optimizer.py 49.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
W
wanghaoshuang 已提交
16
import re
17
from collections import defaultdict
18
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program
19 20 21 22 23 24 25 26 27
from . import framework
from . import layers
from .backward import append_backward
from .framework import program_guard
from . import unique_name
from .initializer import Constant
from .layer_helper import LayerHelper
from .regularizer import append_regularization_ops
from .clip import append_gradient_clip_ops, error_clip_callback
28
from contextlib import contextmanager
S
sneaxiy 已提交
29
from .layers import ops
30

31
__all__ = [
Q
qiaolongfei 已提交
32
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
33
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
34
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
Y
yuyang18 已提交
35
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'RMSPropOptimizer'
36
]
Q
Qiao Longfei 已提交
37 38 39 40 41 42


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
43 44
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
45 46
    """

X
Xin Pan 已提交
47
    def __init__(self, learning_rate, regularization=None, name=None):
48 49
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
50
            raise TypeError("learning rate should be float or Variable")
W
whs 已提交
51
        self._name = name
D
dzhwinter 已提交
52
        self.regularization = regularization
53
        self._learning_rate = learning_rate
D
dzhwinter 已提交
54 55
        # the learning rate type should be inferenced from loss
        self._dtype = None
56 57
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
58
        self._learning_rate_map = dict()
59 60 61
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
62 63 64 65 66
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
67
        self.helper = None
Q
Qiao Longfei 已提交
68

Q
Qiao Longfei 已提交
69
    def _create_global_learning_rate(self):
Y
yuyang18 已提交
70
        lr = self._global_learning_rate()
Q
Qiao Longfei 已提交
71

72 73 74 75
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
76
                raise TypeError(
77 78
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
79

80 81 82 83 84 85
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
D
dzhwinter 已提交
86
            dtype='float32' if self._dtype == None else self._dtype,
87 88
            persistable=True)

Y
yuyang18 已提交
89
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
90 91 92 93
        """
        get global decayed learning rate
        :return:
        """
94 95
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
96
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
97

Q
Qiao Longfei 已提交
98 99 100 101 102
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

103 104 105 106
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
107
        if type(param_lr) == Variable:
108
            print("returns updated param lr ", param_lr)
W
Wu Yi 已提交
109
            return param_lr
Q
qiaolongfei 已提交
110
        else:
W
Wu Yi 已提交
111
            if param_lr == 1.0:
Y
yuyang18 已提交
112
                return self._global_learning_rate()
W
Wu Yi 已提交
113
            else:
114 115
                with default_main_program()._lr_schedule_guard():
                    return self._global_learning_rate() * param_lr
116 117 118 119 120 121 122

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
123
        """
124 125
        pass

126
    def _finish_update(self, block, parameters_and_grads):
127 128 129 130 131 132 133 134
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
135
            None
136 137 138
        """
        pass

139 140 141 142 143 144
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
145 146 147 148 149 150 151 152 153
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
154 155
        if self._name is not None:
            name = self._name + "_" + name
156 157
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
158
            raise Exception("Accumulator {} already exists for parameter {}".
159
                            format(name, param.name))
160 161
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
162 163
        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
164
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
165
            persistable=True,
F
fengjiayi 已提交
166
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
167
            type=param.type,
168
            shape=shape)
Q
Qiao Longfei 已提交
169
        self.helper.set_variable_initializer(
170
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
171
        self._accumulators[name][param.name] = var
172
        return var
173 174 175 176 177 178 179 180 181 182 183

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
184 185
        if self._name is not None:
            name = self._name + "_" + name
186 187 188 189 190 191
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Y
yuyang18 已提交
192 193 194 195
    def _create_optimization_pass(self,
                                  parameters_and_grads,
                                  loss,
                                  startup_program=None):
Q
Qiao Longfei 已提交
196 197 198
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
199 200 201
          loss(Variable): the target that this optimization is for.
          parameters_and_grads(list(tuple(Variable, Variable))):
          a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
202 203

        Returns:
204 205 206 207
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
208
        """
209 210 211 212 213
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
214
        # for parameters and extend _finish_update method to add custom ops.
215 216

        # Create any accumulators
Q
Qiao Longfei 已提交
217
        program = loss.block.program
D
dzhwinter 已提交
218
        self._dtype = loss.dtype
219
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
220 221
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
222 223 224
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
225
            self._create_global_learning_rate()
226 227 228

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
229 230
                if param_and_grad[1] is None:
                    continue
W
Wu Yi 已提交
231
                with param_and_grad[0].block.program._optimized_guard(
232
                        param_and_grad), name_scope("optimizer"):
233
                    if param_and_grad[0].trainable is True:
Y
yuyang18 已提交
234 235 236
                        optimize_op = self._append_optimize_op(loss.block,
                                                               param_and_grad)
                        optimize_ops.append(optimize_op)
237 238 239

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
240
            self._finish_update(loss.block, parameters_and_grads)
241

Y
Yancey1989 已提交
242
            end = len(global_block.ops)
W
Wu Yi 已提交
243
            return global_block._slice_ops(start, end)
Q
Qiao Longfei 已提交
244

Q
Qiao Longfei 已提交
245 246
    def minimize(self,
                 loss,
247
                 startup_program=None,
Q
Qiao Longfei 已提交
248 249
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
250 251
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
252
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
253 254
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
255
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
256
                                       [error_clip_callback])
Y
Yu Yang 已提交
257

Y
Yu Yang 已提交
258 259
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

Y
Yu Yang 已提交
260 261
        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
262
        # Add regularization if any
D
dzhwinter 已提交
263 264
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
265

Y
yuyang18 已提交
266 267
        optimize_ops = self._create_optimization_pass(params_grads, loss,
                                                      startup_program)
T
typhoonzero 已提交
268
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
269 270 271


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
272 273 274 275 276 277 278 279 280 281
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
282 283 284
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
285 286 287 288

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
289
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
290
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
291 292
    """

X
Xin Pan 已提交
293
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
294
        assert learning_rate is not None
Q
Qiao Longfei 已提交
295
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
296 297 298
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
299 300
        self.type = "sgd"

301 302
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
303

Q
Qiao Longfei 已提交
304 305 306 307 308 309
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
310
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
311
            },
312
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
313 314

        return sgd_op
315 316 317


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

332
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
333 334 335

        & else:

Q
qiaolongfei 已提交
336
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
337 338 339 340 341 342

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
343 344 345
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
346 347 348 349

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
350
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
351
            optimizer.minimize(cost)
352 353 354
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
355 356 357 358 359 360
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
361 362
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
363
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
364 365 366
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
367 368
        self.type = "momentum"
        self._momentum = momentum
369
        self._use_nesterov = bool(use_nesterov)
370 371 372 373 374

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
375
            self._add_accumulator(self._velocity_acc_str, p)
376 377 378 379 380 381 382 383 384 385 386 387 388

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
389
                "LearningRate": self._create_param_lr(param_and_grad)
390 391 392 393 394
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
395
            attrs={"mu": self._momentum,
396
                   "use_nesterov": self._use_nesterov})
397 398

        return momentum_op
399 400 401


class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
422 423 424
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
425 426 427 428 429 430

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
431 432 433
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
434 435 436 437 438
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
439 440
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
441
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
442 443 444
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
445 446 447 448 449 450 451
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
452
            self._add_accumulator(self._moment_acc_str, p)
453 454 455 456 457 458 459

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

460
        # Create the adagrad optimizer op
461 462 463 464 465 466
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
467
                "LearningRate": self._create_param_lr(param_and_grad)
468 469 470 471 472 473
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
474 475 476


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
504 505 506
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
507 508 509 510 511 512 513

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

514 515 516
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
517 518
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
519 520 521 522 523

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
524
                 epsilon=1e-8,
X
Xin Pan 已提交
525 526
                 regularization=None,
                 name=None):
527 528 529 530
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
531
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
532 533 534
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
535 536 537 538 539 540 541 542 543 544
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
545 546
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
547 548 549 550 551 552 553 554 555 556 557 558
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
559 560 561 562 563 564 565 566

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
567 568 569 570 571
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

572
        # create the adam optimize op
573 574 575 576 577
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
578
                "LearningRate": self._create_param_lr(param_and_grad),
579 580
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
581 582
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
583 584 585 586 587 588 589 590 591 592 593 594 595 596
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

597
    def _finish_update(self, block, param_and_grads):
598 599 600
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
601
        main_block = block.program.global_block()
602 603 604
        for param, grad in param_and_grads:
            if grad is None:
                continue
W
Wu Yi 已提交
605
            with param.block.program._optimized_guard([param, grad]):
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
                    attrs={"scale": self._beta2})
621 622 623


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
654 655 656
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
657 658 659 660 661 662

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
663 664 665

    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
666 667 668
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
669
    _beta1_pow_acc_str = "beta1_pow_acc"
670 671 672 673 674

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
675
                 epsilon=1e-8,
X
Xin Pan 已提交
676 677
                 regularization=None,
                 name=None):
678 679 680 681
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
682
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
683 684 685
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
686 687 688 689 690 691 692 693
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
694 695
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
696 697 698 699 700 701
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
702 703 704 705 706 707 708

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
709 710
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
711 712 713 714 715 716
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
717
                "LearningRate": self._create_param_lr(param_and_grad),
718 719
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
720
                "Beta1Pow": beta1_pow_acc
721 722 723 724 725 726 727 728 729 730 731 732 733 734
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

735
    def _finish_update(self, block, parameters_and_grads):
736 737 738
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
739
        main_block = block.program.global_block()
740 741 742
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
W
Wu Yi 已提交
743
            with param.block.program._optimized_guard([param, grad]):
744 745 746 747 748 749 750
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})
751 752 753


class DecayedAdagradOptimizer(Optimizer):
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
776 777 778
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
779 780 781 782 783 784

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
785 786 787

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
788 789 790
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
791 792 793 794 795 796
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
797 798 799 800
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
801
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
802 803 804
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
835 836


837
class AdadeltaOptimizer(Optimizer):
838 839
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
840

841
    Simple Adadelta optimizer with average squared grad state and
842
    average squared update state.
843 844 845 846 847 848 849 850 851 852 853 854
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
855
        learning_rate(float): global learning rate
856 857
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
858 859 860
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
861 862 863 864 865 866 867

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
868 869 870

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
871
    """
872

873 874 875
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
876 877 878 879 880 881
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
882 883 884 885 886 887
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
888
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
889 890 891
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
892 893 894 895 896
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
897 898
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
899 900 901 902 903 904

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
905 906
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
                   "rho": self._rho})

        return adadelta_op


Q
qingqing01 已提交
933 934 935 936 937 938 939 940 941 942
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
943
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
944 945 946 947

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
948
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
949 950 951 952 953 954

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
955
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
956

957 958 959 960 961 962 963 964 965 966 967 968 969 970
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
971 972 973 974
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
975
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
976 977 978 979 980 981
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
982
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
983 984 985
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
986
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
987
            set 0.0 by default.
988 989 990 991
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
992 993 994
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1008
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1009 1010 1011 1012 1013 1014

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1015
                 centered=False,
X
Xin Pan 已提交
1016 1017
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1018
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1019 1020 1021
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1035
        self._centered = centered
Q
qingqing01 已提交
1036 1037 1038 1039 1040 1041 1042 1043

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1044
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1054 1055
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1056 1057 1058 1059 1060 1061 1062
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1063
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1064 1065 1066 1067 1068
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1069 1070
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1071 1072 1073 1074
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1075 1076
                "momentum": self._momentum,
                "centered": self._centered
Q
qingqing01 已提交
1077 1078 1079 1080 1081
            })

        return rmsprop_op


Q
qiaolongfei 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
        l1 (float):
        l2 (float):
        lr_power (float):
X
Xin Pan 已提交
1127 1128 1129
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1139 1140 1141

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1142 1143 1144 1145 1146
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1147 1148 1149 1150 1151 1152 1153
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1154
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1155 1156 1157
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
                   "lr_power": self._lr_power})

        return ftrl_op


1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1217
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1218
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1219
Ftrl = FtrlOptimizer
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
1235 1236 1237
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1238
    Examples:
Q
qiaolongfei 已提交
1239 1240 1241

      .. code-block:: python

1242
        optimizer = fluid.optimizer.Momentum()
1243 1244
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1245 1246 1247 1248 1249
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1250 1251 1252 1253

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1254 1255 1256
    """

    def __init__(self,
W
wanghaoshuang 已提交
1257
                 average_window_rate,
1258 1259
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
1260 1261 1262 1263
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
1264 1265 1266
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1267

1268
        self.params_grads = []
1269 1270
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1271
            if param.do_model_average != False:
1272 1273 1274 1275
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1276
                    stop_gradient=True)
1277
                self.params_grads.append((param, grad))
1278

1279
        for param, grad in self.params_grads:
1280 1281
            if grad is None:
                continue
W
Wu Yi 已提交
1282
            with param.block.program._optimized_guard([param, grad]):
1283
                self._append_average_accumulate_op(param)
1284

1285 1286 1287 1288
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1289
                self._add_average_apply_op(block, param_grad)
1290 1291 1292 1293 1294

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1295
                self._add_average_restore_op(block, param_grad)
1296

1297
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1298 1299 1300 1301 1302 1303
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1304
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1305
        old_num_accumulates = block._clone_variable(
1306
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1307
        num_updates = block._clone_variable(
1308 1309 1310 1311 1312 1313
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1314 1315 1316 1317
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
1318
        ops._elementwise_div(x=sum, y=tmp, out=param)
1319 1320

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1321 1322
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            })

1362 1363
    @contextmanager
    def apply(self, executor, need_restore=True):
1364 1365
        """Apply average values to parameters of current model.
        """
1366 1367 1368 1369 1370 1371
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1372 1373 1374 1375

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1376
        executor.run(self.restore_program)