norm.py 53.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

28
# TODO: define normalization api
29

Z
zhiboniu 已提交
30 31
from ...fluid.dygraph import BatchNorm  # noqa: F401
from ...fluid.dygraph import SpectralNorm  # noqa: F401
C
ceci3 已提交
32

33
from ...framework import get_default_dtype
C
ceci3 已提交
34

Z
zhiboniu 已提交
35 36
from ..initializer import Constant
from ...framework import ParamAttr
37
from ...fluid.data_feeder import check_variable_and_dtype
Z
zhiboniu 已提交
38
from ...fluid import dygraph_utils
39 40 41 42 43 44

from ..functional import batch_norm, layer_norm, instance_norm

import numpy as np
import numbers
import warnings
Z
zhiboniu 已提交
45
from ...framework import no_grad
46
from .. import functional as F
47
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
48
from .. import Layer
Z
zhiboniu 已提交
49
from paddle import in_dynamic_mode
50
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph
51

52 53
__all__ = []

C
ceci3 已提交
54

Z
zhiboniu 已提交
55
class _InstanceNormBase(Layer):
56
    """
57
    This class is based class for InstanceNorm1D, 2d, 3d.
58

C
cnn 已提交
59
    See InstaceNorm1D, InstanceNorm2D or InstanceNorm3D for more details.
60 61
    """

62 63 64 65 66 67 68 69 70 71
    def __init__(
        self,
        num_features,
        epsilon=1e-5,
        momentum=0.9,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
        name=None,
    ):
72 73
        super(_InstanceNormBase, self).__init__()

74
        if weight_attr is False or bias_attr is False:
75 76
            assert (
                weight_attr == bias_attr
77
            ), "weight_attr and bias_attr must be set to False at the same time in InstanceNorm"
78 79 80
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
81
        self._num_features = num_features
82

83
        if weight_attr is not False and bias_attr is not False:
84 85 86 87
            self.scale = self.create_parameter(
                attr=self._weight_attr,
                shape=[num_features],
                default_initializer=Constant(1.0),
88 89 90 91 92 93 94 95
                is_bias=False,
            )
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_features],
                default_initializer=Constant(0.0),
                is_bias=True,
            )
96 97 98 99 100 101 102 103 104 105
        else:
            self.scale = None
            self.bias = None

    def _check_input_dim(self, input):
        raise NotImplementedError("InstanceNorm Base error")

    def forward(self, input):
        self._check_input_dim(input)

106 107 108
        return instance_norm(
            input, weight=self.scale, bias=self.bias, eps=self._epsilon
        )
109

110
    def extra_repr(self):
111 112 113
        return 'num_features={}, epsilon={}'.format(
            self._num_features, self._epsilon
        )
114

115

C
cnn 已提交
116
class InstanceNorm1D(_InstanceNormBase):
117
    r"""
118
    Create a callable object of `InstanceNorm1D`. Applies Instance Normalization over a 3D input (a mini-batch of 1D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
119 120 121 122 123 124

    DataLayout: NCL `[batch, in_channels, length]`

    :math:`input` is the input features over a mini-batch.

    ..  math::
125

126 127 128 129 130 131 132
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
133

134
Where `H` means height of feature map, `W` means width of feature map.
135 136 137 138 139 140 141

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
142 143 144 145
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
146
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
147 148 149 150
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
            If it is set to False, will not create bias_attr. Default: None.
151
        data_format(str, optional): Specify the input data format, may be "NC", "NCL". Default "NCL".
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..


    Shape:
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length).
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

          import paddle

169
          x = paddle.rand((2, 2, 3))
C
cnn 已提交
170
          instance_norm = paddle.nn.InstanceNorm1D(2)
171 172
          instance_norm_out = instance_norm(x)

Z
zhang wenhui 已提交
173
          print(instance_norm_out)
174 175 176 177 178

    """

    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
179 180 181 182 183
            raise ValueError(
                'expected 2D or 3D input (got {}D input)'.format(
                    len(input.shape)
                )
            )
184 185


C
cnn 已提交
186
class InstanceNorm2D(_InstanceNormBase):
187
    r"""
188
    Create a callable object of `InstanceNorm2D`. Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
189 190 191 192 193 194 195

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
196

197 198 199 200 201 202 203
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
204

205
Where `H` means height of feature map, `W` means width of feature map.
206 207 208 209 210 211 212

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
213 214 215 216
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
217
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
218 219 220 221
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
    `       If it is set to False, will not create bias_attr. Default: None.
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        data_format(str, optional): Specify the input data format, could be "NCHW". Default: NCHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 4-D tensor with shape: (batch, num_features, height, weight).
        - output: 4-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

237
            import paddle
238

239 240 241
            x = paddle.rand((2, 2, 2, 3))
            instance_norm = paddle.nn.InstanceNorm2D(2)
            instance_norm_out = instance_norm(x)
242

243
            print(instance_norm_out)
244 245 246 247
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 4:
248 249 250
            raise ValueError(
                'expected 4D input (got {}D input)'.format(len(input.shape))
            )
251 252


C
cnn 已提交
253
class InstanceNorm3D(_InstanceNormBase):
254
    r"""
255
    Create a callable object of `InstanceNorm3D`. Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
256 257 258 259 260 261 262

    DataLayout: NCHW `[batch, in_channels, D, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
263

264 265 266 267 268 269 270
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
271

272
Where `H` means height of feature map, `W` means width of feature map.
273 274 275 276 277 278 279

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
280 281 282 283
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
284
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
285 286 287 288
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
            If it is set to False, will not create bias_attr. Default: None.
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        data_format(str, optional): Specify the input data format, could be "NCDHW". Default: NCDHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight).
        - output: 5-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

304
            import paddle
305

306 307 308
            x = paddle.rand((2, 2, 2, 2, 3))
            instance_norm = paddle.nn.InstanceNorm3D(2)
            instance_norm_out = instance_norm(x)
309

310
            print(instance_norm_out.numpy)
311 312 313 314
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 5:
315 316 317
            raise ValueError(
                'expected 5D input (got {}D input)'.format(len(input.shape))
            )
318 319


Z
zhiboniu 已提交
320
class GroupNorm(Layer):
321 322 323 324 325 326 327 328
    """
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
        num_groups(int): The number of groups that divided from channels.
329
        num_channels(int): The number of channels of input.
330
        epsilon(float, optional): The small value added to the variance to prevent
331
            division by zero. Default: 1e-05.
332
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
333 334
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
335
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
336 337
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
338 339 340 341
        data_format(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.
        name(str, optional): Name for the GroupNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
342 343
        - x: Tensor with shape: (batch, num_features, *).
        - output: The same shape as input x.
344 345 346 347 348 349

    Returns:
        None

    Examples:
        .. code-block:: python
Z
zhang wenhui 已提交
350

351 352
            import paddle
            import numpy as np
353

354 355 356 357 358 359
            paddle.disable_static()
            np.random.seed(123)
            x_data = np.random.random(size=(2, 6, 2, 2)).astype('float32')
            x = paddle.to_tensor(x_data)
            group_norm = paddle.nn.GroupNorm(num_channels=6, num_groups=6)
            group_norm_out = group_norm(x)
360

361
            print(group_norm_out.numpy())
362 363
    """

364 365 366 367 368 369 370 371 372 373
    def __init__(
        self,
        num_groups,
        num_channels,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        name=None,
    ):
374 375 376 377 378 379
        super(GroupNorm, self).__init__()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
        self._num_channels = num_channels
        self._num_groups = num_groups
380
        if data_format not in ['NCHW', 'NHWC']:
381
            raise ValueError("unsupported data layout:" + data_format)
382
        self._data_format = data_format
383 384 385

        param_shape = [self._num_channels]

386
        if weight_attr is False:
387
            self.weight = self.create_parameter(
388 389
                attr=None, shape=param_shape, default_initializer=Constant(1.0)
            )
390 391 392 393 394
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
395 396 397
                default_initializer=Constant(1.0),
            )
            self.weight.stop_gradient = (
398
                self._weight_attr is not None
399 400
                and self._weight_attr.learning_rate == 0.0
            )
401

402
        if bias_attr is False:
403 404 405 406 407 408
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
409 410
            self.bias.stop_gradient = True
        else:
411 412 413 414
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True
            )
            self.bias.stop_gradient = (
415 416
                self._bias_attr is not None
                and self._bias_attr.learning_rate == 0.0
417
            )
418 419

    def forward(self, input):
420
        mean_out = self._helper.create_variable_for_type_inference(
421 422
            dtype=input.dtype, stop_gradient=True
        )
423
        variance_out = self._helper.create_variable_for_type_inference(
424 425
            dtype=input.dtype, stop_gradient=True
        )
426

427
        if in_dygraph_mode():
428 429 430 431 432 433
            pre_act = _C_ops.group_norm(
                input,
                self.weight,
                self.bias,
                self._epsilon,
                self._num_groups,
434
                self._data_format,
435
            )
436

437 438 439
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=None
            )
440 441

        elif _in_legacy_dygraph():
442
            pre_act, _, _ = _legacy_C_ops.group_norm(
443 444 445 446 447 448 449 450
                input,
                self.weight,
                self.bias,
                mean_out,
                variance_out,
                'epsilon',
                self._epsilon,
                'groups',
451 452
                self._num_groups,
            )
453 454 455
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=None
            )
456

457 458 459 460 461 462 463 464
        inputs = {'X': input}
        if self.bias is not None:
            inputs['Bias'] = self.bias
        if self.weight is not None:
            inputs['Scale'] = self.weight

        # create output
        group_norm_out = self._helper.create_variable_for_type_inference(
465 466 467 468 469 470 471 472 473 474 475 476 477
            dtype=input.dtype
        )

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon, "groups": self._num_groups},
        )
478 479 480

        return self._helper.append_activation(group_norm_out, None)

481 482
    def extra_repr(self):
        return 'num_groups={}, num_channels={}, epsilon={}'.format(
483 484
            self._num_groups, self._num_channels, self._epsilon
        )
485

486

Z
zhiboniu 已提交
487
class LayerNorm(Layer):
488
    r"""
489
    Construct a callable object of the ``LayerNorm`` class.
490 491 492 493 494 495 496 497
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    ..  math::

498
        \mu & = \frac{1}{H}\sum_{i=1}^{H} x_i
499

500
        \sigma & = \sqrt{\frac{1}{H}\sum_{i=1}^{H}{(x_i - \mu)^2} + \epsilon}
501

502
        y & = f(\frac{g}{\sigma}(x - \mu) + b)
503 504 505

    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
506
    - :math:`\epsilon`: the small value added to the variance to prevent division by zero.
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.

    Parameters:
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            gain :math:`g`. If False, weight is None. If is None, a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 2-D, 3-D, 4-D or 5-D tensor.
        - output: same shape as input x.

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

538 539
          x = paddle.rand((2, 2, 2, 3))
          layer_norm = paddle.nn.LayerNorm(x.shape[1:])
540 541
          layer_norm_out = layer_norm(x)

Z
zhang wenhui 已提交
542
          print(layer_norm_out)
543 544
    """

545 546 547 548 549 550 551 552
    def __init__(
        self,
        normalized_shape,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        name=None,
    ):
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]

        self._normalized_shape = list(normalized_shape)
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        param_shape = [np.prod(self._normalized_shape)]

        if weight_attr is False:
            self.weight = None
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
569 570
                default_initializer=Constant(1.0),
            )
571 572 573 574

        if bias_attr is False:
            self.bias = None
        else:
575 576 577
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True
            )
578 579

    def forward(self, input):
580 581 582 583 584 585 586
        return layer_norm(
            input,
            normalized_shape=self._normalized_shape,
            weight=self.weight,
            bias=self.bias,
            epsilon=self._epsilon,
        )
587

588
    def extra_repr(self):
589 590 591
        return 'normalized_shape={}, epsilon={}'.format(
            self._normalized_shape, self._epsilon
        )
592

593

Z
zhiboniu 已提交
594
class _BatchNormBase(Layer):
595 596 597 598
    """
    BatchNorm base .
    """

599 600 601 602 603 604 605 606 607 608 609
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        use_global_stats=None,
        name=None,
    ):
610 611 612 613
        super(_BatchNormBase, self).__init__()
        self._num_features = num_features
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
C
ceci3 已提交
614
        self._use_global_stats = use_global_stats
615 616

        if get_default_dtype() == 'float16':
G
Guoxia Wang 已提交
617 618 619
            self._dtype = 'float32'
        else:
            self._dtype = get_default_dtype()
620 621 622 623

        param_shape = [num_features]

        # create parameter
624
        if weight_attr is False:
625
            self.weight = self.create_parameter(
G
Guoxia Wang 已提交
626 627 628
                attr=None,
                shape=param_shape,
                dtype=self._dtype,
629 630
                default_initializer=Constant(1.0),
            )
631 632 633 634 635
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
G
Guoxia Wang 已提交
636
                dtype=self._dtype,
637 638 639
                default_initializer=Constant(1.0),
            )
            self.weight.stop_gradient = (
640
                self._weight_attr is not None
641 642
                and self._weight_attr.learning_rate == 0.0
            )
643

644
        if bias_attr is False:
645 646 647 648 649 650 651
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
652 653
            self.bias.stop_gradient = True
        else:
654 655 656 657 658 659 660
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True,
            )
            self.bias.stop_gradient = (
661 662
                self._bias_attr is not None
                and self._bias_attr.learning_rate == 0.0
663
            )
664 665 666 667 668 669 670 671

        moving_mean_name = None
        moving_variance_name = None

        if name is not None:
            moving_mean_name = name + "_mean"
            moving_variance_name = name + "_variance"

672 673 674 675 676 677 678 679 680 681
        self._mean = self.create_parameter(
            dtype=self._dtype,
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=True,
            ),
            shape=param_shape,
        )
682 683
        self._mean.stop_gradient = True

684 685 686 687 688 689 690 691 692 693
        self._variance = self.create_parameter(
            dtype=self._dtype,
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=True,
            ),
            shape=param_shape,
        )
694 695 696 697 698 699 700
        self._variance.stop_gradient = True

        self._data_format = data_format
        self._in_place = False
        self._momentum = momentum
        self._epsilon = epsilon
        self._fuse_with_relu = False
701
        self._name = name
702 703 704 705

    def _check_input_dim(self, input):
        raise NotImplementedError("BatchNorm Base error")

706 707 708
    def _check_data_format(self, input):
        raise NotImplementedError("BatchNorm Base data format error")

709 710
    def forward(self, input):

711 712
        self._check_data_format(self._data_format)

713 714
        self._check_input_dim(input)

715
        if self.training:
716
            warnings.warn(
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
                "When training, we now always track global mean and variance."
            )

        return batch_norm(
            input,
            self._mean,
            self._variance,
            weight=self.weight,
            bias=self.bias,
            training=self.training,
            momentum=self._momentum,
            epsilon=self._epsilon,
            data_format=self._data_format,
            use_global_stats=self._use_global_stats,
        )
732

733 734
    def extra_repr(self):
        main_str = 'num_features={}, momentum={}, epsilon={}'.format(
735 736
            self._num_features, self._momentum, self._epsilon
        )
737
        if self._data_format != 'NCHW':
738 739 740 741 742
            main_str += ', data_format={}'.format(self._data_format)
        if self._name is not None:
            main_str += ', name={}'.format(self._name)
        return main_str

743

C
cnn 已提交
744
class BatchNorm1D(_BatchNormBase):
745
    r"""
746 747
    Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

748 749
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
750 751 752 753
    Calculated as follows:

    ..  math::

754 755 756 757
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
758

759 760
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
761 762 763 764
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
765 766
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
767 768 769 770 771

    The normalization function formula is as follows:

    ..  math::

772 773
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
774

775 776 777
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
778 779 780 781 782 783 784

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
785
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
786
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
787 788
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
789
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
790
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
791
        data_format(str, optional): Specify the input data format, may be "NC", "NCL" or "NLC". Default "NCL".
C
ceci3 已提交
792
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
793 794 795
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
796 797
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length) when data_format is "NC" or "NCL",
            (batch, length, num_features) when data_format is "NLC".
798 799 800 801
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.
802

803 804 805 806 807 808

    Examples:
        .. code-block:: python

          import paddle

809
          x = paddle.rand((2, 1, 3))
C
cnn 已提交
810
          batch_norm = paddle.nn.BatchNorm1D(1)
811 812
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
813
          print(batch_norm_out)
814 815
    """

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCL',
        use_global_stats=None,
        name=None,
    ):
        super(BatchNorm1D, self).__init__(
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            use_global_stats,
            name,
        )
C
ceci3 已提交
837

838 839 840
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NC' or input == 'NCL':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
841 842
        elif input == "NHWC" or input == 'NLC':
            self._data_format = "NHWC"
843
        else:
F
Feiyu Chan 已提交
844
            raise ValueError(
845 846
                'expected NC , NCL, NLC or None for data_format input'
            )
847

848 849
    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
850 851 852 853 854
            raise ValueError(
                'expected 2D or 3D input (got {}D input)'.format(
                    len(input.shape)
                )
            )
855 856


C
cnn 已提交
857
class BatchNorm2D(_BatchNormBase):
858
    r"""
859 860
    Applies Batch Normalization over a 4D input (a mini-batch of 2D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

861 862
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
863 864 865 866
    Calculated as follows:

    ..  math::

867 868
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//
        \ mini-batch\ mean \\
869
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i -
870
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
871

872 873
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
874 875 876 877
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
878 879
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
880 881 882 883 884

    The normalization function formula is as follows:

    ..  math::

885 886
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
887

888 889 890
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
891 892 893 894 895 896 897

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
898
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
899
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
900 901
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
902
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
903
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
904
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
C
ceci3 已提交
905
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
906 907 908
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
909 910
        - x: 4-D tensor with shape: (batch, num_features, height, weight) when data_format is "NCHW",
            or (batch, height, weight, num_features) when data_format is "NHWC".
911 912 913 914 915 916 917 918 919 920
        - output: 4-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

921
          x = paddle.rand((2, 1, 2, 3))
C
cnn 已提交
922
          batch_norm = paddle.nn.BatchNorm2D(1)
923 924
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
925
          print(batch_norm_out)
926 927
    """

928
    def _check_data_format(self, input):
929
        if input == 'NCHW':
930
            self._data_format = input
F
Feiyu Chan 已提交
931 932
        elif input == "NHWC":
            self._data_format = input
933
        else:
F
Feiyu Chan 已提交
934
            raise ValueError('expected NCHW or NHWC for data_format input')
935

936 937
    def _check_input_dim(self, input):
        if len(input.shape) != 4:
938 939 940
            raise ValueError(
                'expected 4D input (got {}D input)'.format(len(input.shape))
            )
941 942


C
cnn 已提交
943
class BatchNorm3D(_BatchNormBase):
944
    r"""
945 946
    Applies Batch Normalization over a 5D input (a mini-batch of 3D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

947 948
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
949 950 951 952
    Calculated as follows:

    ..  math::

953 954 955 956
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
957

C
ceci3 已提交
958
    When use_global_stats = True, the :math:`\\mu_{\\beta}`
959 960 961 962 963
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
964 965
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
966 967 968 969 970

    The normalization function formula is as follows:

    ..  math::

971 972
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
973

974 975 976
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
977 978 979 980 981 982 983

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
984
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
985
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
986 987
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
988
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
989
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
990
        data_format(str, optional): Specify the input data format, the data format can be "NCDHW" or "NDHWC. Default: NCDHW.
C
ceci3 已提交
991
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
992 993 994
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
995 996
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight) when data_format is "NCDHW",
            or (batch, dims, height, weight, num_features) when data_format is "NDHWC".
997 998 999 1000 1001 1002 1003 1004 1005 1006
        - output: 5-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

1007
          x = paddle.rand((2, 1, 2, 2, 3))
C
cnn 已提交
1008
          batch_norm = paddle.nn.BatchNorm3D(1)
1009 1010
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
1011
          print(batch_norm_out)
1012 1013
    """

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCDHW',
        use_global_stats=None,
        name=None,
    ):
        super(BatchNorm3D, self).__init__(
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            use_global_stats,
            name,
        )
C
ceci3 已提交
1035

1036 1037 1038
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NCDHW':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
1039 1040
        elif input == "NHWC" or input == "NDHWC":
            self._data_format = 'NHWC'
1041
        else:
F
Feiyu Chan 已提交
1042
            raise ValueError(
1043 1044
                'expected NCDHW, NDHWC or None for data_format input'
            )
1045

1046 1047
    def _check_input_dim(self, input):
        if len(input.shape) != 5:
1048 1049 1050
            raise ValueError(
                'expected 5D input (got {}D input)'.format(len(input.shape))
            )
1051 1052


1053
class SyncBatchNorm(_BatchNormBase):
1054
    r"""
C
ceci3 已提交
1055
    This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
1056 1057
    It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can
    be used as a normalizer function for other operations, such as conv2d and fully connected
C
ceci3 已提交
1058 1059 1060 1061 1062 1063 1064
    operations.
    The data is normalized by the mean and variance of the channel based on whole mini-batch
    , which including data in all gpus.
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1065
    When model in training mode, the :math:`\\mu_{\\beta}`
C
ceci3 已提交
1066 1067 1068 1069 1070
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of whole mini-batch data in all gpus.
    Calculated as follows:

    ..  math::

1071 1072 1073 1074
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
C
ceci3 已提交
1075 1076 1077 1078 1079

    - :math:`x` : whole mini-batch data in all gpus
    - :math:`m` : the size of the whole mini-batch data

    When model in evaluation mode, the :math:`\\mu_{\\beta}`
1080
    and :math:`\sigma_{\beta}^{2}` are global statistics (moving_mean and moving_variance,
C
ceci3 已提交
1081 1082 1083
    which usually got from the pre-trained model). Global statistics calculated as follows:

    .. math::
1084 1085
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
C
ceci3 已提交
1086 1087

    The formula of normalization is as follows:
1088

C
ceci3 已提交
1089 1090
    ..  math::

1091 1092 1093
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
C
ceci3 已提交
1094

1095 1096
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable scale parameter vector
1097
    - :math:`\beta` : trainable shift parameter vector
C
ceci3 已提交
1098

1099
    Note:
1100 1101 1102
        If you want to use container to pack your model and has ``SyncBatchNorm`` in the
        evaluation phase, please use ``nn.LayerList`` or ``nn.Sequential`` instead of
        ``list`` to pack the model.
1103

C
ceci3 已提交
1104 1105 1106 1107 1108 1109 1110
    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of this layer. If it is set to None or one attribute of ParamAttr, this layerr
             will create ParamAttr as param_attr. If the Initializer of the param_attr
1111
             is not set, the parameter is initialized with ones. If it is set to False,
C
ceci3 已提交
1112 1113 1114 1115
             this layer will not have trainable scale parameter. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer.
             If it is set to None or one attribute of ParamAttr, this layer
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
1116
             is not set, the bias is initialized zero. If it is set to False, this layer will not
C
ceci3 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
             have trainable bias parameter. Default: None.

    Shapes:
        input: Tensor that the dimension from 2 to 5.
        output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn as nn
          import numpy as np

          x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
          x = paddle.to_tensor(x)
C
ceci3 已提交
1132 1133

          if paddle.is_compiled_with_cuda():
C
ceci3 已提交
1134 1135
              sync_batch_norm = nn.SyncBatchNorm(2)
              hidden1 = sync_batch_norm(x)
C
ceci3 已提交
1136
              print(hidden1)
C
ceci3 已提交
1137 1138 1139
              # [[[[0.26824948, 1.0936325],[0.26824948, -1.6301316]],[[ 0.8095662, -0.665287],[-1.2744656, 1.1301866 ]]]]
    """

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        name=None,
    ):
        super(SyncBatchNorm, self).__init__(
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            None,
            name,
        )
C
ceci3 已提交
1160

C
ceci3 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
    def _check_data_format(self):
        if self._data_format in ['NCHW', 'NCDHW', 'NC', 'NCL']:
            self._data_format = 'NCHW'
        elif self._data_format in ["NHWC", "NDHWC", 'NLC']:
            self._data_format = 'NHWC'
        else:
            raise ValueError(
                'expected \'NCDHW\', \'NDHWC\', \'NCL\', \'NLC\', \'NC\', \'NCHW\', \'NHWC\' for data_format'
            )

C
ceci3 已提交
1171
    def forward(self, x):
C
ceci3 已提交
1172
        self._check_data_format()
C
ceci3 已提交
1173 1174 1175 1176 1177 1178 1179 1180
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        ### train mode: use mini-batch stats, eval mode: use global stats
        ### use_global_stats only support False in sync_batch_norm
1181
        if in_dygraph_mode():
1182
            sync_batch_norm_out, _, _, _, _, _ = _C_ops.sync_batch_norm_(
1183 1184 1185
                x,
                self._mean,
                self._variance,
1186 1187 1188
                self.weight,
                self.bias,
                not self.training,
1189 1190 1191 1192 1193 1194
                self._momentum,
                self._epsilon,
                self._data_format,
                False,
                False,
            )
1195 1196 1197
            return sync_batch_norm_out

        elif in_dynamic_mode():
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
            attrs = (
                "momentum",
                self._momentum,
                "epsilon",
                self._epsilon,
                "is_test",
                not self.training,
                "data_layout",
                self._data_format,
                "use_mkldnn",
                False,
                "fuse_with_relu",
                False,
                "use_global_stats",
                False,
                'trainable_statistics',
                False,
            )
1216
            sync_batch_norm_out, _, _, _, _, _ = _legacy_C_ops.sync_batch_norm(
1217 1218 1219 1220 1221 1222 1223 1224 1225
                x,
                self.weight,
                self.bias,
                self._mean,
                self._variance,
                mean_out,
                variance_out,
                *attrs
            )
C
ceci3 已提交
1226 1227
            return sync_batch_norm_out

1228 1229 1230
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'SyncBatchNorm'
        )
C
ceci3 已提交
1231 1232 1233 1234 1235

        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": not self.training,
1236
            "data_layout": self._data_format,
C
ceci3 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": False,
            "trainable_statistics": False,
        }

        inputs = {
            "X": [x],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
1248
            "Variance": [self._variance],
C
ceci3 已提交
1249 1250 1251
        }

        saved_mean = self._helper.create_variable_for_type_inference(
1252 1253
            dtype=self._dtype, stop_gradient=True
        )
C
ceci3 已提交
1254
        saved_variance = self._helper.create_variable_for_type_inference(
1255 1256
            dtype=self._dtype, stop_gradient=True
        )
C
ceci3 已提交
1257
        sync_batch_norm_out = self._helper.create_variable_for_type_inference(
1258 1259
            self._dtype
        )
C
ceci3 已提交
1260 1261 1262 1263 1264 1265

        outputs = {
            "Y": [sync_batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
1266
            "SavedVariance": [saved_variance],
C
ceci3 已提交
1267 1268
        }

1269 1270 1271
        self._helper.append_op(
            type="sync_batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
C
ceci3 已提交
1272
        return sync_batch_norm_out
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

    @classmethod
    def convert_sync_batchnorm(cls, layer):
        """
        Helper function to convert :class: `paddle.nn.BatchNorm*d` layers in the model to :class: `paddle.nn.SyncBatchNorm` layers.

        Parameters:
            layer(paddle.nn.Layer): model containing one or more `BatchNorm*d` layers.

        Returns:
            The original model with converted SyncBatchNorm layers. If BatchNorm*d layer in the model, use SyncBatchNorm layer instead.

        Examples:

            .. code-block:: python
                import paddle
                import paddle.nn as nn

C
cnn 已提交
1291
                model = nn.Sequential(nn.Conv2D(3, 5, 3), nn.BatchNorm2D(5))
1292 1293 1294 1295 1296
                sync_model = nn.SyncBatchNorm.convert_sync_batchnorm(model)

        """
        layer_output = layer
        if isinstance(layer, _BatchNormBase):
1297
            if (
1298
                layer._weight_attr is not None
1299
                and not isinstance(layer._weight_attr, bool)
1300
                and layer._weight_attr.name is not None
1301
            ):
C
ceci3 已提交
1302
                layer._weight_attr.name = layer._weight_attr.name + '_sync'
1303
            if (
1304
                layer._bias_attr is not None
1305
                and not isinstance(layer._bias_attr, bool)
1306
                and layer._bias_attr.name is not None
1307
            ):
C
ceci3 已提交
1308 1309
                layer._bias_attr.name = layer._bias_attr.name + '_sync'

1310 1311 1312 1313 1314 1315 1316 1317 1318
            layer_output = SyncBatchNorm(
                layer._num_features,
                layer._momentum,
                layer._epsilon,
                layer._weight_attr,
                layer._bias_attr,
                layer._data_format,
                layer._name,
            )
1319

1320 1321 1322 1323
            if (
                layer._weight_attr is not False
                and layer._bias_attr is not False
            ):
1324 1325 1326 1327 1328 1329
                with no_grad():
                    layer_output.weight = layer.weight
                    layer_output.bias = layer.bias
            layer_output._mean = layer._mean
            layer_output._variance = layer._variance

C
ceci3 已提交
1330
        for name, sublayer in layer.named_children():
1331 1332 1333
            layer_output.add_sublayer(
                name, cls.convert_sync_batchnorm(sublayer)
            )
1334 1335
        del layer
        return layer_output
1336 1337


Z
zhiboniu 已提交
1338
class LocalResponseNorm(Layer):
1339
    """
1340 1341
    Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
1342

1343
    See more details in :ref:`api_paddle_nn_functional_local_response_norm` .
1344

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
    Parameters:
        size (int): The number of channels to sum over.
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
        k (float, optional): An offset, positive. Default: 1.0
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:
            If input is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
            the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
            If input is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            If input is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name (str, optional): Name for the operation (optional, default is None). For more information,
            please refer to :ref:`api_guide_Name`.
1360

1361 1362 1363
    Shape:
        - input: 3-D/4-D/5-D tensor.
        - output: 3-D/4-D/5-D tensor, the same shape as input.
1364

1365
    Examples:
1366

1367
    .. code-block:: python
1368

1369 1370 1371 1372 1373 1374 1375
        import paddle

        x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
        m = paddle.nn.LocalResponseNorm(size=5)
        y = m(x)
        print(y.shape)  # [3, 3, 112, 112]
    """
1376

1377 1378 1379 1380 1381 1382 1383 1384 1385
    def __init__(
        self,
        size,
        alpha=0.0001,
        beta=0.75,
        k=1.0,
        data_format="NCHW",
        name=None,
    ):
1386 1387 1388 1389 1390 1391 1392 1393 1394
        super(LocalResponseNorm, self).__init__()
        self.size = size
        self.alpha = alpha
        self.beta = beta
        self.k = k
        self.data_format = data_format
        self.name = name

    def forward(self, input):
1395 1396 1397 1398 1399 1400 1401 1402 1403
        out = F.local_response_norm(
            input,
            self.size,
            self.alpha,
            self.beta,
            self.k,
            self.data_format,
            self.name,
        )
1404
        return out
1405 1406 1407

    def extra_repr(self):
        main_str = 'size={}, alpha={}, beta={}, k={}'.format(
1408 1409
            self.size, self.alpha, self.beta, self.k
        )
1410
        if self.data_format != 'NCHW':
1411 1412 1413 1414
            main_str += ', data_format={}'.format(self.data_format)
        if self.name is not None:
            main_str += ', name={}'.format(self.name)
        return main_str