loss.py 83.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import paddle

17
# TODO: define loss functions of neural network
18
from paddle import fluid, in_dynamic_mode
19
from paddle.fluid.framework import in_dygraph_mode
20 21

from .. import functional as F
22
from .layers import Layer
23

24 25
__all__ = []

L
Leo Chen 已提交
26

Z
zhiboniu 已提交
27
class BCEWithLogitsLoss(Layer):
28
    r"""
29

学渣戊's avatar
学渣戊 已提交
30
    Combine the sigmoid layer and the :ref:`api_paddle_nn_BCELoss` layer.
31 32 33 34 35 36 37

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

学渣戊's avatar
学渣戊 已提交
38
    Firstly, calculate loss function as follows:
39 40

    .. math::
41
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
42

43
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
44 45

    .. math::
46
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
47

48
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
49 50
    we reformulate the loss as follows:

51
        .. math::
52
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
53

学渣戊's avatar
学渣戊 已提交
54
    Then, if ``weight`` or ``pos_weight`` is not None, then multiply the
55 56 57 58
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

学渣戊's avatar
学渣戊 已提交
59 60
    Finally, apply reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, will return the original loss `Out`.
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shapes:
学渣戊's avatar
学渣戊 已提交
83 84 85
        - logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, `*`], N is batch_size, `*` means number of additional dimensions. The ``logit`` is usually the output of Linear layer. Available dtype is float32, float64.
        - label (Tensor): The target labels tensor. 2-D tensor with the same shape as ``logit``. The target labels which values should be numbers between 0 and 1. Available dtype is float32, float64.
        - output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``logit`` , else the shape of output is scalar.
86 87 88 89 90

    Returns:
        A callable object of BCEWithLogitsLoss.

    Examples:
学渣戊's avatar
学渣戊 已提交
91

92
        .. code-block:: python
93

94
            import paddle
学渣戊's avatar
学渣戊 已提交
95

96 97 98 99
            logit = paddle.to_tensor([5.0, 1.0, 3.0], dtype="float32")
            label = paddle.to_tensor([1.0, 0.0, 1.0], dtype="float32")
            bce_logit_loss = paddle.nn.BCEWithLogitsLoss()
            output = bce_logit_loss(logit, label)
100 101 102
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.45618814])
103 104 105

    """

106 107 108
    def __init__(
        self, weight=None, reduction='mean', pos_weight=None, name=None
    ):
109 110 111
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in BCEWithLogitsLoss should be 'sum', 'mean' or 'none', but "
112 113
                "received %s, which is not allowed." % reduction
            )
114

115
        super().__init__()
116 117 118 119 120 121 122
        self.weight = weight
        self.reduction = reduction
        self.pos_weight = pos_weight
        self.name = name

    def forward(self, logit, label):
        out = paddle.nn.functional.binary_cross_entropy_with_logits(
123 124 125 126 127 128 129
            logit,
            label,
            self.weight,
            self.reduction,
            self.pos_weight,
            self.name,
        )
130 131 132
        return out


Z
zhiboniu 已提交
133
class CrossEntropyLoss(Layer):
134
    r"""
135

136
    By default, the cross entropy loss function is implemented using softmax. This function
137
    combines the calculation of the softmax operation and the cross entropy loss function
138
    to provide a more numerically stable computing.
S
swtkiwi 已提交
139

140
    Calculate the cross entropy loss function without softmax when use_softmax=False.
141

142
    By default, calculate the mean of the result, and you can also affect
143
    the default behavior by using the reduction parameter. Please refer to the part of
144
    parameters for details.
145

146
    Can be used to calculate the softmax cross entropy loss with soft and hard labels.
147
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
148
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
149

150
    The calculation includes the following two steps.
151

152
    -  **I.softmax cross entropy**
153

154
        1. Hard label (each sample can only be assigned into one category)
155

156
        1.1. when use_softmax=True
157

158 159
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
160

161
            where, N is the number of samples and C is the number of categories.
162

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).



189
    -  **II.Weight and reduction processing**
190 191 192 193 194 195 196 197 198 199 200

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
201
                \\loss_j=loss_j*weight[label_j]
202

203

204 205 206 207 208 209 210
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

211
            2.1 if the ``reduction`` parameter is ``none``
212 213 214

            Return the previous result directly

215
            2.2 if the ``reduction`` parameter is ``sum``
216 217 218 219 220 221

            Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

222 223
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
224

225
            2.3.1. If the  ``weight``  parameter is ``None``
226 227 228 229 230 231 232 233 234 235 236 237 238

            Return the average value of the previous results

             .. math::
                \\loss=\sum_{j}loss_j/N

            where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

             .. math::
239
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
240 241 242 243 244

            2. Soft labels (soft_label = True)

             .. math::
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
245 246


247
    Parameters:
248
        weight (Tensor, optional): a manual rescaling weight given to each class.
249
            If given, has to be a Tensor of size C and the data type is float32, float64.
250
            Default is ``'None'`` .
251
        ignore_index (int64, optional): Specifies a target value that is ignored
252 253
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
254
            Default is ``-100`` .
255
        reduction (str, optional): Indicate how to average the loss by batch_size,
256 257 258 259 260
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
261
        soft_label (bool, optional): Indicate whether label is soft.
262 263
            If soft_label=False, the label is hard.  If soft_label=True, the label is soft.
            Default is ``False``.
264
        axis (int, optional): The index of dimension to perform softmax calculations.
265 266
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the number
            of dimensions of input :attr:`input`.
267
            Default is ``-1`` .
268
        use_softmax (bool, optional): Indicate whether compute softmax before cross_entropy.
269
            Default is ``True``.
270
        name (str, optional): The name of the operator. Default is ``None`` .
271 272 273 274
            For more information, please refer to :ref:`api_guide_Name` .


    Shape:
275 276
        - **input** (Tensor), the data type is float32, float64. Shape is :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes, ``k >= 1`` .

277
            Note:
278

279
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the
280 281 282
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
283

284 285
        - **label** (Tensor)

286
            1. If soft_label=False, the shape is
287 288 289
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

290
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
291
            and the sum of the labels for each sample should be 1.
292

293 294 295 296
        - **output** (Tensor), Return the softmax cross_entropy loss of ``input`` and ``label``.
          The data type is the same as input.
          If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
          If :attr:`reduction` is ``'none'``:
297

298
            1. If soft_label = False, the dimension of return value is the same with ``label`` .
299

300
            2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
301

302
    Examples:
303 304

        .. code-block:: python
305

306
            # hard labels
307 308 309 310 311
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
312
            input =  paddle.rand([N, C], dtype='float64')
313
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
314 315
            weight = paddle.rand([C], dtype='float64')

316 317 318
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
319 320 321 322 323
                                        input,
                                        label)
            print(dy_ret)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [5.34043430])
324

325
        .. code-block:: python
326 327

            # soft labels
328
            import paddle
329 330 331 332 333 334 335 336 337 338 339 340
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
341 342 343 344 345 346 347 348 349
                                                                    logits,
                                                                    labels,
                                                                    soft_label=True,
                                                                    axis=axis,
                                                                    weight=weight,
                                                                    reduction=reduction)
            print(paddle_loss_mean)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [1.11043464])
350

351 352
    """

353 354 355 356 357 358 359 360 361 362
    def __init__(
        self,
        weight=None,
        ignore_index=-100,
        reduction='mean',
        soft_label=False,
        axis=-1,
        use_softmax=True,
        name=None,
    ):
363
        super().__init__()
364 365
        self.weight = weight
        self.reduction = reduction
366
        self.ignore_index = ignore_index
367 368
        self.soft_label = soft_label
        self.axis = axis
369
        self.use_softmax = use_softmax
370
        self.name = name
371 372

    def forward(self, input, label):
373 374 375 376 377 378 379 380 381 382 383
        ret = paddle.nn.functional.cross_entropy(
            input,
            label,
            weight=self.weight,
            ignore_index=self.ignore_index,
            reduction=self.reduction,
            soft_label=self.soft_label,
            axis=self.axis,
            use_softmax=self.use_softmax,
            name=self.name,
        )
384 385

        return ret
386 387


Z
zhiboniu 已提交
388
class HSigmoidLoss(Layer):
389 390
    """
    Hierarchical Sigmoid Layer.
391

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        feature_size (int): The number of features.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight_attr (ParamAttr, optional): The parameter attribute for the learnable weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default is None.
426
        is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
            `path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
            should not be passed to its forward method. Default is False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True,
            the gradient of weight and input will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        input (Tensor): The input tensor. The shapes is [N, D], where N is batch size and D is feature size. It's data type should be float32, float64.
        label (Tensor): It's shapes is [N, 1]. It's data type should be int64.
        output (Tensor): The HSigmoid Loss of ``input`` and ``label``. Shape is [N, 1]

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')

L
Linjie Chen 已提交
445 446 447 448 449
            input = paddle.uniform([4, 3])
            # [[0.56194401  -0.22450298  -0.10741806] # random
            #  [0.36136317  0.23556745  0.88748658] # random
            #  [0.18151939  0.80947340  -0.31078976] # random
            #  [0.68886101  -0.14239830  -0.41297770]] # random
450 451 452
            label = paddle.to_tensor([0, 1, 4, 5])
            m = paddle.nn.HSigmoidLoss(3, 5)
            out = m(input, label)
L
Linjie Chen 已提交
453 454 455 456
            # [[2.42524505]
            #  [1.74917245]
            #  [3.14571381]
            #  [2.34564662]]
457 458
    """

459 460 461 462 463 464 465 466 467 468
    def __init__(
        self,
        feature_size,
        num_classes,
        weight_attr=None,
        bias_attr=None,
        is_custom=False,
        is_sparse=False,
        name=None,
    ):
469
        super().__init__()
470 471
        if (num_classes < 2) and (not is_custom):
            raise ValueError(
472 473
                "num_classes must not be less than 2 with default tree"
            )
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

        if (not is_custom) and (is_sparse):
            print("Sparse mode should not be used without custom tree")
            is_sparse = False

        self._feature_size = feature_size
        self._num_classes = num_classes
        self._is_custom = is_custom
        self._is_sparse = is_sparse

        self._weight_attr = weight_attr
        self._bias_attr = bias_attr

        self._name = name
        self._dtype = paddle.get_default_dtype()

        remote_prefetch = is_sparse
491 492 493 494
        print(
            "With sparse mode, if your models has only"
            " small parameter prefetch may cause speed down"
        )
495 496

        C = self._num_classes if is_custom else self._num_classes - 1
497 498 499 500 501 502 503 504 505
        self.weight = self.create_parameter(
            [C, self._feature_size],
            attr=self._weight_attr,
            is_bias=False,
            dtype=self._dtype,
        )
        self.bias = self.create_parameter(
            [C, 1], attr=self._bias_attr, is_bias=True, dtype=self._dtype
        )
506 507

    def forward(self, input, label, path_table=None, path_code=None):
508 509 510 511 512 513 514 515 516 517 518
        out = F.hsigmoid_loss(
            input,
            label,
            self._num_classes,
            self.weight,
            self.bias,
            path_table=path_table,
            path_code=path_code,
            is_sparse=self._is_sparse,
            name=self._name,
        )
519 520 521
        return out


Z
zhiboniu 已提交
522
class MSELoss(Layer):
523
    r"""
524 525
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.
526

527
    If :attr:`reduction` is set to ``'none'``, loss is calculated as:
528

529 530
    .. math::
        Out = (input - label)^2
531

532
    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:
533

534 535
    .. math::
        Out = \operatorname{mean}((input - label)^2)
536

537
    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:
538

539 540
    .. math::
        Out = \operatorname{sum}((input - label)^2)
541

542
    where `input` and `label` are `float32` tensors of same shape.
543

544
    Parameters:
545
        reduction (str, optional): The reduction method for the output,
546
            could be 'none' | 'mean' | 'sum'.
547 548 549
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
550
            Default is ``'mean'``.
551

B
Bai Yifan 已提交
552 553 554 555
    Shape:
        input (Tensor): Input tensor, the data type is float32 or float64
        label (Tensor): Label tensor, the data type is float32 or float64
        output (Tensor): output tensor storing the MSE loss of input and label, the data type is same as input.
556

557
    Examples:
558

559
        .. code-block:: python
560

561
            import paddle
B
Bai Yifan 已提交
562
            mse_loss = paddle.nn.loss.MSELoss()
563 564
            input = paddle.to_tensor([1.5])
            label = paddle.to_tensor([1.7])
B
Bai Yifan 已提交
565
            output = mse_loss(input, label)
566
            print(output)
B
Bai Yifan 已提交
567
            # [0.04000002]
568

569 570 571
    """

    def __init__(self, reduction='mean'):
572
        super().__init__()
573 574 575
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
576 577
                "but received {}.".format(reduction)
            )
578 579 580
        self.reduction = reduction

    def forward(self, input, label):
Z
zhiboniu 已提交
581
        if not in_dynamic_mode():
582 583 584 585 586 587
            fluid.data_feeder.check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'MSELoss'
            )
            fluid.data_feeder.check_variable_and_dtype(
                label, 'label', ['float32', 'float64'], 'MSELoss'
            )
588

589
        if in_dygraph_mode():
590
            square_out = paddle._C_ops.square(paddle.subtract(input, label))
591 592
        else:
            square_out = paddle.square(paddle.subtract(input, label))
593 594 595 596 597
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
598 599
            square_out = paddle.sum(square_out)
            return square_out
600

601
        return paddle.mean(square_out)
602 603


Z
zhiboniu 已提交
604
class L1Loss(Layer):
605
    r"""
606

607
    Construct a callable object of the ``L1Loss`` class.
608
    The L1Loss layer calculates the L1 Loss of ``input`` and ``label`` as follows.
609

610
    If `reduction` set to ``'none'``, the loss is:
L
Leo Chen 已提交
611 612

    .. math::
613
        Out = \lvert input - label\rvert
614

615
    If `reduction` set to ``'mean'``, the loss is:
616

L
Leo Chen 已提交
617
    .. math::
618
        Out = MEAN(\lvert input - label\rvert)
619

620
    If `reduction` set to ``'sum'``, the loss is:
621

L
Leo Chen 已提交
622
    .. math::
623
        Out = SUM(\lvert input - label\rvert)
L
Leo Chen 已提交
624

625

L
Leo Chen 已提交
626
    Parameters:
627
        reduction (str, optional): Indicate the reduction to apply to the loss,
L
Leo Chen 已提交
628
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
629 630 631
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
L
Leo Chen 已提交
632
            Default is ``'mean'``.
633 634 635
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
636 637 638 639 640
        - input (Tensor): The input tensor. The shapes is ``[N, *]``, where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        - label (Tensor): label. The shapes is ``[N, *]``, same shape as ``input`` . It's data type should be float32, float64, int32, int64.
        - output (Tensor): The L1 Loss of ``input`` and ``label``.
          If `reduction` is ``'none'``, the shape of output loss is ``[N, *]``, the same as ``input`` .
          If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
641

L
Leo Chen 已提交
642 643
    Examples:
        .. code-block:: python
644

L
Leo Chen 已提交
645
            import paddle
646

647 648
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
649

C
Chen Long 已提交
650
            l1_loss = paddle.nn.L1Loss()
651
            output = l1_loss(input, label)
652 653 654
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.34999999])
655

C
Chen Long 已提交
656
            l1_loss = paddle.nn.L1Loss(reduction='sum')
657
            output = l1_loss(input, label)
658 659 660
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.39999998])
661

C
Chen Long 已提交
662
            l1_loss = paddle.nn.L1Loss(reduction='none')
663
            output = l1_loss(input, label)
C
Chen Long 已提交
664
            print(output)
665 666 667
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.20000005, 0.19999999],
            #         [0.20000000, 0.79999995]])
668

L
Leo Chen 已提交
669 670
    """

671
    def __init__(self, reduction='mean', name=None):
L
Leo Chen 已提交
672 673 674
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
675 676
                "received %s, which is not allowed." % reduction
            )
677
        super().__init__()
L
Leo Chen 已提交
678
        self.reduction = reduction
679
        self.name = name
L
Leo Chen 已提交
680

681
    def forward(self, input, label):
682 683 684
        return paddle.nn.functional.l1_loss(
            input, label, self.reduction, name=self.name
        )
C
ceci3 已提交
685 686


Z
zhiboniu 已提交
687
class BCELoss(Layer):
C
ceci3 已提交
688
    """
689

C
ceci3 已提交
690
    This interface is used to construct a callable object of the ``BCELoss`` class.
691 692
    The BCELoss layer measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:
C
ceci3 已提交
693

C
ceci3 已提交
694
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
695 696

    .. math::
C
ceci3 已提交
697
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
698

C
ceci3 已提交
699
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
700 701

    .. math::
C
ceci3 已提交
702 703
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

704
    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.
C
ceci3 已提交
705

C
ceci3 已提交
706
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
707

C
ceci3 已提交
708 709
    .. math::
        Out = MEAN(Out)
710

C
ceci3 已提交
711
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
712

C
ceci3 已提交
713 714
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
715

716
    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
C
ceci3 已提交
717 718
    should be numbers between 0 and 1.

C
ceci3 已提交
719
    Parameters:
720 721
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
C
ceci3 已提交
722
            is float32, float64. Default is ``'None'``.
723
        reduction (str, optional): Indicate how to average the loss by batch_size,
C
ceci3 已提交
724
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
725
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
726
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
C
ceci3 已提交
727
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
728
            Default is ``'mean'``.
729 730 731 732
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
学渣戊's avatar
学渣戊 已提交
733 734 735
        - input (Tensor): 2-D tensor with shape: ``[N, *]``, N is batch_size, `*` means number of additional dimensions. The input ``input`` should always be the output of sigmod. Available dtype is float32, float64.
        - label (Tensor): 2-D tensor with the same shape as ``input``. The target labels which values should be numbers between 0 and 1. Available dtype is float32, float64.
        - output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is scalar.
C
ceci3 已提交
736

737
    Returns:
C
ceci3 已提交
738 739
        A callable object of BCELoss.

C
ceci3 已提交
740 741
    Examples:
        .. code-block:: python
C
ceci3 已提交
742

C
ceci3 已提交
743
            import paddle
744

745 746
            input = paddle.to_tensor([0.5, 0.6, 0.7])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
C
Chen Long 已提交
747
            bce_loss = paddle.nn.BCELoss()
748
            output = bce_loss(input, label)
749 750 751
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.65537101])
752

C
ceci3 已提交
753 754
    """

755
    def __init__(self, weight=None, reduction='mean', name=None):
C
ceci3 已提交
756 757 758
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
759 760
                "received %s, which is not allowed." % reduction
            )
C
ceci3 已提交
761

762
        super().__init__()
C
ceci3 已提交
763 764
        self.weight = weight
        self.reduction = reduction
765
        self.name = name
C
ceci3 已提交
766 767

    def forward(self, input, label):
768 769 770
        out = paddle.nn.functional.binary_cross_entropy(
            input, label, self.weight, self.reduction, self.name
        )
771
        return out
772 773


Z
zhiboniu 已提交
774
class NLLLoss(Layer):
775
    r"""
S
swtkiwi 已提交
776

777
    This class accepts input and target label and returns negative log likelihood
778
    cross error. It is useful to train a classification problem with C classes.
779

780
    The input for the loss is expected to contain log-probabilities of
781
    each classes. It has to be a Tensor of size either (batch_size, C) or
782 783 784 785
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
786

787 788 789
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
790

791 792 793 794
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
795 796

        \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
797
        l_n = - w_{y_n} x_{n,y_n}, \quad
798
        w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignore_index}\},
799 800 801 802 803

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
804 805 806 807 808 809 810 811 812 813

        \ell(x, y) =
        \left\{
            \begin{array}{lcl}
            \sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, &
            \text{if  reduction} = \text{'mean';}\\
            \sum_{n=1}^N l_n,  &
            \text{if  reduction} = \text{'sum'.}
            \end{array}
        \right.
814 815

    Parameters:
816 817
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
818
            it treated as if having all ones. the data type is
819
            float32, float64, Default is ``'None'``.
820
        ignore_index (int, optional): Specifies a target value that is ignored
821
            and does not contribute to the input gradient.
822
        reduction (str, optional): Indicate how to average the loss,
823
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. Default is ``'mean'``.
824 825 826
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
827
            Default is ``'mean'``.
828
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default is ``'None'``.
829

830
    Shape:
831
        - input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
832 833
            But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
            The data type is float32, float64.
834
        - label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
835
            The data type is int64.
836
        - output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
837 838
            If `reduction` is `'none'`, the shape is `[N, *]`.
            If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`.
839 840 841 842

    Examples:
        .. code-block:: python

843
                import paddle
844

845
                nll_loss = paddle.nn.loss.NLLLoss()
846
                log_softmax = paddle.nn.LogSoftmax(axis=1)
847

848 849 850 851 852
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                                          [0.53331435, 0.07999352, 0.8549948 ],
                                          [0.25879037, 0.39530203, 0.698465  ],
                                          [0.73427284, 0.63575995, 0.18827209],
                                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
853
                log_out = log_softmax(input)
854
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
855
                result = nll_loss(log_out, label)
856
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
857

858
    """
859

860 861 862
    def __init__(
        self, weight=None, ignore_index=-100, reduction='mean', name=None
    ):
863
        if reduction not in ['sum', 'mean', 'none']:
864
            raise ValueError(
865
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
866 867
                "'none', but received %s, which is not allowed." % reduction
            )
868
        super().__init__()
869 870 871 872
        self._weight = weight
        self._ignore_index = ignore_index
        self._reduction = reduction
        self._name = name
873

874
    def forward(self, input, label):
875 876 877 878 879 880 881 882
        return F.nll_loss(
            input,
            label,
            weight=self._weight,
            ignore_index=self._ignore_index,
            reduction=self._reduction,
            name=self._name,
        )
883 884


885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
class PoissonNLLLoss(Layer):
    r"""Generate a callable object of 'PoissonNLLLoss' to calculate the
    Poisson negative log likelihood loss between Input(input) and
    Input(label). Notes that Input(input) is the expectation of underlying
    Poisson distribution and Input(label) is the random samples from the
    Poisson distribution


    Poisson negative log likelihood loss is calculated as follows:

    .. math::
        \text{loss}(\text{input}, \text{label}) = \text{input} - \text{label} * \log(\text{label}) + \log(\text{label!})

    The last term can be approximated with Stirling formula. This approximation term is used when :attr:`full` is ``True``.
    The approximation is added when label values are more than 1 and omitted when the labels are less than or equal to 1.

    Parameters:
         log_input (bool, optional):
            Whether to the treat input tensor as log input.
            If ``True`` the loss is computed as, :math:`\exp(\text{input}) - \text{label} * \text{input}` .
            If ``False`` then loss is :math:`\text{input} - \text{label} * \log(\text{input}+\text{epsilon})` .
            Default: ``True``.
         full (bool, optional):
            Whether to compute full loss.
            If ``True``, the Stirling approximation term is added.
            If ``False``, the Stirling approximation is dropped.
            Default: ``False``.
         epsilon (float, optional):
            A small value to avoid evaluation of :math:`\log(0)` when ``log_input`` = ``False``. ``epsilon > 0``.
            Default: 1e-8.
         reduction (str, optional):
            Indicate how to reduce the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
         name (str, optional):
            Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input (Tensor): The shape of input tensor should be `(N, *)` or `(*)` where `(*)` denotes any number of extra dimensions.
        - label (Tensor): The shape of input tensor should be `(N, *)` or `(*)`, same shape as the input tensor.
        - output (Tensor): scalar if :attr:`reduction` is ``'mean'`` (default) or ``'sum'``. If :attr:`reduction` is ``'none'``, then :math:`(N, *)`, same shape as the input

    Examples:
        .. code-block:: python

            import paddle

            poisson_nll_loss = paddle.nn.loss.PoissonNLLLoss()
            input = paddle.randn([5, 2], dtype=paddle.float32)
            label = paddle.randn([5, 2], dtype=paddle.float32)
            loss = poisson_nll_loss(input, label)

    """

    def __init__(
        self,
        log_input=True,
        full=False,
        epsilon=1e-8,
        reduction="mean",
        name=None,
    ):
        if epsilon <= 0:
            raise ValueError(
                "The value of `epsilon` in PoissonNLLLoss should be positve, but received %f, which is not allowed"
                % epsilon
            )
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in PoissonNLLLoss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction
            )
        super().__init__()
        self._log_input = log_input
        self._full = full
        self._epsilon = epsilon
        self._reduction = reduction
        self._name = name

    def forward(self, input, label):
        return F.poisson_nll_loss(
            input,
            label,
            log_input=self._log_input,
            full=self._full,
            epsilon=self._epsilon,
            reduction=self._reduction,
            name=self._name,
        )


Z
zhiboniu 已提交
978
class KLDivLoss(Layer):
979
    r"""
980

981 982 983 984
    Generate a callable object of 'KLDivLoss' to calculate the
    Kullback-Leibler divergence loss between Input(X) and
    Input(Target). Notes that Input(X) is the log-probability
    and Input(Target) is the probability.
985 986 987 988 989

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

990 991 992 993 994 995 996 997 998 999
    Here :math:`x` is input and :math:`y` is label.

    If `reduction` is ``'none'``, the output loss is the same shape as the input, and the loss at each point is calculated separately. There is no reduction to the result.

    If `reduction` is ``'mean'``, the output loss is the shape of [1], and the output is the average of all losses.

    If `reduction` is ``'sum'``, the output loss is the shape of [1], and the output is the sum of all losses.

    If `reduction` is ``'batchmean'``, the output loss is the shape of [N], N is the batch size, and the output is the sum of all losses divided by the batch size.

1000
    Parameters:
1001 1002 1003 1004 1005 1006 1007
        reduction (str, optional): Indicate how to average the loss,
            the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
1008 1009

    Shape:
1010 1011 1012 1013 1014 1015

        input (Tensor): ``(N, *)``, where ``*`` means, any number of additional dimensions.

        label (Tensor): ``(N, *)``, same shape as input.

        output (Tensor): tensor with shape: [1] by default.
1016 1017 1018 1019 1020 1021

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn
1022

1023
            shape = (5, 20)
1024 1025
            x = paddle.uniform(shape, min=-10, max=10).astype('float32')
            target = paddle.uniform(shape, min=-10, max=10).astype('float32')
1026

L
LielinJiang 已提交
1027
            # 'batchmean' reduction, loss shape will be [1]
1028
            kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
1029
            pred_loss = kldiv_criterion(x, target)
L
LielinJiang 已提交
1030
            # shape=[1]
1031

1032 1033
            # 'mean' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='mean')
1034
            pred_loss = kldiv_criterion(x, target)
1035 1036 1037 1038
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='sum')
1039
            pred_loss = kldiv_criterion(x, target)
1040 1041 1042 1043
            # shape=[1]

            # 'none' reduction, loss shape is same with X shape
            kldiv_criterion = nn.KLDivLoss(reduction='none')
1044
            pred_loss = kldiv_criterion(x, target)
1045
            # shape=[5, 20]
1046

1047 1048 1049
    """

    def __init__(self, reduction='mean'):
1050
        super().__init__()
1051 1052 1053
        self.reduction = reduction

    def forward(self, input, label):
L
LielinJiang 已提交
1054
        out = F.kl_div(input, label, self.reduction)
1055 1056 1057
        return out


Z
zhiboniu 已提交
1058
class MarginRankingLoss(Layer):
1059
    r"""
1060 1061

    This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
1062
    The MarginRankingLoss layer calculates the margin rank loss between the input, other and label
1063 1064
    , use the math function as follows.

1065
    .. math::
1066
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1085
    Shape:
1086

N
Noel 已提交
1087 1088
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

1089
        other: N-D Tensor, `other` have the same shape and dtype as `input`.
N
Noel 已提交
1090

1091
        label: N-D Tensor, label have the same shape and dtype as `input`.
N
Noel 已提交
1092

1093
        output: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1094 1095 1096 1097 1098 1099 1100 1101

    Returns:
        A callable object of MarginRankingLoss.

    Examples:

        .. code-block:: python

1102 1103
            import paddle

C
Chen Long 已提交
1104 1105
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype="float32")
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype="float32")
Z
Zhong Hui 已提交
1106
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype="float32")
1107
            margin_rank_loss = paddle.nn.MarginRankingLoss()
1108
            loss = margin_rank_loss(input, other, label)
1109 1110 1111

            print(loss)
            # [0.75]
1112 1113 1114 1115 1116
    """

    def __init__(self, margin=0.0, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
1117
                "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
1118 1119
                "received %s, which is not allowed." % reduction
            )
1120
        super().__init__()
1121 1122 1123 1124
        self.margin = margin
        self.reduction = reduction
        self.name = name

1125
    def forward(self, input, other, label):
1126 1127 1128
        out = paddle.nn.functional.margin_ranking_loss(
            input, other, label, self.margin, self.reduction, self.name
        )
1129
        return out
1130 1131


Z
zhiboniu 已提交
1132
class CTCLoss(Layer):
1133
    r"""
1134

1135 1136 1137
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1138 1139 1140 1141 1142 1143 1144
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.

    Shape:
1145 1146 1147 1148 1149
        - log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
        - labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        - input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        - label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        - norm_by_times (bool, optional): Whether to normalize the gradients by the number of time-step, which is also the sequence's length. There is no need to normalize the gradients if reduction mode is 'mean'. Default: False.
1150 1151 1152

    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

1170
            log_probs = paddle.to_tensor([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
1183 1184 1185 1186 1187
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]], dtype="float32")
            labels = paddle.to_tensor([[1, 2, 2],
                            [1, 2, 2]], dtype="int32")
            input_lengths = paddle.to_tensor([5, 5], dtype="int64")
            label_lengths = paddle.to_tensor([3, 3], dtype="int64")
1188

1189 1190
            loss = paddle.nn.CTCLoss(blank=0, reduction='none')(log_probs, labels,
                input_lengths,
1191
                label_lengths)
1192 1193 1194
            print(loss)
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.91798496, 2.90765190])
1195

1196 1197
            loss = paddle.nn.CTCLoss(blank=0, reduction='mean')(log_probs, labels,
                input_lengths,
1198
                label_lengths)
1199 1200 1201
            print(loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.13760614])
1202 1203 1204
    """

    def __init__(self, blank=0, reduction='mean'):
1205
        super().__init__()
1206 1207 1208
        self.blank = blank
        self.reduction = reduction

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    def forward(
        self,
        log_probs,
        labels,
        input_lengths,
        label_lengths,
        norm_by_times=False,
    ):
        return paddle.nn.functional.ctc_loss(
            log_probs,
            labels,
            input_lengths,
            label_lengths,
            self.blank,
            self.reduction,
            norm_by_times=norm_by_times,
        )
1226 1227


H
Hui Zhang 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
class RNNTLoss(Layer):
    """
    Parameters:
        blank (int, optional): blank label. Default: 0.
        fastemit_lambda (float, optional): Regularization parameter for FastEmit (https://arxiv.org/pdf/2010.11148.pdf)
        reduction (string, optional): Specifies the reduction to apply to the output:
            'none' | 'mean' | 'sum'. 'none': no reduction will be applied,
            'mean': the output losses will be divided by the target lengths and
            then the mean over the batch is taken. Default: 'mean'

    Shape:
        input: logprob Tensor of (batch x seqLength x labelLength x outputDim) containing output from network
        label: 2 dimensional (batch, labelLength) Tensor containing all the targets of the batch with zero padded
        input_lengths: Tensor of size (batch) containing size of each output sequence from the network
        label_lengths: Tensor of (batch) containing label length of each example

    Returns:
     Tensor, The RNN-T loss between ``logprobs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``logprobs``.

    Examples:
        .. code-block:: python

            # declarative mode
            import numpy as np
            import paddle
            from paddle.nn import RNNTLoss

            fn = RNNTLoss(reduction='sum', fastemit_lambda=0.0)

            acts = np.array([[[[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.6, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.8, 0.1]],
                            [[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.1, 0.1],
                            [0.7, 0.1, 0.2, 0.1, 0.1]]]])
            labels = [[1, 2]]

            acts = paddle.to_tensor(acts, stop_gradient=False)

            lengths = [acts.shape[1]] * acts.shape[0]
            label_lengths = [len(l) for l in labels]
            labels = paddle.to_tensor(labels, paddle.int32)
            lengths = paddle.to_tensor(lengths, paddle.int32)
            label_lengths = paddle.to_tensor(label_lengths, paddle.int32)

            costs = fn(acts, labels, lengths, label_lengths)
            print(costs)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=False,
            #        [4.49566677])
    """

    def __init__(
        self, blank=0, fastemit_lambda=0.001, reduction='mean', name=None
    ):
        super().__init__()
        self.blank = blank
        self.reduction = reduction
        self.fastemit_lambda = fastemit_lambda
        self.name = name

    def forward(self, input, label, input_lengths, label_lengths):
        return paddle.nn.functional.rnnt_loss(
            input,
            label,
            input_lengths,
            label_lengths,
            blank=self.blank,
            fastemit_lambda=self.fastemit_lambda,
            reduction=self.reduction,
            name=self.name,
        )


Z
zhiboniu 已提交
1301
class SmoothL1Loss(Layer):
1302
    r"""
1303 1304 1305 1306 1307 1308 1309
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1310
        loss(x, y) = \frac{1}{n}\sum_{i}z_i
1311

1312
    where :math:`z_i` is given by:
1313 1314 1315

    .. math::

1316
        \mathop{z_i} = \left\{\begin{array}{rcl}
1317 1318 1319
                0.5(x_i - y_i)^2 & & {if |x_i - y_i| < \delta} \\
                \delta * |x_i - y_i| - 0.5 * \delta^2 & & {otherwise}
            \end{array} \right.
1320 1321 1322 1323 1324 1325 1326 1327

    Parameters:
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1328
        delta (float, optional): Specifies the hyperparameter :math:`\delta` to be used.
1329 1330
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
1331 1332
            negative/zero values. Default value is :math:`1.0`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1333 1334 1335

    Call Parameters:

1336 1337
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C),
        where C is number of classes, and if shape is more than 2D,
1338 1339
        this is (N, C, D1, D2,..., Dk), k >= 1.

1340
        label (Tensor): Label tensor, the data type is float32 or float64.
1341
        The shape of label is the same as the shape of input.
1342

1343 1344
    Returns:
        Tensor, The tensor storing the smooth_l1_loss of input and label.
1345 1346 1347 1348 1349

    Examples:
        .. code-block:: python

            import paddle
1350 1351
            input = paddle.rand([3, 3]).astype("float32")
            label = paddle.rand([3, 3]).astype("float32")
1352 1353
            loss = paddle.nn.SmoothL1Loss()
            output = loss(input, label)
G
Guanghua Yu 已提交
1354
            print(output)
1355
            # [0.049606]
1356 1357 1358
    """

    def __init__(self, reduction='mean', delta=1.0, name=None):
1359
        super().__init__()
1360 1361 1362 1363 1364
        self.reduction = reduction
        self.delta = delta
        self.name = name

    def forward(self, input, label):
1365 1366 1367 1368 1369 1370 1371
        return F.smooth_l1_loss(
            input,
            label,
            reduction=self.reduction,
            delta=self.delta,
            name=self.name,
        )
1372 1373


Y
yangguohao 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
class MultiLabelSoftMarginLoss(Layer):
    r"""Creates a criterion that optimizes a multi-class multi-classification
        hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
        and output :math:`y` (which is a 2D `Tensor` of target class indices).
        For each sample in the mini-batch:

        .. math::
            \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

        where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
        :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
        :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
        and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
        :math:`y` and :math:`x` must have the same size.

        Parameters:
1390
            weight (Tensor,optional): a manual rescaling weight given to each class.
Y
yangguohao 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
                    If given, has to be a Tensor of size C and the data type is float32, float64.
                    Default is ``'None'`` .
            reduction (str, optional): Indicate how to average the loss by batch_size,
                    the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                    If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                    If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                    Default: ``'mean'``
            name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.

        Call parameters:
            input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
            label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64. The shape of label is the same as the shape of input.

        Shape:
            input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
            label: N-D Tensor, same shape as the input.
            output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

        Returns:
            A callable object of MultiLabelSoftMarginLoss.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.nn as nn

                input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
                label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

                multi_label_soft_margin_loss = nn.MultiLabelSoftMarginLoss(reduction='none')
                loss = multi_label_soft_margin_loss(input, label)
                print(loss)
                # Tensor([3.49625897, 0.71111226, 0.43989015])

                multi_label_soft_margin_loss = nn.MultiLabelSoftMarginLoss(reduction='mean')
                loss = multi_label_soft_margin_loss(input, label)
                print(loss)
                # Tensor([1.54908717])
        """

    def __init__(self, weight=None, reduction="mean", name=None):
1435
        super().__init__()
Y
yangguohao 已提交
1436 1437 1438
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MultiLabelSoftMarginloss' should be 'sum', 'mean' or 'none', "
1439 1440
                "but received {}.".format(reduction)
            )
Y
yangguohao 已提交
1441 1442 1443 1444 1445
        self.weight = weight
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1446 1447 1448 1449 1450 1451 1452
        return F.multi_label_soft_margin_loss(
            input,
            label,
            weight=self.weight,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1453 1454


1455 1456
class HingeEmbeddingLoss(Layer):
    r"""
1457
    Create a callable object of `HingeEmbeddingLoss` to calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:

        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:

        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.

        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64. The shape of label is the same as the shape of input.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:

        Tensor, The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            hinge_embedding_loss = nn.HingeEmbeddingLoss(margin=1.0, reduction='none')
            loss = hinge_embedding_loss(input, label)
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            hinge_embedding_loss = nn.HingeEmbeddingLoss(margin=1.0, reduction='mean')
            loss = hinge_embedding_loss(input, label)
            print(loss)
            # Tensor([0.22222222])
    """

    def __init__(self, margin=1.0, reduction="mean", name=None):
1536
        super().__init__()
1537 1538 1539 1540 1541
        self.margin = margin
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1542 1543 1544 1545 1546 1547 1548
        return F.hinge_embedding_loss(
            input,
            label,
            reduction=self.reduction,
            margin=self.margin,
            name=self.name,
        )
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584


class CosineEmbeddingLoss(Layer):
    r"""
    This interface is used to construct a callable object of the ``CosineEmbeddingLoss`` class.
    The CosineEmbeddingLoss layer measures the cosine_embedding loss between input predictions ``input1``, ``input2``
    and target labels ``label`` with values 1 or 0. This is used for measuring whether two inputs are similar or
    dissimilar and is typically used for learning nonlinear embeddings or semi-supervised learning.
    The cosine embedding loss can be described as:

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

    Parameters:
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
            :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
            default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
            ``'mean'``: the sum of the output will be divided by the number of
            elements in the output, ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
1585
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
1586
                         Available dtypes are float32, float64.
1587
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
1588
                         Available dtypes are float32, float64.
1589
        label (Tensor): tensor with shape: [N] or [1], 'N' means the length of input array. The target labels values should be -1 or 1.
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
                         Available dtypes are int32, int64, float32, float64.
        output (Tensor): Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
                         If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
                         If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='mean')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.21155193]

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='sum')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.42310387]

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='none')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.42310387, 0.        ]

    """

    def __init__(self, margin=0, reduction='mean', name=None):
        if margin > 1 or margin < -1:
            raise ValueError(
                "The value of 'margin' should be in the interval of [-1, 1], but received %f, which is not allowed."
1622 1623
                % margin
            )
1624 1625 1626
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' should be 'sum', 'mean' or "
1627 1628
                "'none', but received %s, which is not allowed." % reduction
            )
1629
        super().__init__()
1630 1631 1632 1633 1634
        self.margin = margin
        self.reduction = reduction
        self.name = name

    def forward(self, input1, input2, label):
1635 1636 1637 1638 1639 1640 1641 1642
        return F.cosine_embedding_loss(
            input1,
            input2,
            label,
            margin=self.margin,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659


class TripletMarginWithDistanceLoss(Layer):
    r"""
    Creates a criterion that measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}

    where the default `distance_function`
1660

Y
yangguohao 已提交
1661
    .. math::
1662
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_2
1663 1664

    or user can define their own distance function. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
1665 1666 1667 1668 1669
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:
        distance_function (Callable, Optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
1670

Y
yangguohao 已提交
1671 1672 1673 1674
        margin (float, Optional):Default: :math:`1`.A nonnegative margin representing the minimum difference
                between the positive and negative distances required for the loss to be 0. Larger
                margins penalize cases where the negative examples are not distant enough from the
                anchors, relative to the positives.
1675

Y
yangguohao 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
        swap (bool, Optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, Optional):Indicate how to average the loss by batch_size.
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1687

Y
yangguohao 已提交
1688 1689
    Shapes:
        input (Tensor):Input tensor, the data type is float32 or float64.
1690
    the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
Y
yangguohao 已提交
1691 1692

        positive (Tensor):Positive tensor, the data type is float32 or float64.
1693
    The shape of label is the same as the shape of input.
Y
yangguohao 已提交
1694 1695

        negative (Tensor):Negative tensor, the data type is float32 or float64.
1696
    The shape of label is the same as the shape of input.
1697

1698
        output(Tensor): The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.
Y
yangguohao 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

    Return:
        A callable object of TripletMarginWithDistanceLoss

    Examples:
        .. code-block:: python

            import paddle
            from paddle.nn import TripletMarginWithDistanceLoss

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            triplet_margin_with_distance_loss = TripletMarginWithDistanceLoss(reduction='none')
            loss = triplet_margin_with_distance_loss(input, positive, negative,)
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])

            triplet_margin_with_distance_loss = TripletMarginWithDistanceLoss(reduction='mean')
            loss = triplet_margin_with_distance_loss(input, positive, negative,)
            print(loss)
            # Tensor([0.19165580])

    """

1724 1725 1726 1727 1728 1729 1730 1731
    def __init__(
        self,
        distance_function=None,
        margin=1.0,
        swap=False,
        reduction: str = 'mean',
        name=None,
    ):
1732
        super().__init__()
Y
yangguohao 已提交
1733 1734 1735 1736
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in TripletMarginWithDistanceLoss "
                "should be 'sum', 'mean' or 'none', but "
1737 1738
                "received %s, which is not allowed." % reduction
            )
Y
yangguohao 已提交
1739 1740 1741 1742 1743 1744 1745
        self.margin = margin
        self.swap = swap
        self.reduction = reduction
        self.distance_function = distance_function
        self.name = name

    def forward(self, input, positive, negative):
1746 1747 1748 1749 1750 1751 1752 1753 1754
        return F.triplet_margin_with_distance_loss(
            input,
            positive,
            negative,
            margin=self.margin,
            swap=self.swap,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823


class TripletMarginLoss(Layer):
    r"""
    Creates a criterion that measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, *)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        margin (float, Optional):Default: :math:`1`.

        p (int, Optional):The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional):Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool, Optional):The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.

        reduction (str, Optional):Indicate how to average the loss by batch_size.
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``

        name (str,Optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:
        input (Tensor):Input tensor, the data type is float32 or float64.
        the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
        The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
        The shape of label is the same as the shape of input.

    Returns:
        Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            triplet_margin_loss = paddle.nn.TripletMarginLoss(reduction='none')
            loss = triplet_margin_loss(input, positive, negative)
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])
1824

Y
yangguohao 已提交
1825 1826 1827 1828 1829 1830 1831
            triplet_margin_loss = paddle.nn.TripletMarginLoss(margin=1.0, swap=True, reduction='mean', )
            loss = triplet_margin_loss(input, positive, negative,)
            print(loss)
            # Tensor([0.19165580])

    """

1832 1833 1834 1835 1836 1837 1838 1839 1840
    def __init__(
        self,
        margin=1.0,
        p=2.0,
        epsilon=1e-6,
        swap=False,
        reduction='mean',
        name=None,
    ):
1841
        super().__init__()
Y
yangguohao 已提交
1842 1843 1844
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in TripletMarginLoss should be 'sum', 'mean' or 'none', but "
1845 1846
                "received %s, which is not allowed." % reduction
            )
Y
yangguohao 已提交
1847 1848 1849 1850 1851 1852 1853 1854
        self.margin = margin
        self.p = p
        self.epsilon = epsilon
        self.swap = swap
        self.reduction = reduction
        self.name = name

    def forward(self, input, positive, negative):
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
        return F.triplet_margin_loss(
            input,
            positive,
            negative,
            margin=self.margin,
            p=self.p,
            epsilon=self.epsilon,
            swap=self.swap,
            reduction=self.reduction,
            name=self.name,
        )
1866 1867


Y
yangguohao 已提交
1868 1869
class MultiMarginLoss(Layer):
    r"""Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between
1870
    input :math:`input` and label :math:`label`:
Y
yangguohao 已提交
1871

1872 1873
    For i-th mini-batch sample, the loss in terms of the 1D input :math:`input_i` and scalar
    output :math:`label_i` is:
Y
yangguohao 已提交
1874

1875 1876
    .. math::
        \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, \text{margin} - input_i[label_i] + input_i[j])^p}{\text{C}}
Y
yangguohao 已提交
1877

1878
    where :math:`0 \leq j \leq \text{C}-1`, :math:`0 \leq i \leq \text{N}-1` and :math:`j \neq label_i`.
Y
yangguohao 已提交
1879

1880 1881
    Optionally, you can give non-equal weighting on the classes by passing
    a 1D :attr:`weight` tensor into the constructor.
Y
yangguohao 已提交
1882

1883
    The loss function for i-th sample then becomes:
Y
yangguohao 已提交
1884

1885 1886
    .. math::
        \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, weight[label_i] * (\text{margin} - input_i[label_i] + input_i[j]))^p}{\text{C}}
Y
yangguohao 已提交
1887 1888


1889
    Parameters:
Y
yangguohao 已提交
1890

1891
        p (int, Optional):The norm degree for pairwise distance. Default: :math:`1`.
Y
yangguohao 已提交
1892

1893
        margin (float, Optional):Default: :math:`1`.
Y
yangguohao 已提交
1894

1895 1896 1897
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of shape (C,) and the data type is float32, float64.
                Default is ``'None'`` .
Y
yangguohao 已提交
1898

1899 1900 1901 1902 1903 1904
        reduction (str, optional): Indicate how to calculate the loss by batch_size,
                the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
Y
yangguohao 已提交
1905

1906 1907
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
1908

1909 1910
    Call parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
Y
yangguohao 已提交
1911

1912
        label (Tensor): Label tensor, 0<= label < input.shape[1], the data type is int32 or int64.
Y
yangguohao 已提交
1913

1914 1915
    Shape:
        input: 2-D Tensor, the shape is [N, C], N is batch size and `C` means number of classes.
Y
yangguohao 已提交
1916

1917
        label: 1-D Tensor, the shape is [N,].
Y
yangguohao 已提交
1918

1919
        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the label.
Y
yangguohao 已提交
1920

1921 1922
    Returns:
        A callable object of MultiMarginLoss.
Y
yangguohao 已提交
1923

1924 1925
    Examples:
        .. code-block:: python
Y
yangguohao 已提交
1926

1927 1928
            import paddle
            import paddle.nn as nn
Y
yangguohao 已提交
1929

1930 1931
            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            label = paddle.to_tensor([0, 1, 2], dtype=paddle.int32)
Y
yangguohao 已提交
1932

1933 1934 1935 1936
            multi_margin_loss = nn.MultiMarginLoss(reduction='mean')
            loss = multi_margin_loss(input, label)
            print(loss)
    """
Y
yangguohao 已提交
1937

1938 1939 1940 1941 1942 1943 1944 1945
    def __init__(
        self,
        p: int = 1,
        margin: float = 1.0,
        weight=None,
        reduction="mean",
        name=None,
    ):
1946
        super().__init__()
Y
yangguohao 已提交
1947 1948 1949
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MultiMarginLoss' should be 'sum', 'mean' or 'none', "
1950 1951
                "but received {}.".format(reduction)
            )
Y
yangguohao 已提交
1952 1953 1954 1955 1956 1957 1958
        self.p = p
        self.margin = margin
        self.weight = weight
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1959 1960 1961 1962 1963 1964 1965 1966 1967
        return F.multi_margin_loss(
            input,
            label,
            p=self.p,
            margin=self.margin,
            weight=self.weight,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1968 1969


1970 1971
class SoftMarginLoss(Layer):
    r"""
1972

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
    Creates a criterion that measures a two-class soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shapes:
1991 1992 1993 1994 1995 1996 1997 1998
        - Input (Tensor): The input tensor with shape: ``[N, *]``,
          N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf
          Available dtype is float32, float64.
        - Label (Tensor): The target labels tensor with the same shape as
          ``input``. The target labels which values should be numbers -1 or 1.
          Available dtype is int32, int64, float32, float64.
        - Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
          same as ``input`` , else the shape of output is [1].
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

    Returns:
        A callable object of SoftMarginLoss.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            soft_margin_loss = paddle.nn.SoftMarginLoss()
            output = soft_margin_loss(input, label)
2012 2013 2014
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.64022040])
2015

2016 2017
            input_np = paddle.uniform(shape=(5, 5), min=0.1, max=0.8, dtype="float64")
            label_np = paddle.randint(high=2, shape=(5, 5), dtype="int64")
2018 2019 2020 2021 2022
            label_np[label_np==0]=-1
            input = paddle.to_tensor(input_np)
            label = paddle.to_tensor(label_np)
            soft_margin_loss = paddle.nn.SoftMarginLoss(reduction='none')
            output = soft_margin_loss(input, label)
2023 2024 2025 2026 2027 2028 2029
            print(output)
            # Tensor(shape=[5, 5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [[0.61739663, 0.51405668, 1.09346100, 0.42385561, 0.91602303],
            #         [0.76997038, 1.01977148, 0.98971722, 1.13976032, 0.88152088],
            #         [0.55476735, 1.10505384, 0.89923519, 0.45018155, 1.06587511],
            #         [0.37998142, 0.48067240, 0.47791212, 0.55664053, 0.98581399],
            #         [0.78571653, 0.59319711, 0.39701841, 0.76172109, 0.83781742]])
2030

2031 2032 2033 2034 2035 2036
    """

    def __init__(self, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in SoftMarginLoss should be 'sum', 'mean' or 'none', but "
2037 2038
                "received %s, which is not allowed." % reduction
            )
2039

2040
        super().__init__()
2041 2042 2043 2044
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
2045 2046 2047
        out = paddle.nn.functional.soft_margin_loss(
            input, label, self.reduction, self.name
        )
2048
        return out