norm.py 53.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

28
# TODO: define normalization api
29

Z
zhiboniu 已提交
30 31
from ...fluid.dygraph import BatchNorm  # noqa: F401
from ...fluid.dygraph import SpectralNorm  # noqa: F401
C
ceci3 已提交
32

33
from ...framework import get_default_dtype
C
ceci3 已提交
34

Z
zhiboniu 已提交
35 36
from ..initializer import Constant
from ...framework import ParamAttr
37
from ...fluid.data_feeder import check_variable_and_dtype
Z
zhiboniu 已提交
38
from ...fluid import dygraph_utils
39 40 41 42 43 44

from ..functional import batch_norm, layer_norm, instance_norm

import numpy as np
import numbers
import warnings
Z
zhiboniu 已提交
45
from ...framework import no_grad
46
from .. import functional as F
47
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
48
from .. import Layer
Z
zhiboniu 已提交
49
from paddle import in_dynamic_mode
50
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph
51

52 53
__all__ = []

C
ceci3 已提交
54

Z
zhiboniu 已提交
55
class _InstanceNormBase(Layer):
56
    """
57
    This class is based class for InstanceNorm1D, 2d, 3d.
58

C
cnn 已提交
59
    See InstaceNorm1D, InstanceNorm2D or InstanceNorm3D for more details.
60 61
    """

62 63 64 65 66 67 68 69 70 71
    def __init__(
        self,
        num_features,
        epsilon=1e-5,
        momentum=0.9,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
        name=None,
    ):
72
        super().__init__()
73

74
        if weight_attr is False or bias_attr is False:
75 76
            assert (
                weight_attr == bias_attr
77
            ), "weight_attr and bias_attr must be set to False at the same time in InstanceNorm"
78 79 80
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
81
        self._num_features = num_features
82

83
        if weight_attr is not False and bias_attr is not False:
84 85 86 87
            self.scale = self.create_parameter(
                attr=self._weight_attr,
                shape=[num_features],
                default_initializer=Constant(1.0),
88 89 90 91 92 93 94 95
                is_bias=False,
            )
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_features],
                default_initializer=Constant(0.0),
                is_bias=True,
            )
96 97 98 99 100 101 102 103 104 105
        else:
            self.scale = None
            self.bias = None

    def _check_input_dim(self, input):
        raise NotImplementedError("InstanceNorm Base error")

    def forward(self, input):
        self._check_input_dim(input)

106 107 108
        return instance_norm(
            input, weight=self.scale, bias=self.bias, eps=self._epsilon
        )
109

110
    def extra_repr(self):
111 112 113
        return 'num_features={}, epsilon={}'.format(
            self._num_features, self._epsilon
        )
114

115

C
cnn 已提交
116
class InstanceNorm1D(_InstanceNormBase):
117
    r"""
118
    Create a callable object of `InstanceNorm1D`. Applies Instance Normalization over a 3D input (a mini-batch of 1D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
119 120 121 122 123 124

    DataLayout: NCL `[batch, in_channels, length]`

    :math:`input` is the input features over a mini-batch.

    ..  math::
125

126 127 128 129 130 131 132
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
133

134
Where `H` means height of feature map, `W` means width of feature map.
135 136 137 138 139 140 141

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
142 143 144 145
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
146
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
147 148 149 150
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
            If it is set to False, will not create bias_attr. Default: None.
151
        data_format(str, optional): Specify the input data format, may be "NC", "NCL". Default "NCL".
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..


    Shape:
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length).
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

          import paddle

169
          x = paddle.rand((2, 2, 3))
C
cnn 已提交
170
          instance_norm = paddle.nn.InstanceNorm1D(2)
171 172
          instance_norm_out = instance_norm(x)

Z
zhang wenhui 已提交
173
          print(instance_norm_out)
174 175 176 177 178

    """

    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
179 180 181 182 183
            raise ValueError(
                'expected 2D or 3D input (got {}D input)'.format(
                    len(input.shape)
                )
            )
184 185


C
cnn 已提交
186
class InstanceNorm2D(_InstanceNormBase):
187
    r"""
188
    Create a callable object of `InstanceNorm2D`. Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
189 190 191 192 193 194 195

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
196

197 198 199 200 201 202 203
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
204

205
Where `H` means height of feature map, `W` means width of feature map.
206 207 208 209 210 211 212

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
213 214 215 216
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
217
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
218 219 220 221
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
    `       If it is set to False, will not create bias_attr. Default: None.
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        data_format(str, optional): Specify the input data format, could be "NCHW". Default: NCHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 4-D tensor with shape: (batch, num_features, height, weight).
        - output: 4-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

237
            import paddle
238

239 240 241
            x = paddle.rand((2, 2, 2, 3))
            instance_norm = paddle.nn.InstanceNorm2D(2)
            instance_norm_out = instance_norm(x)
242

243
            print(instance_norm_out)
244 245 246 247
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 4:
248 249 250
            raise ValueError(
                'expected 4D input (got {}D input)'.format(len(input.shape))
            )
251 252


C
cnn 已提交
253
class InstanceNorm3D(_InstanceNormBase):
254
    r"""
255
    Create a callable object of `InstanceNorm3D`. Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
256 257 258 259 260 261 262

    DataLayout: NCHW `[batch, in_channels, D, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
263

264 265 266 267 268 269 270
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
271

272
Where `H` means height of feature map, `W` means width of feature map.
273 274 275 276 277 278 279

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
280 281 282 283
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
284
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
285 286 287 288
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
            If it is set to False, will not create bias_attr. Default: None.
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        data_format(str, optional): Specify the input data format, could be "NCDHW". Default: NCDHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight).
        - output: 5-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

304
            import paddle
305

306 307 308
            x = paddle.rand((2, 2, 2, 2, 3))
            instance_norm = paddle.nn.InstanceNorm3D(2)
            instance_norm_out = instance_norm(x)
309

310
            print(instance_norm_out.numpy)
311 312 313 314
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 5:
315 316 317
            raise ValueError(
                'expected 5D input (got {}D input)'.format(len(input.shape))
            )
318 319


Z
zhiboniu 已提交
320
class GroupNorm(Layer):
321 322 323 324 325 326 327 328
    """
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
        num_groups(int): The number of groups that divided from channels.
329
        num_channels(int): The number of channels of input.
330
        epsilon(float, optional): The small value added to the variance to prevent
331
            division by zero. Default: 1e-05.
332
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
333 334
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
335
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
336 337
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
338 339 340 341
        data_format(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.
        name(str, optional): Name for the GroupNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
342 343
        - x: Tensor with shape: (batch, num_features, *).
        - output: The same shape as input x.
344 345 346 347 348 349

    Returns:
        None

    Examples:
        .. code-block:: python
Z
zhang wenhui 已提交
350

351
            import paddle
352

353
            x = paddle.arange(48, dtype="float32").reshape((2, 6, 2, 2))
354 355
            group_norm = paddle.nn.GroupNorm(num_channels=6, num_groups=6)
            group_norm_out = group_norm(x)
356

357
            print(group_norm_out)
358 359
    """

360 361 362 363 364 365 366 367 368 369
    def __init__(
        self,
        num_groups,
        num_channels,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        name=None,
    ):
370
        super().__init__()
371 372 373 374 375
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
        self._num_channels = num_channels
        self._num_groups = num_groups
376
        if data_format not in ['NCHW', 'NHWC']:
377
            raise ValueError("unsupported data layout:" + data_format)
378
        self._data_format = data_format
379 380 381

        param_shape = [self._num_channels]

382
        if weight_attr is False:
383
            self.weight = self.create_parameter(
384 385
                attr=None, shape=param_shape, default_initializer=Constant(1.0)
            )
386 387 388 389 390
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
391 392 393
                default_initializer=Constant(1.0),
            )
            self.weight.stop_gradient = (
394
                self._weight_attr is not None
395 396
                and self._weight_attr.learning_rate == 0.0
            )
397

398
        if bias_attr is False:
399 400 401 402 403 404
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
405 406
            self.bias.stop_gradient = True
        else:
407 408 409 410
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True
            )
            self.bias.stop_gradient = (
411 412
                self._bias_attr is not None
                and self._bias_attr.learning_rate == 0.0
413
            )
414 415

    def forward(self, input):
416
        mean_out = self._helper.create_variable_for_type_inference(
417 418
            dtype=input.dtype, stop_gradient=True
        )
419
        variance_out = self._helper.create_variable_for_type_inference(
420 421
            dtype=input.dtype, stop_gradient=True
        )
422

423
        if in_dygraph_mode():
424 425 426 427 428 429
            pre_act = _C_ops.group_norm(
                input,
                self.weight,
                self.bias,
                self._epsilon,
                self._num_groups,
430
                self._data_format,
431
            )
432

433 434 435
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=None
            )
436 437

        elif _in_legacy_dygraph():
438
            pre_act, _, _ = _legacy_C_ops.group_norm(
439 440 441 442 443 444 445 446
                input,
                self.weight,
                self.bias,
                mean_out,
                variance_out,
                'epsilon',
                self._epsilon,
                'groups',
447 448
                self._num_groups,
            )
449 450 451
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=None
            )
452

453 454 455 456 457 458 459 460
        inputs = {'X': input}
        if self.bias is not None:
            inputs['Bias'] = self.bias
        if self.weight is not None:
            inputs['Scale'] = self.weight

        # create output
        group_norm_out = self._helper.create_variable_for_type_inference(
461 462 463 464 465 466 467 468 469 470 471 472 473
            dtype=input.dtype
        )

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon, "groups": self._num_groups},
        )
474 475 476

        return self._helper.append_activation(group_norm_out, None)

477 478
    def extra_repr(self):
        return 'num_groups={}, num_channels={}, epsilon={}'.format(
479 480
            self._num_groups, self._num_channels, self._epsilon
        )
481

482

Z
zhiboniu 已提交
483
class LayerNorm(Layer):
484
    r"""
485
    Construct a callable object of the ``LayerNorm`` class.
486 487 488 489 490 491 492 493
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    ..  math::

494
        \mu & = \frac{1}{H}\sum_{i=1}^{H} x_i
495

496
        \sigma & = \sqrt{\frac{1}{H}\sum_{i=1}^{H}{(x_i - \mu)^2} + \epsilon}
497

498
        y & = f(\frac{g}{\sigma}(x - \mu) + b)
499 500 501

    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
502
    - :math:`\epsilon`: the small value added to the variance to prevent division by zero.
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.

    Parameters:
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            gain :math:`g`. If False, weight is None. If is None, a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 2-D, 3-D, 4-D or 5-D tensor.
        - output: same shape as input x.

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

534 535
          x = paddle.rand((2, 2, 2, 3))
          layer_norm = paddle.nn.LayerNorm(x.shape[1:])
536 537
          layer_norm_out = layer_norm(x)

Z
zhang wenhui 已提交
538
          print(layer_norm_out)
539 540
    """

541 542 543 544 545 546 547 548
    def __init__(
        self,
        normalized_shape,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        name=None,
    ):
549
        super().__init__()
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]

        self._normalized_shape = list(normalized_shape)
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        param_shape = [np.prod(self._normalized_shape)]

        if weight_attr is False:
            self.weight = None
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
565 566
                default_initializer=Constant(1.0),
            )
567 568 569 570

        if bias_attr is False:
            self.bias = None
        else:
571 572 573
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True
            )
574 575

    def forward(self, input):
576 577 578 579 580 581 582
        return layer_norm(
            input,
            normalized_shape=self._normalized_shape,
            weight=self.weight,
            bias=self.bias,
            epsilon=self._epsilon,
        )
583

584
    def extra_repr(self):
585 586 587
        return 'normalized_shape={}, epsilon={}'.format(
            self._normalized_shape, self._epsilon
        )
588

589

Z
zhiboniu 已提交
590
class _BatchNormBase(Layer):
591 592 593 594
    """
    BatchNorm base .
    """

595 596 597 598 599 600 601 602 603 604 605
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        use_global_stats=None,
        name=None,
    ):
606
        super().__init__()
607 608 609
        self._num_features = num_features
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
C
ceci3 已提交
610
        self._use_global_stats = use_global_stats
611 612

        if get_default_dtype() == 'float16':
G
Guoxia Wang 已提交
613 614 615
            self._dtype = 'float32'
        else:
            self._dtype = get_default_dtype()
616 617 618 619

        param_shape = [num_features]

        # create parameter
620
        if weight_attr is False:
621
            self.weight = self.create_parameter(
G
Guoxia Wang 已提交
622 623 624
                attr=None,
                shape=param_shape,
                dtype=self._dtype,
625 626
                default_initializer=Constant(1.0),
            )
627 628 629 630 631
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
G
Guoxia Wang 已提交
632
                dtype=self._dtype,
633 634 635
                default_initializer=Constant(1.0),
            )
            self.weight.stop_gradient = (
636
                self._weight_attr is not None
637 638
                and self._weight_attr.learning_rate == 0.0
            )
639

640
        if bias_attr is False:
641 642 643 644 645 646 647
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
648 649
            self.bias.stop_gradient = True
        else:
650 651 652 653 654 655 656
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True,
            )
            self.bias.stop_gradient = (
657 658
                self._bias_attr is not None
                and self._bias_attr.learning_rate == 0.0
659
            )
660 661 662 663 664 665 666 667

        moving_mean_name = None
        moving_variance_name = None

        if name is not None:
            moving_mean_name = name + "_mean"
            moving_variance_name = name + "_variance"

668 669 670 671 672 673 674 675 676 677
        self._mean = self.create_parameter(
            dtype=self._dtype,
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=True,
            ),
            shape=param_shape,
        )
678 679
        self._mean.stop_gradient = True

680 681 682 683 684 685 686 687 688 689
        self._variance = self.create_parameter(
            dtype=self._dtype,
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=True,
            ),
            shape=param_shape,
        )
690 691 692 693 694 695 696
        self._variance.stop_gradient = True

        self._data_format = data_format
        self._in_place = False
        self._momentum = momentum
        self._epsilon = epsilon
        self._fuse_with_relu = False
697
        self._name = name
698 699 700 701

    def _check_input_dim(self, input):
        raise NotImplementedError("BatchNorm Base error")

702 703 704
    def _check_data_format(self, input):
        raise NotImplementedError("BatchNorm Base data format error")

705 706
    def forward(self, input):

707 708
        self._check_data_format(self._data_format)

709 710
        self._check_input_dim(input)

711
        if self.training:
712
            warnings.warn(
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
                "When training, we now always track global mean and variance."
            )

        return batch_norm(
            input,
            self._mean,
            self._variance,
            weight=self.weight,
            bias=self.bias,
            training=self.training,
            momentum=self._momentum,
            epsilon=self._epsilon,
            data_format=self._data_format,
            use_global_stats=self._use_global_stats,
        )
728

729 730
    def extra_repr(self):
        main_str = 'num_features={}, momentum={}, epsilon={}'.format(
731 732
            self._num_features, self._momentum, self._epsilon
        )
733
        if self._data_format != 'NCHW':
734 735 736 737 738
            main_str += ', data_format={}'.format(self._data_format)
        if self._name is not None:
            main_str += ', name={}'.format(self._name)
        return main_str

739

C
cnn 已提交
740
class BatchNorm1D(_BatchNormBase):
741
    r"""
742 743
    Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

744 745
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
746 747 748 749
    Calculated as follows:

    ..  math::

750 751 752 753
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
754

755 756
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
757 758 759 760
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
761 762
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
763 764 765 766 767

    The normalization function formula is as follows:

    ..  math::

768 769
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
770

771 772 773
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
774 775 776 777 778 779 780

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
781
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
782
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
783 784
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
785
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
786
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
787
        data_format(str, optional): Specify the input data format, may be "NC", "NCL" or "NLC". Default "NCL".
C
ceci3 已提交
788
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
789 790 791
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
792 793
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length) when data_format is "NC" or "NCL",
            (batch, length, num_features) when data_format is "NLC".
794 795 796 797
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.
798

799 800 801 802 803 804

    Examples:
        .. code-block:: python

          import paddle

805
          x = paddle.rand((2, 1, 3))
C
cnn 已提交
806
          batch_norm = paddle.nn.BatchNorm1D(1)
807 808
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
809
          print(batch_norm_out)
810 811
    """

812 813 814 815 816 817 818 819 820 821 822
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCL',
        use_global_stats=None,
        name=None,
    ):
823
        super().__init__(
824 825 826 827 828 829 830 831 832
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            use_global_stats,
            name,
        )
C
ceci3 已提交
833

834 835 836
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NC' or input == 'NCL':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
837 838
        elif input == "NHWC" or input == 'NLC':
            self._data_format = "NHWC"
839
        else:
F
Feiyu Chan 已提交
840
            raise ValueError(
841 842
                'expected NC , NCL, NLC or None for data_format input'
            )
843

844 845
    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
846 847 848 849 850
            raise ValueError(
                'expected 2D or 3D input (got {}D input)'.format(
                    len(input.shape)
                )
            )
851 852


C
cnn 已提交
853
class BatchNorm2D(_BatchNormBase):
854
    r"""
855 856
    Applies Batch Normalization over a 4D input (a mini-batch of 2D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

857 858
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
859 860 861 862
    Calculated as follows:

    ..  math::

863 864
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//
        \ mini-batch\ mean \\
865
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i -
866
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
867

868 869
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
870 871 872 873
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
874 875
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
876 877 878 879 880

    The normalization function formula is as follows:

    ..  math::

881 882
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
883

884 885 886
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
887 888 889 890 891 892 893

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
894
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
895
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
896 897
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
898
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
899
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
900
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
C
ceci3 已提交
901
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
902 903 904
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
905 906
        - x: 4-D tensor with shape: (batch, num_features, height, weight) when data_format is "NCHW",
            or (batch, height, weight, num_features) when data_format is "NHWC".
907 908 909 910 911 912 913 914 915 916
        - output: 4-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

917
          x = paddle.rand((2, 1, 2, 3))
C
cnn 已提交
918
          batch_norm = paddle.nn.BatchNorm2D(1)
919 920
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
921
          print(batch_norm_out)
922 923
    """

924
    def _check_data_format(self, input):
925
        if input == 'NCHW':
926
            self._data_format = input
F
Feiyu Chan 已提交
927 928
        elif input == "NHWC":
            self._data_format = input
929
        else:
F
Feiyu Chan 已提交
930
            raise ValueError('expected NCHW or NHWC for data_format input')
931

932 933
    def _check_input_dim(self, input):
        if len(input.shape) != 4:
934 935 936
            raise ValueError(
                'expected 4D input (got {}D input)'.format(len(input.shape))
            )
937 938


C
cnn 已提交
939
class BatchNorm3D(_BatchNormBase):
940
    r"""
941 942
    Applies Batch Normalization over a 5D input (a mini-batch of 3D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

943 944
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
945 946 947 948
    Calculated as follows:

    ..  math::

949 950 951 952
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
953

C
ceci3 已提交
954
    When use_global_stats = True, the :math:`\\mu_{\\beta}`
955 956 957 958 959
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
960 961
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
962 963 964 965 966

    The normalization function formula is as follows:

    ..  math::

967 968
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
969

970 971 972
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
973 974 975 976 977 978 979

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
980
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
981
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
982 983
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
984
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
985
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
986
        data_format(str, optional): Specify the input data format, the data format can be "NCDHW" or "NDHWC. Default: NCDHW.
C
ceci3 已提交
987
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
988 989 990
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
991 992
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight) when data_format is "NCDHW",
            or (batch, dims, height, weight, num_features) when data_format is "NDHWC".
993 994 995 996 997 998 999 1000 1001 1002
        - output: 5-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

1003
          x = paddle.rand((2, 1, 2, 2, 3))
C
cnn 已提交
1004
          batch_norm = paddle.nn.BatchNorm3D(1)
1005 1006
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
1007
          print(batch_norm_out)
1008 1009
    """

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCDHW',
        use_global_stats=None,
        name=None,
    ):
1021
        super().__init__(
1022 1023 1024 1025 1026 1027 1028 1029 1030
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            use_global_stats,
            name,
        )
C
ceci3 已提交
1031

1032 1033 1034
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NCDHW':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
1035 1036
        elif input == "NHWC" or input == "NDHWC":
            self._data_format = 'NHWC'
1037
        else:
F
Feiyu Chan 已提交
1038
            raise ValueError(
1039 1040
                'expected NCDHW, NDHWC or None for data_format input'
            )
1041

1042 1043
    def _check_input_dim(self, input):
        if len(input.shape) != 5:
1044 1045 1046
            raise ValueError(
                'expected 5D input (got {}D input)'.format(len(input.shape))
            )
1047 1048


1049
class SyncBatchNorm(_BatchNormBase):
1050
    r"""
C
ceci3 已提交
1051
    This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
1052 1053
    It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can
    be used as a normalizer function for other operations, such as conv2d and fully connected
C
ceci3 已提交
1054 1055 1056 1057 1058 1059 1060
    operations.
    The data is normalized by the mean and variance of the channel based on whole mini-batch
    , which including data in all gpus.
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1061
    When model in training mode, the :math:`\\mu_{\\beta}`
C
ceci3 已提交
1062 1063 1064 1065 1066
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of whole mini-batch data in all gpus.
    Calculated as follows:

    ..  math::

1067 1068 1069 1070
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
C
ceci3 已提交
1071 1072 1073 1074 1075

    - :math:`x` : whole mini-batch data in all gpus
    - :math:`m` : the size of the whole mini-batch data

    When model in evaluation mode, the :math:`\\mu_{\\beta}`
1076
    and :math:`\sigma_{\beta}^{2}` are global statistics (moving_mean and moving_variance,
C
ceci3 已提交
1077 1078 1079
    which usually got from the pre-trained model). Global statistics calculated as follows:

    .. math::
1080 1081
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
C
ceci3 已提交
1082 1083

    The formula of normalization is as follows:
1084

C
ceci3 已提交
1085 1086
    ..  math::

1087 1088 1089
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
C
ceci3 已提交
1090

1091 1092
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable scale parameter vector
1093
    - :math:`\beta` : trainable shift parameter vector
C
ceci3 已提交
1094

1095
    Note:
1096 1097 1098
        If you want to use container to pack your model and has ``SyncBatchNorm`` in the
        evaluation phase, please use ``nn.LayerList`` or ``nn.Sequential`` instead of
        ``list`` to pack the model.
1099

C
ceci3 已提交
1100 1101 1102 1103 1104 1105 1106
    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of this layer. If it is set to None or one attribute of ParamAttr, this layerr
             will create ParamAttr as param_attr. If the Initializer of the param_attr
1107
             is not set, the parameter is initialized with ones. If it is set to False,
C
ceci3 已提交
1108 1109 1110 1111
             this layer will not have trainable scale parameter. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer.
             If it is set to None or one attribute of ParamAttr, this layer
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
1112
             is not set, the bias is initialized zero. If it is set to False, this layer will not
C
ceci3 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121
             have trainable bias parameter. Default: None.

    Shapes:
        input: Tensor that the dimension from 2 to 5.
        output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

1122 1123
          # required: gpu

C
ceci3 已提交
1124 1125 1126
          import paddle
          import paddle.nn as nn

1127
          x = paddle.to_tensor([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
C
ceci3 已提交
1128 1129

          if paddle.is_compiled_with_cuda():
C
ceci3 已提交
1130 1131
              sync_batch_norm = nn.SyncBatchNorm(2)
              hidden1 = sync_batch_norm(x)
C
ceci3 已提交
1132
              print(hidden1)
1133 1134 1135 1136 1137 1138
              # Tensor(shape=[1, 2, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=False,
              #        [[[[ 0.26824948,  1.09363246],
              #           [ 0.26824948, -1.63013160]],

              #          [[ 0.80956620, -0.66528702],
              #           [-1.27446556,  1.13018656]]]])
C
ceci3 已提交
1139 1140
    """

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        name=None,
    ):
1151
        super().__init__(
1152 1153 1154 1155 1156 1157 1158 1159 1160
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            None,
            name,
        )
C
ceci3 已提交
1161

C
ceci3 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
    def _check_data_format(self):
        if self._data_format in ['NCHW', 'NCDHW', 'NC', 'NCL']:
            self._data_format = 'NCHW'
        elif self._data_format in ["NHWC", "NDHWC", 'NLC']:
            self._data_format = 'NHWC'
        else:
            raise ValueError(
                'expected \'NCDHW\', \'NDHWC\', \'NCL\', \'NLC\', \'NC\', \'NCHW\', \'NHWC\' for data_format'
            )

C
ceci3 已提交
1172
    def forward(self, x):
C
ceci3 已提交
1173
        self._check_data_format()
C
ceci3 已提交
1174 1175 1176 1177 1178 1179 1180 1181
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        ### train mode: use mini-batch stats, eval mode: use global stats
        ### use_global_stats only support False in sync_batch_norm
1182
        if in_dygraph_mode():
1183
            sync_batch_norm_out, _, _, _, _, _ = _C_ops.sync_batch_norm_(
1184 1185 1186
                x,
                self._mean,
                self._variance,
1187 1188 1189
                self.weight,
                self.bias,
                not self.training,
1190 1191 1192 1193 1194 1195
                self._momentum,
                self._epsilon,
                self._data_format,
                False,
                False,
            )
1196 1197 1198
            return sync_batch_norm_out

        elif in_dynamic_mode():
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
            attrs = (
                "momentum",
                self._momentum,
                "epsilon",
                self._epsilon,
                "is_test",
                not self.training,
                "data_layout",
                self._data_format,
                "use_mkldnn",
                False,
                "fuse_with_relu",
                False,
                "use_global_stats",
                False,
                'trainable_statistics',
                False,
            )
1217
            sync_batch_norm_out, _, _, _, _, _ = _legacy_C_ops.sync_batch_norm(
1218 1219 1220 1221 1222 1223 1224 1225 1226
                x,
                self.weight,
                self.bias,
                self._mean,
                self._variance,
                mean_out,
                variance_out,
                *attrs
            )
C
ceci3 已提交
1227 1228
            return sync_batch_norm_out

1229 1230 1231
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'SyncBatchNorm'
        )
C
ceci3 已提交
1232 1233 1234 1235 1236

        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": not self.training,
1237
            "data_layout": self._data_format,
C
ceci3 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": False,
            "trainable_statistics": False,
        }

        inputs = {
            "X": [x],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
1249
            "Variance": [self._variance],
C
ceci3 已提交
1250 1251 1252
        }

        saved_mean = self._helper.create_variable_for_type_inference(
1253 1254
            dtype=self._dtype, stop_gradient=True
        )
C
ceci3 已提交
1255
        saved_variance = self._helper.create_variable_for_type_inference(
1256 1257
            dtype=self._dtype, stop_gradient=True
        )
C
ceci3 已提交
1258
        sync_batch_norm_out = self._helper.create_variable_for_type_inference(
1259 1260
            self._dtype
        )
C
ceci3 已提交
1261 1262 1263 1264 1265 1266

        outputs = {
            "Y": [sync_batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
1267
            "SavedVariance": [saved_variance],
C
ceci3 已提交
1268 1269
        }

1270 1271 1272
        self._helper.append_op(
            type="sync_batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
C
ceci3 已提交
1273
        return sync_batch_norm_out
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291

    @classmethod
    def convert_sync_batchnorm(cls, layer):
        """
        Helper function to convert :class: `paddle.nn.BatchNorm*d` layers in the model to :class: `paddle.nn.SyncBatchNorm` layers.

        Parameters:
            layer(paddle.nn.Layer): model containing one or more `BatchNorm*d` layers.

        Returns:
            The original model with converted SyncBatchNorm layers. If BatchNorm*d layer in the model, use SyncBatchNorm layer instead.

        Examples:

            .. code-block:: python
                import paddle
                import paddle.nn as nn

C
cnn 已提交
1292
                model = nn.Sequential(nn.Conv2D(3, 5, 3), nn.BatchNorm2D(5))
1293 1294 1295 1296 1297
                sync_model = nn.SyncBatchNorm.convert_sync_batchnorm(model)

        """
        layer_output = layer
        if isinstance(layer, _BatchNormBase):
1298
            if (
1299
                layer._weight_attr is not None
1300
                and not isinstance(layer._weight_attr, bool)
1301
                and layer._weight_attr.name is not None
1302
            ):
C
ceci3 已提交
1303
                layer._weight_attr.name = layer._weight_attr.name + '_sync'
1304
            if (
1305
                layer._bias_attr is not None
1306
                and not isinstance(layer._bias_attr, bool)
1307
                and layer._bias_attr.name is not None
1308
            ):
C
ceci3 已提交
1309 1310
                layer._bias_attr.name = layer._bias_attr.name + '_sync'

1311 1312 1313 1314 1315 1316 1317 1318 1319
            layer_output = SyncBatchNorm(
                layer._num_features,
                layer._momentum,
                layer._epsilon,
                layer._weight_attr,
                layer._bias_attr,
                layer._data_format,
                layer._name,
            )
1320

1321 1322 1323 1324
            if (
                layer._weight_attr is not False
                and layer._bias_attr is not False
            ):
1325 1326 1327 1328 1329 1330
                with no_grad():
                    layer_output.weight = layer.weight
                    layer_output.bias = layer.bias
            layer_output._mean = layer._mean
            layer_output._variance = layer._variance

C
ceci3 已提交
1331
        for name, sublayer in layer.named_children():
1332 1333 1334
            layer_output.add_sublayer(
                name, cls.convert_sync_batchnorm(sublayer)
            )
1335 1336
        del layer
        return layer_output
1337 1338


Z
zhiboniu 已提交
1339
class LocalResponseNorm(Layer):
1340
    """
1341 1342
    Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
1343

1344
    See more details in :ref:`api_paddle_nn_functional_local_response_norm` .
1345

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
    Parameters:
        size (int): The number of channels to sum over.
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
        k (float, optional): An offset, positive. Default: 1.0
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:
            If input is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
            the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
            If input is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            If input is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name (str, optional): Name for the operation (optional, default is None). For more information,
            please refer to :ref:`api_guide_Name`.
1361

1362 1363 1364
    Shape:
        - input: 3-D/4-D/5-D tensor.
        - output: 3-D/4-D/5-D tensor, the same shape as input.
1365

1366
    Examples:
1367

1368
    .. code-block:: python
1369

1370 1371 1372 1373 1374 1375 1376
        import paddle

        x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
        m = paddle.nn.LocalResponseNorm(size=5)
        y = m(x)
        print(y.shape)  # [3, 3, 112, 112]
    """
1377

1378 1379 1380 1381 1382 1383 1384 1385 1386
    def __init__(
        self,
        size,
        alpha=0.0001,
        beta=0.75,
        k=1.0,
        data_format="NCHW",
        name=None,
    ):
1387
        super().__init__()
1388 1389 1390 1391 1392 1393 1394 1395
        self.size = size
        self.alpha = alpha
        self.beta = beta
        self.k = k
        self.data_format = data_format
        self.name = name

    def forward(self, input):
1396 1397 1398 1399 1400 1401 1402 1403 1404
        out = F.local_response_norm(
            input,
            self.size,
            self.alpha,
            self.beta,
            self.k,
            self.data_format,
            self.name,
        )
1405
        return out
1406 1407 1408

    def extra_repr(self):
        main_str = 'size={}, alpha={}, beta={}, k={}'.format(
1409 1410
            self.size, self.alpha, self.beta, self.k
        )
1411
        if self.data_format != 'NCHW':
1412 1413 1414 1415
            main_str += ', data_format={}'.format(self.data_format)
        if self.name is not None:
            main_str += ', name={}'.format(self.name)
        return main_str