 已提交
38
from ...fluid import dygraph_utils
39 40 41 42 43 44

from ..functional import batch_norm, layer_norm, instance_norm

import numpy as np
import numbers
import warnings
Z
zhiboniu 已提交
45
from ...framework import no_grad
46
from .. import functional as F
47
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
48
from .. import Layer
Z
zhiboniu 已提交
49
from paddle import in_dynamic_mode
50
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph
51

52 53
__all__ = []

C
ceci3 已提交
54

Z
zhiboniu 已提交
55
class _InstanceNormBase(Layer):
56
    """
57
    This class is based class for InstanceNorm1D, 2d, 3d.
58

C
cnn 已提交
59
    See InstaceNorm1D, InstanceNorm2D or InstanceNorm3D for more details.
60 61
    """

62 63 64 65 66 67 68 69 70 71
    def __init__(
        self,
        num_features,
        epsilon=1e-5,
        momentum=0.9,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
        name=None,
    ):
72 73
        super(_InstanceNormBase, self).__init__()

74
        if weight_attr is False or bias_attr is False:
75 76
            assert (
                weight_attr == bias_attr
77
            ), "weight_attr and bias_attr must be set to False at the same time in InstanceNorm"
78 79 80
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
81
        self._num_features = num_features
82

83
        if weight_attr is not False and bias_attr is not False:
84 85 86 87
            self.scale = self.create_parameter(
                attr=self._weight_attr,
                shape=[num_features],
                default_initializer=Constant(1.0),
88 89 90 91 92 93 94 95
                is_bias=False,
            )
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_features],
                default_initializer=Constant(0.0),
                is_bias=True,
            )
96 97 98 99 100 101 102 103 104 105
        else:
            self.scale = None
            self.bias = None

    def _check_input_dim(self, input):
        raise NotImplementedError("InstanceNorm Base error")

    def forward(self, input):
        self._check_input_dim(input)

106 107 108
        return instance_norm(
            input, weight=self.scale, bias=self.bias, eps=self._epsilon
        )
109

110
    def extra_repr(self):
111 112 113
        return 'num_features={}, epsilon={}'.format(
            self._num_features, self._epsilon
        )
114

115

C
cnn 已提交
116
class InstanceNorm1D(_InstanceNormBase):
117
    r"""
118
    Create a callable object of `InstanceNorm1D`. Applies Instance Normalization over a 3D input (a mini-batch of 1D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
119 120 121 122 123 124

    DataLayout: NCL `[batch, in_channels, length]`

    :math:`input` is the input features over a mini-batch.

    ..  math::
125

126 127 128 129 130 131 132
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
133

134
Where `H` means height of feature map, `W` means width of feature map.
135 136 137 138 139 140 141

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
142 143 144 145
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
146
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
147 148 149 150
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
            If it is set to False, will not create bias_attr. Default: None.
151
        data_format(str, optional): Specify the input data format, may be "NC", "NCL". Default "NCL".
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..


    Shape:
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length).
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

          import paddle

169
          x = paddle.rand((2, 2, 3))
C
cnn 已提交
170
          instance_norm = paddle.nn.InstanceNorm1D(2)
171 172
          instance_norm_out = instance_norm(x)

Z
zhang wenhui 已提交
173
          print(instance_norm_out)
174 175 176 177 178

    """

    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
179 180 181 182 183
            raise ValueError(
                'expected 2D or 3D input (got {}D input)'.format(
                    len(input.shape)
                )
            )
184 185


C
cnn 已提交
186
class InstanceNorm2D(_InstanceNormBase):
187
    r"""
188
    Create a callable object of `InstanceNorm2D`. Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
189 190 191 192 193 194 195

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
196

197 198 199 200 201 202 203
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
204

205
Where `H` means height of feature map, `W` means width of feature map.
206 207 208 209 210 211 212

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
213 214 215 216
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
217
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
218 219 220 221
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
    `       If it is set to False, will not create bias_attr. Default: None.
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        data_format(str, optional): Specify the input data format, could be "NCHW". Default: NCHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 4-D tensor with shape: (batch, num_features, height, weight).
        - output: 4-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

237
            import paddle
238

239 240 241
            x = paddle.rand((2, 2, 2, 3))
            instance_norm = paddle.nn.InstanceNorm2D(2)
            instance_norm_out = instance_norm(x)
242

243
            print(instance_norm_out)
244 245 246 247
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 4:
248 249 250
            raise ValueError(
                'expected 4D input (got {}D input)'.format(len(input.shape))
            )
251 252


C
cnn 已提交
253
class InstanceNorm3D(_InstanceNormBase):
254
    r"""
255
    Create a callable object of `InstanceNorm3D`. Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
256 257 258 259 260 261 262

    DataLayout: NCHW `[batch, in_channels, D, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
263

264 265 266 267 268 269 270
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
271

272
Where `H` means height of feature map, `W` means width of feature map.
273 274 275 276 277 278 279

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
280 281 282 283
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
284
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
285 286 287 288
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
            If it is set to False, will not create bias_attr. Default: None.
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        data_format(str, optional): Specify the input data format, could be "NCDHW". Default: NCDHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight).
        - output: 5-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

304
            import paddle
305

306 307 308
            x = paddle.rand((2, 2, 2, 2, 3))
            instance_norm = paddle.nn.InstanceNorm3D(2)
            instance_norm_out = instance_norm(x)
309

310
            print(instance_norm_out.numpy)
311 312 313 314
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 5:
315 316 317
            raise ValueError(
                'expected 5D input (got {}D input)'.format(len(input.shape))
            )
318 319


Z
zhiboniu 已提交
320
class GroupNorm(Layer):
321 322 323 324 325 326 327 328
    """
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
        num_groups(int): The number of groups that divided from channels.
329
        num_channels(int): The number of channels of input.
330
        epsilon(float, optional): The small value added to the variance to prevent
331
            division by zero. Default: 1e-05.
332
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
333 334
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
335
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
336 337
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
338 339 340 341
        data_format(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.
        name(str, optional): Name for the GroupNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
342 343
        - x: Tensor with shape: (batch, num_features, *).
        - output: The same shape as input x.
344 345 346 347 348 349

    Returns:
        None

    Examples:
        .. code-block:: python
Z
zhang wenhui 已提交
350

351 352
            import paddle
            import numpy as np
353

354 355 356 357 358 359
            paddle.disable_static()
            np.random.seed(123)
            x_data = np.random.random(size=(2, 6, 2, 2)).astype('float32')
            x = paddle.to_tensor(x_data)
            group_norm = paddle.nn.GroupNorm(num_channels=6, num_groups=6)
            group_norm_out = group_norm(x)
360

361
            print(group_norm_out.numpy())
362 363
    """

364 365 366 367 368 369 370 371 372 373
    def __init__(
        self,
        num_groups,
        num_channels,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        name=None,
    ):
374 375 376 377 378 379
        super(GroupNorm, self).__init__()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
        self._num_channels = num_channels
        self._num_groups = num_groups
380
        if data_format != 'NCHW':
381
            raise ValueError("unsupported data layout:" + data_format)
382 383 384

        param_shape = [self._num_channels]

385
        if weight_attr is False:
386
            self.weight = self.create_parameter(
387 388
                attr=None, shape=param_shape, default_initializer=Constant(1.0)
            )
389 390 391 392 393
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
394 395 396
                default_initializer=Constant(1.0),
            )
            self.weight.stop_gradient = (
397
                self._weight_attr is not None
398 399
                and self._weight_attr.learning_rate == 0.0
            )
400

401
        if bias_attr is False:
402 403 404 405 406 407
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
408 409
            self.bias.stop_gradient = True
        else:
410 411 412 413
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True
            )
            self.bias.stop_gradient = (
414 415
                self._bias_attr is not None
                and self._bias_attr.learning_rate == 0.0
416
            )
417 418

    def forward(self, input):
419
        mean_out = self._helper.create_variable_for_type_inference(
420 421
            dtype=input.dtype, stop_gradient=True
        )
422
        variance_out = self._helper.create_variable_for_type_inference(
423 424
            dtype=input.dtype, stop_gradient=True
        )
425

426
        if in_dygraph_mode():
427 428 429 430 431 432 433 434
            pre_act = _C_ops.group_norm(
                input,
                self.weight,
                self.bias,
                self._epsilon,
                self._num_groups,
                "NCHW",
            )
435

436 437 438
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=None
            )
439 440

        elif _in_legacy_dygraph():
441
            pre_act, _, _ = _legacy_C_ops.group_norm(
442 443 444 445 446 447 448 449
                input,
                self.weight,
                self.bias,
                mean_out,
                variance_out,
                'epsilon',
                self._epsilon,
                'groups',
450 451
                self._num_groups,
            )
452 453 454
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=None
            )
455

456 457 458 459 460 461 462 463
        inputs = {'X': input}
        if self.bias is not None:
            inputs['Bias'] = self.bias
        if self.weight is not None:
            inputs['Scale'] = self.weight

        # create output
        group_norm_out = self._helper.create_variable_for_type_inference(
464 465 466 467 468 469 470 471 472 473 474 475 476
            dtype=input.dtype
        )

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon, "groups": self._num_groups},
        )
477 478 479

        return self._helper.append_activation(group_norm_out, None)

480 481
    def extra_repr(self):
        return 'num_groups={}, num_channels={}, epsilon={}'.format(
482 483
            self._num_groups, self._num_channels, self._epsilon
        )
484

485

Z
zhiboniu 已提交
486
class LayerNorm(Layer):
487
    r"""
488
    Construct a callable object of the ``LayerNorm`` class.
489 490 491 492 493 494 495 496
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    ..  math::

497
        \mu & = \frac{1}{H}\sum_{i=1}^{H} x_i
498

499
        \sigma & = \sqrt{\frac{1}{H}\sum_{i=1}^{H}{(x_i - \mu)^2} + \epsilon}
500

501
        y & = f(\frac{g}{\sigma}(x - \mu) + b)
502 503 504

    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
505
    - :math:`\epsilon`: the small value added to the variance to prevent division by zero.
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.

    Parameters:
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            gain :math:`g`. If False, weight is None. If is None, a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 2-D, 3-D, 4-D or 5-D tensor.
        - output: same shape as input x.

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

537 538
          x = paddle.rand((2, 2, 2, 3))
          layer_norm = paddle.nn.LayerNorm(x.shape[1:])
539 540
          layer_norm_out = layer_norm(x)

Z
zhang wenhui 已提交
541
          print(layer_norm_out)
542 543
    """

544 545 546 547 548 549 550 551
    def __init__(
        self,
        normalized_shape,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        name=None,
    ):
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]

        self._normalized_shape = list(normalized_shape)
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        param_shape = [np.prod(self._normalized_shape)]

        if weight_attr is False:
            self.weight = None
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
568 569
                default_initializer=Constant(1.0),
            )
570 571 572 573

        if bias_attr is False:
            self.bias = None
        else:
574 575 576
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True
            )
577 578

    def forward(self, input):
579 580 581 582 583 584 585
        return layer_norm(
            input,
            normalized_shape=self._normalized_shape,
            weight=self.weight,
            bias=self.bias,
            epsilon=self._epsilon,
        )
586

587
    def extra_repr(self):
588 589 590
        return 'normalized_shape={}, epsilon={}'.format(
            self._normalized_shape, self._epsilon
        )
591

592

Z
zhiboniu 已提交
593
class _BatchNormBase(Layer):
594 595 596 597
    """
    BatchNorm base .
    """

598 599 600 601 602 603 604 605 606 607 608
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        use_global_stats=None,
        name=None,
    ):
609 610 611 612
        super(_BatchNormBase, self).__init__()
        self._num_features = num_features
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
C
ceci3 已提交
613
        self._use_global_stats = use_global_stats
614 615

        if get_default_dtype() == 'float16':
G
Guoxia Wang 已提交
616 617 618
            self._dtype = 'float32'
        else:
            self._dtype = get_default_dtype()
619 620 621 622

        param_shape = [num_features]

        # create parameter
623
        if weight_attr is False:
624
            self.weight = self.create_parameter(
G
Guoxia Wang 已提交
625 626 627
                attr=None,
                shape=param_shape,
                dtype=self._dtype,
628 629
                default_initializer=Constant(1.0),
            )
630 631 632 633 634
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
G
Guoxia Wang 已提交
635
                dtype=self._dtype,
636 637 638
                default_initializer=Constant(1.0),
            )
            self.weight.stop_gradient = (
639
                self._weight_attr is not None
640 641
                and self._weight_attr.learning_rate == 0.0
            )
642

643
        if bias_attr is False:
644 645 646 647 648 649 650
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
651 652
            self.bias.stop_gradient = True
        else:
653 654 655 656 657 658 659
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True,
            )
            self.bias.stop_gradient = (
660 661
                self._bias_attr is not None
                and self._bias_attr.learning_rate == 0.0
662
            )
663 664 665 666 667 668 669 670

        moving_mean_name = None
        moving_variance_name = None

        if name is not None:
            moving_mean_name = name + "_mean"
            moving_variance_name = name + "_variance"

671 672 673 674 675 676 677 678 679 680
        self._mean = self.create_parameter(
            dtype=self._dtype,
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=True,
            ),
            shape=param_shape,
        )
681 682
        self._mean.stop_gradient = True

683 684 685 686 687 688 689 690 691 692
        self._variance = self.create_parameter(
            dtype=self._dtype,
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=True,
            ),
            shape=param_shape,
        )
693 694 695 696 697 698 699
        self._variance.stop_gradient = True

        self._data_format = data_format
        self._in_place = False
        self._momentum = momentum
        self._epsilon = epsilon
        self._fuse_with_relu = False
700
        self._name = name
701 702 703 704

    def _check_input_dim(self, input):
        raise NotImplementedError("BatchNorm Base error")

705 706 707
    def _check_data_format(self, input):
        raise NotImplementedError("BatchNorm Base data format error")

708 709
    def forward(self, input):

710 711
        self._check_data_format(self._data_format)

712 713
        self._check_input_dim(input)

714
        if self.training:
715
            warnings.warn(
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
                "When training, we now always track global mean and variance."
            )

        return batch_norm(
            input,
            self._mean,
            self._variance,
            weight=self.weight,
            bias=self.bias,
            training=self.training,
            momentum=self._momentum,
            epsilon=self._epsilon,
            data_format=self._data_format,
            use_global_stats=self._use_global_stats,
        )
731

732 733
    def extra_repr(self):
        main_str = 'num_features={}, momentum={}, epsilon={}'.format(
734 735
            self._num_features, self._momentum, self._epsilon
        )
736
        if self._data_format != 'NCHW':
737 738 739 740 741
            main_str += ', data_format={}'.format(self._data_format)
        if self._name is not None:
            main_str += ', name={}'.format(self._name)
        return main_str

742

C
cnn 已提交
743
class BatchNorm1D(_BatchNormBase):
744
    r"""
745 746
    Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

747 748
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
749 750 751 752
    Calculated as follows:

    ..  math::

753 754 755 756
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
757

758 759
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
760 761 762 763
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
764 765
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
766 767 768 769 770

    The normalization function formula is as follows:

    ..  math::

771 772
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
773

774 775 776
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
777 778 779 780 781 782 783

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
784
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
785
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
786 787
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
788
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
789
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
790
        data_format(str, optional): Specify the input data format, may be "NC", "NCL" or "NLC". Default "NCL".
C
ceci3 已提交
791
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
792 793 794
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
795 796
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length) when data_format is "NC" or "NCL",
            (batch, length, num_features) when data_format is "NLC".
797 798 799 800
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.
801

802 803 804 805 806 807

    Examples:
        .. code-block:: python

          import paddle

808
          x = paddle.rand((2, 1, 3))
C
cnn 已提交
809
          batch_norm = paddle.nn.BatchNorm1D(1)
810 811
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
812
          print(batch_norm_out)
813 814
    """

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCL',
        use_global_stats=None,
        name=None,
    ):
        super(BatchNorm1D, self).__init__(
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            use_global_stats,
            name,
        )
C
ceci3 已提交
836

837 838 839
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NC' or input == 'NCL':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
840 841
        elif input == "NHWC" or input == 'NLC':
            self._data_format = "NHWC"
842
        else:
F
Feiyu Chan 已提交
843
            raise ValueError(
844 845
                'expected NC , NCL, NLC or None for data_format input'
            )
846

847 848
    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
849 850 851 852 853
            raise ValueError(
                'expected 2D or 3D input (got {}D input)'.format(
                    len(input.shape)
                )
            )
854 855


C
cnn 已提交
856
class BatchNorm2D(_BatchNormBase):
857
    r"""
858 859
    Applies Batch Normalization over a 4D input (a mini-batch of 2D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

860 861
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
862 863 864 865
    Calculated as follows:

    ..  math::

866 867
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//
        \ mini-batch\ mean \\
868
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i -
869
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
870

871 872
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
873 874 875 876
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
877 878
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
879 880 881 882 883

    The normalization function formula is as follows:

    ..  math::

884 885
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
886

887 888 889
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
890 891 892 893 894 895 896

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
897
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
898
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
899 900
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
901
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
902
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
903
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
C
ceci3 已提交
904
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
905 906 907
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
908 909
        - x: 4-D tensor with shape: (batch, num_features, height, weight) when data_format is "NCHW",
            or (batch, height, weight, num_features) when data_format is "NHWC".
910 911 912 913 914 915 916 917 918 919
        - output: 4-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

920
          x = paddle.rand((2, 1, 2, 3))
C
cnn 已提交
921
          batch_norm = paddle.nn.BatchNorm2D(1)
922 923
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
924
          print(batch_norm_out)
925 926
    """

927
    def _check_data_format(self, input):
928
        if input == 'NCHW':
929
            self._data_format = input
F
Feiyu Chan 已提交
930 931
        elif input == "NHWC":
            self._data_format = input
932
        else:
F
Feiyu Chan 已提交
933
            raise ValueError('expected NCHW or NHWC for data_format input')
934

935 936
    def _check_input_dim(self, input):
        if len(input.shape) != 4:
937 938 939
            raise ValueError(
                'expected 4D input (got {}D input)'.format(len(input.shape))
            )
940 941


C
cnn 已提交
942
class BatchNorm3D(_BatchNormBase):
943
    r"""
944 945
    Applies Batch Normalization over a 5D input (a mini-batch of 3D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

946 947
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
948 949 950 951
    Calculated as follows:

    ..  math::

952 953 954 955
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
956

C
ceci3 已提交
957
    When use_global_stats = True, the :math:`\\mu_{\\beta}`
958 959 960 961 962
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
963 964
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
965 966 967 968 969

    The normalization function formula is as follows:

    ..  math::

970 971
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
972

973 974 975
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
976 977 978 979 980 981 982

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
983
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
984
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
985 986
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
987
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
988
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
989
        data_format(str, optional): Specify the input data format, the data format can be "NCDHW" or "NDHWC. Default: NCDHW.
C
ceci3 已提交
990
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
991 992 993
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
994 995
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight) when data_format is "NCDHW",
            or (batch, dims, height, weight, num_features) when data_format is "NDHWC".
996 997 998 999 1000 1001 1002 1003 1004 1005
        - output: 5-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

1006
          x = paddle.rand((2, 1, 2, 2, 3))
C
cnn 已提交
1007
          batch_norm = paddle.nn.BatchNorm3D(1)
1008 1009
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
1010
          print(batch_norm_out)
1011 1012
    """

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCDHW',
        use_global_stats=None,
        name=None,
    ):
        super(BatchNorm3D, self).__init__(
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            use_global_stats,
            name,
        )
C
ceci3 已提交
1034

1035 1036 1037
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NCDHW':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
1038 1039
        elif input == "NHWC" or input == "NDHWC":
            self._data_format = 'NHWC'
1040
        else:
F
Feiyu Chan 已提交
1041
            raise ValueError(
1042 1043
                'expected NCDHW, NDHWC or None for data_format input'
            )
1044

1045 1046
    def _check_input_dim(self, input):
        if len(input.shape) != 5:
1047 1048 1049
            raise ValueError(
                'expected 5D input (got {}D input)'.format(len(input.shape))
            )
1050 1051


1052
class SyncBatchNorm(_BatchNormBase):
1053
    r"""
C
ceci3 已提交
1054
    This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
1055 1056
    It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can
    be used as a normalizer function for other operations, such as conv2d and fully connected
C
ceci3 已提交
1057 1058 1059 1060 1061 1062 1063
    operations.
    The data is normalized by the mean and variance of the channel based on whole mini-batch
    , which including data in all gpus.
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1064
    When model in training mode, the :math:`\\mu_{\\beta}`
C
ceci3 已提交
1065 1066 1067 1068 1069
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of whole mini-batch data in all gpus.
    Calculated as follows:

    ..  math::

1070 1071 1072 1073
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
C
ceci3 已提交
1074 1075 1076 1077 1078

    - :math:`x` : whole mini-batch data in all gpus
    - :math:`m` : the size of the whole mini-batch data

    When model in evaluation mode, the :math:`\\mu_{\\beta}`
1079
    and :math:`\sigma_{\beta}^{2}` are global statistics (moving_mean and moving_variance,
C
ceci3 已提交
1080 1081 1082
    which usually got from the pre-trained model). Global statistics calculated as follows:

    .. math::
1083 1084
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
C
ceci3 已提交
1085 1086

    The formula of normalization is as follows:
1087

C
ceci3 已提交
1088 1089
    ..  math::

1090 1091 1092
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
C
ceci3 已提交
1093

1094 1095
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable scale parameter vector
1096
    - :math:`\beta` : trainable shift parameter vector
C
ceci3 已提交
1097

1098
    Note:
1099 1100 1101
        If you want to use container to pack your model and has ``SyncBatchNorm`` in the
        evaluation phase, please use ``nn.LayerList`` or ``nn.Sequential`` instead of
        ``list`` to pack the model.
1102

C
ceci3 已提交
1103 1104 1105 1106 1107 1108 1109
    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of this layer. If it is set to None or one attribute of ParamAttr, this layerr
             will create ParamAttr as param_attr. If the Initializer of the param_attr
1110
             is not set, the parameter is initialized with ones. If it is set to False,
C
ceci3 已提交
1111 1112 1113 1114
             this layer will not have trainable scale parameter. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer.
             If it is set to None or one attribute of ParamAttr, this layer
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
1115
             is not set, the bias is initialized zero. If it is set to False, this layer will not
C
ceci3 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
             have trainable bias parameter. Default: None.

    Shapes:
        input: Tensor that the dimension from 2 to 5.
        output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn as nn
          import numpy as np

          x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
          x = paddle.to_tensor(x)
C
ceci3 已提交
1131 1132

          if paddle.is_compiled_with_cuda():
C
ceci3 已提交
1133 1134
              sync_batch_norm = nn.SyncBatchNorm(2)
              hidden1 = sync_batch_norm(x)
C
ceci3 已提交
1135
              print(hidden1)
C
ceci3 已提交
1136 1137 1138
              # [[[[0.26824948, 1.0936325],[0.26824948, -1.6301316]],[[ 0.8095662, -0.665287],[-1.2744656, 1.1301866 ]]]]
    """

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        name=None,
    ):
        super(SyncBatchNorm, self).__init__(
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            None,
            name,
        )
C
ceci3 已提交
1159

C
ceci3 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
    def _check_data_format(self):
        if self._data_format in ['NCHW', 'NCDHW', 'NC', 'NCL']:
            self._data_format = 'NCHW'
        elif self._data_format in ["NHWC", "NDHWC", 'NLC']:
            self._data_format = 'NHWC'
        else:
            raise ValueError(
                'expected \'NCDHW\', \'NDHWC\', \'NCL\', \'NLC\', \'NC\', \'NCHW\', \'NHWC\' for data_format'
            )

C
ceci3 已提交
1170
    def forward(self, x):
C
ceci3 已提交
1171
        self._check_data_format()
C
ceci3 已提交
1172 1173 1174 1175 1176 1177 1178 1179
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        ### train mode: use mini-batch stats, eval mode: use global stats
        ### use_global_stats only support False in sync_batch_norm
1180
        if in_dygraph_mode():
1181
            sync_batch_norm_out, _, _, _, _, _ = _C_ops.sync_batch_norm_(
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
                x,
                self.weight,
                self.bias,
                self._mean,
                self._variance,
                self._momentum,
                self._epsilon,
                self._data_format,
                not self.training,
                False,
                False,
                False,
            )
1195 1196 1197
            return sync_batch_norm_out

        elif in_dynamic_mode():
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
            attrs = (
                "momentum",
                self._momentum,
                "epsilon",
                self._epsilon,
                "is_test",
                not self.training,
                "data_layout",
                self._data_format,
                "use_mkldnn",
                False,
                "fuse_with_relu",
                False,
                "use_global_stats",
                False,
                'trainable_statistics',
                False,
            )
1216
            sync_batch_norm_out, _, _, _, _, _ = _legacy_C_ops.sync_batch_norm(
1217 1218 1219 1220 1221 1222 1223 1224 1225
                x,
                self.weight,
                self.bias,
                self._mean,
                self._variance,
                mean_out,
                variance_out,
                *attrs
            )
C
ceci3 已提交
1226 1227
            return sync_batch_norm_out

1228 1229 1230
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'SyncBatchNorm'
        )
C
ceci3 已提交
1231 1232 1233 1234 1235

        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": not self.training,
1236
            "data_layout": self._data_format,
C
ceci3 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": False,
            "trainable_statistics": False,
        }

        inputs = {
            "X": [x],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
1248
            "Variance": [self._variance],
C
ceci3 已提交
1249 1250 1251
        }

        saved_mean = self._helper.create_variable_for_type_inference(
1252 1253
            dtype=self._dtype, stop_gradient=True
        )
C
ceci3 已提交
1254
        saved_variance = self._helper.create_variable_for_type_inference(
1255 1256
            dtype=self._dtype, stop_gradient=True
        )
C
ceci3 已提交
1257
        sync_batch_norm_out = self._helper.create_variable_for_type_inference(
1258 1259
            self._dtype
        )
C
ceci3 已提交
1260 1261 1262 1263 1264 1265

        outputs = {
            "Y": [sync_batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
1266
            "SavedVariance": [saved_variance],
C
ceci3 已提交
1267 1268
        }

1269 1270 1271
        self._helper.append_op(
            type="sync_batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
C
ceci3 已提交
1272
        return sync_batch_norm_out
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

    @classmethod
    def convert_sync_batchnorm(cls, layer):
        """
        Helper function to convert :class: `paddle.nn.BatchNorm*d` layers in the model to :class: `paddle.nn.SyncBatchNorm` layers.

        Parameters:
            layer(paddle.nn.Layer): model containing one or more `BatchNorm*d` layers.

        Returns:
            The original model with converted SyncBatchNorm layers. If BatchNorm*d layer in the model, use SyncBatchNorm layer instead.

        Examples:

            .. code-block:: python
                import paddle
                import paddle.nn as nn

C
cnn 已提交
1291
                model = nn.Sequential(nn.Conv2D(3, 5, 3), nn.BatchNorm2D(5))
1292 1293 1294 1295 1296
                sync_model = nn.SyncBatchNorm.convert_sync_batchnorm(model)

        """
        layer_output = layer
        if isinstance(layer, _BatchNormBase):
1297
            if (
1298
                layer._weight_attr is not None
1299
                and not isinstance(layer._weight_attr, bool)
1300
                and layer._weight_attr.name is not None
1301
            ):
C
ceci3 已提交
1302
                layer._weight_attr.name = layer._weight_attr.name + '_sync'
1303
            if (
1304
                layer._bias_attr is not None
1305
                and not isinstance(layer._bias_attr, bool)
1306
                and layer._bias_attr.name is not None
1307
            ):
C
ceci3 已提交
1308 1309
                layer._bias_attr.name = layer._bias_attr.name + '_sync'

1310 1311 1312 1313 1314 1315 1316 1317 1318
            layer_output = SyncBatchNorm(
                layer._num_features,
                layer._momentum,
                layer._epsilon,
                layer._weight_attr,
                layer._bias_attr,
                layer._data_format,
                layer._name,
            )
1319

1320 1321 1322 1323
            if (
                layer._weight_attr is not False
                and layer._bias_attr is not False
            ):
1324 1325 1326 1327 1328 1329
                with no_grad():
                    layer_output.weight = layer.weight
                    layer_output.bias = layer.bias
            layer_output._mean = layer._mean
            layer_output._variance = layer._variance

C
ceci3 已提交
1330
        for name, sublayer in layer.named_children():
1331 1332 1333
            layer_output.add_sublayer(
                name, cls.convert_sync_batchnorm(sublayer)
            )
1334 1335
        del layer
        return layer_output
1336 1337


Z
zhiboniu 已提交
1338
class LocalResponseNorm(Layer):
1339
    """
1340 1341
    Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
1342

1343
    See more details in :ref:`api_paddle_nn_functional_local_response_norm` .
1344

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
    Parameters:
        size (int): The number of channels to sum over.
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
        k (float, optional): An offset, positive. Default: 1.0
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:
            If input is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
            the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
            If input is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            If input is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name (str, optional): Name for the operation (optional, default is None). For more information,
            please refer to :ref:`api_guide_Name`.
1360

1361 1362 1363
    Shape:
        - input: 3-D/4-D/5-D tensor.
        - output: 3-D/4-D/5-D tensor, the same shape as input.
1364

1365
    Examples:
1366

1367
    .. code-block:: python
1368

1369 1370 1371 1372 1373 1374 1375
        import paddle

        x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
        m = paddle.nn.LocalResponseNorm(size=5)
        y = m(x)
        print(y.shape)  # [3, 3, 112, 112]
    """
1376

1377 1378 1379 1380 1381 1382 1383 1384 1385
    def __init__(
        self,
        size,
        alpha=0.0001,
        beta=0.75,
        k=1.0,
        data_format="NCHW",
        name=None,
    ):
1386 1387 1388 1389 1390 1391 1392 1393 1394
        super(LocalResponseNorm, self).__init__()
        self.size = size
        self.alpha = alpha
        self.beta = beta
        self.k = k
        self.data_format = data_format
        self.name = name

    def forward(self, input):
1395 1396 1397 1398 1399 1400 1401 1402 1403
        out = F.local_response_norm(
            input,
            self.size,
            self.alpha,
            self.beta,
            self.k,
            self.data_format,
            self.name,
        )
1404
        return out
1405 1406 1407

    def extra_repr(self):
        main_str = 'size={}, alpha={}, beta={}, k={}'.format(
1408 1409
            self.size, self.alpha, self.beta, self.k
        )
1410
        if self.data_format != 'NCHW':
1411 1412 1413 1414
            main_str += ', data_format={}'.format(self.data_format)
        if self.name is not None:
            main_str += ', name={}'.format(self.name)
        return main_str