loss.py 43.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define loss functions of neural network
16
import numpy as np
L
Leo Chen 已提交
17
import paddle.fluid as fluid
18
import paddle.fluid.core as core
19
import paddle
20
from .. import functional as F
21
from paddle.fluid.framework import core, in_dygraph_mode, _varbase_creator
22

L
Leo Chen 已提交
23
__all__ = [
24
    'BCEWithLogitsLoss',
25
    'CrossEntropyLoss',
26
    'HSigmoidLoss',
27
    'MSELoss',
L
Leo Chen 已提交
28
    'L1Loss',
29
    'NLLLoss',
30
    'BCELoss',
31
    'KLDivLoss',
32
    'MarginRankingLoss',
33
    'CTCLoss',
34
    'SmoothL1Loss',
L
Leo Chen 已提交
35 36 37
]


38
class BCEWithLogitsLoss(fluid.dygraph.Layer):
39
    r"""
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    This operator combines the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
    Also, we can see it as the combine of ``sigmoid_cross_entropy_with_logits``
    layer and some reduce operations.

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

    First this operator calculate loss function as follows:

    .. math::
           Out = -Labels * \\log(\\sigma(Logit)) - (1 - Labels) * \\log(1 - \\sigma(Logit))

    We know that :math:`\\sigma(Logit) = \\frac{1}{1 + \\e^{-Logit}}`. By substituting this we get:

    .. math::
           Out = Logit - Logit * Labels + \\log(1 + \\e^{-Logit})

    For stability and to prevent overflow of :math:`\\e^{-Logit}` when Logit < 0,
    we reformulate the loss as follows:

    .. math::
           Out = \\max(Logit, 0) - Logit * Labels + \\log(1 + \\e^{-\|Logit\|})

    Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shapes:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``logit`` , else the shape of output is scalar.

    Returns:
        A callable object of BCEWithLogitsLoss.

    Examples:

        .. code-block:: python
            import paddle
            paddle.disable_static()
            logit = paddle.to_tensor([5.0, 1.0, 3.0], dtype="float32")
            label = paddle.to_tensor([1.0, 0.0, 1.0], dtype="float32")
            bce_logit_loss = paddle.nn.BCEWithLogitsLoss()
            output = bce_logit_loss(logit, label)
            print(output.numpy())  # [0.45618808]

    """

    def __init__(self,
                 weight=None,
                 reduction='mean',
                 pos_weight=None,
                 name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in BCEWithLogitsLoss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCEWithLogitsLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
        self.pos_weight = pos_weight
        self.name = name

    def forward(self, logit, label):
        out = paddle.nn.functional.binary_cross_entropy_with_logits(
            logit, label, self.weight, self.reduction, self.pos_weight,
            self.name)
        return out


143
class CrossEntropyLoss(fluid.dygraph.Layer):
144
    r"""
145 146
	:alias_main: paddle.nn.CrossEntropyLoss
	:alias: paddle.nn.CrossEntropyLoss,paddle.nn.layer.CrossEntropyLoss,paddle.nn.layer.loss.CrossEntropyLoss
S
swtkiwi 已提交
147

148 149
    This operator implements the cross entropy loss function. This OP combines ``LogSoftmax``,
    and ``NLLLoss`` together.
150

151 152
    It is useful when training a classification problem with ``C`` classes.
    If provided, the optional argument ``weight`` should be a 1D Variable assigning
153 154 155
    weight to each of the classes.

    For predictions label, and target label, the loss is calculated as follows.
156

157 158 159 160 161
    .. math::

        loss_j =  -\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right), j = 1,..., K

162 163
    If weight is not ``None``:

164 165 166 167 168 169
    .. math::

        loss_j =  \\text{weight[class]}(-\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right)), j = 1,..., K

    Parameters:
170 171
        input (Variable): Input tensor, the data type is float32, float64. Shape is
	    (N, C), where C is number of classes, and if shape is more than 2D, this
172 173
	    is (N, C, D1, D2,..., Dk), k >= 1.
        label (Variable): Label tensor, the data type is int64. Shape is (N), where each
174 175
	    value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
	    (N, D1, D2,..., Dk), k >= 1.
176
        weight (Variable, optional): Weight tensor, a manual rescaling weight given
177 178
            to each class and the shape is (C). It has the same dimensions as class
	    number and the data type is float32, float64. Default is ``'None'``.
179 180 181 182 183 184
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
185 186
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient. Default is ``-100``.
187

188 189
    Returns:
        The tensor variable storing the cross_entropy_loss of input and label.
190

191
    Return type: Variable.
192

193 194 195 196 197 198 199 200
    Examples:
        .. code-block:: python

            # declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np

201 202 203
            input = fluid.data(name='input', shape=[5, 100], dtype='float64')
            label = fluid.data(name='label', shape=[5], dtype='int64')
            weight = fluid.data(name='weight', shape=[100], dtype='float64')
204
            ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
205
            output = ce_loss(input, label)
206 207 208
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
209 210 211
            input_data = np.random.random([5, 100]).astype("float64")
            label_data = np.random.randint(0, 100, size=(5)).astype(np.int64)
            weight_data = np.random.random([100]).astype("float64")
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
            output = exe.run(fluid.default_main_program(),
                        feed={"input": input_data, "label": label_data,"weight": weight_data},
                        fetch_list=[output],
                        return_numpy=True)
            print(output)

            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                weight = dg.to_variable(weight_data)
                ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
                output = ce_loss(input, label)
                print(output.numpy())
    """

229
    def __init__(self, weight=None, ignore_index=-100, reduction='mean'):
230 231 232
        super(CrossEntropyLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
233
        self.ignore_index = ignore_index
234 235 236

    def forward(self, input, label):
        fluid.data_feeder.check_variable_and_dtype(
237 238 239
            input, 'input', ['float32', 'float64'], 'cross_entropy_loss')
        fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                                   'cross_entropy_loss')
240 241 242

        if self.reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
243 244 245 246
                "The value of 'reduction' in cross_entropy_loss should be 'sum', 'mean' or"
                " 'none', but received %s, which is not allowed." %
                self.reduction)

247 248 249
        return paddle.nn.functional.cross_entropy(
            input,
            label,
250
            weight=self.weight,
251 252
            ignore_index=self.ignore_index,
            reduction=self.reduction)
253 254


255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
class HSigmoidLoss(fluid.dygraph.Layer):
    """
    Hierarchical Sigmoid Layer.
    
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        feature_size (int): The number of features.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight_attr (ParamAttr, optional): The parameter attribute for the learnable weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default is None.
        is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and 
            `path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
            should not be passed to its forward method. Default is False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True,
            the gradient of weight and input will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        input (Tensor): The input tensor. The shapes is [N, D], where N is batch size and D is feature size. It's data type should be float32, float64.
        label (Tensor): It's shapes is [N, 1]. It's data type should be int64.
        output (Tensor): The HSigmoid Loss of ``input`` and ``label``. Shape is [N, 1]

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')

            input = paddle.uniform([2, 3])
            # [[-0.2820413   0.9528898  -0.81638825] # random
            #  [-0.6733154  -0.33866507  0.25770962]] # random
            label = paddle.to_tensor([0, 1, 4, 5])
            m = paddle.nn.HSigmoidLoss(3, 5)
            out = m(input, label)
            # [[2.4543471]
            #  [1.9359267]]
    """

    def __init__(self,
                 feature_size,
                 num_classes,
                 weight_attr=None,
                 bias_attr=None,
                 is_custom=False,
                 is_sparse=False,
                 name=None):
        super(HSigmoidLoss, self).__init__()
        if (num_classes < 2) and (not is_custom):
            raise ValueError(
                "num_classes must not be less than 2 with default tree")

        if (not is_custom) and (is_sparse):
            print("Sparse mode should not be used without custom tree")
            is_sparse = False

        self._feature_size = feature_size
        self._num_classes = num_classes
        self._is_custom = is_custom
        self._is_sparse = is_sparse

        self._weight_attr = weight_attr
        self._bias_attr = bias_attr

        self._name = name
        self._dtype = paddle.get_default_dtype()

        remote_prefetch = is_sparse
        print("With sparse mode, if your models has only"
              " small parameter prefetch may cause speed down")

        C = self._num_classes if is_custom else self._num_classes - 1
        self.weight = self.create_parameter(
            [C, self._feature_size],
            attr=self._weight_attr,
            is_bias=False,
            dtype=self._dtype)
        self.bias = self.create_parameter(
            [C, 1], attr=self._bias_attr, is_bias=True, dtype=self._dtype)

    def forward(self, input, label, path_table=None, path_code=None):
        out = F.hsigmoid_loss(
            input,
            label,
            self._num_classes,
            self.weight,
            self.bias,
            path_table=path_table,
            path_code=path_code,
            is_sparse=self._is_sparse,
            name=self._name)
        return out


377
class MSELoss(fluid.dygraph.layers.Layer):
378
    r"""
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

397
    where `input` and `label` are `float32` tensors of same shape.
398 399 400 401

    Parameters:
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
402 403 404
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
405 406
            Default is ``'mean'``.

B
Bai Yifan 已提交
407 408 409 410
    Shape:
        input (Tensor): Input tensor, the data type is float32 or float64
        label (Tensor): Label tensor, the data type is float32 or float64
        output (Tensor): output tensor storing the MSE loss of input and label, the data type is same as input.
411 412 413

    Examples:
        .. code-block:: python
414 415 416 417 418 419 420

            import numpy as np
            import paddle

            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

B
Bai Yifan 已提交
421 422 423 424
            mse_loss = paddle.nn.loss.MSELoss()
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            output = mse_loss(input, label)
425
            print(output)
B
Bai Yifan 已提交
426
            # [0.04000002]
427 428 429 430 431 432 433 434 435 436 437 438
    """

    def __init__(self, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
                "but received {}.".format(reduction))
        self.reduction = reduction

    def forward(self, input, label):
        if not fluid.framework.in_dygraph_mode():
B
Bai Yifan 已提交
439 440 441 442
            fluid.data_feeder.check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'MSELoss')
            fluid.data_feeder.check_variable_and_dtype(
                label, 'label', ['float32', 'float64'], 'MSELoss')
443 444 445 446 447 448 449 450 451 452 453 454 455

        square_out = fluid.layers.square(
            fluid.layers.elementwise_sub(input, label))
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
            reduce_op = 'reduce_sum'

        return getattr(fluid.layers, reduce_op)(square_out)


L
Leo Chen 已提交
456
class L1Loss(fluid.dygraph.Layer):
457
    r"""
L
Leo Chen 已提交
458
    This interface is used to construct a callable object of the ``L1Loss`` class.
459
    The L1Loss layer calculates the L1 Loss of ``input`` and ``label`` as follows.
460

461
     If `reduction` set to ``'none'``, the loss is:
L
Leo Chen 已提交
462 463

    .. math::
464
        Out = \lvert input - label\rvert
465

466
    If `reduction` set to ``'mean'``, the loss is:
467

L
Leo Chen 已提交
468
    .. math::
469
        Out = MEAN(\lvert input - label\rvert)
470

471
    If `reduction` set to ``'sum'``, the loss is:
472

L
Leo Chen 已提交
473
    .. math::
474
        Out = SUM(\lvert input - label\rvert)
L
Leo Chen 已提交
475

476

L
Leo Chen 已提交
477
    Parameters:
478
        reduction (str, optional): Indicate the reduction to apply to the loss,
L
Leo Chen 已提交
479
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
480 481 482
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
L
Leo Chen 已提交
483
            Default is ``'mean'``.
484 485 486
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
487 488
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
489
        output (Tensor): The L1 Loss of ``input`` and ``label``.
490 491
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
492

L
Leo Chen 已提交
493
    Examples:
L
Leo Chen 已提交
494
        
L
Leo Chen 已提交
495
        .. code-block:: python
L
Leo Chen 已提交
496

L
Leo Chen 已提交
497
            import paddle
498

L
Leo Chen 已提交
499 500
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1.0], [0.4, 0.5]])
501 502

            l1_loss = paddle.nn.loss.L1Loss()
503
            output = l1_loss(input, label)
L
Leo Chen 已提交
504
            print(output)
505 506 507
            # [0.35]

            l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
508
            output = l1_loss(input, label)
L
Leo Chen 已提交
509
            print(output)
510 511 512
            # [1.4]

            l1_loss = paddle.nn.loss.L1Loss(reduction='none')
513
            output = l1_loss(input, label)
L
Leo Chen 已提交
514
            print(output)
515
            # [[0.20000005 0.19999999]
L
Leo Chen 已提交
516
            #  [0.2        0.79999995]]
L
Leo Chen 已提交
517 518
    """

519
    def __init__(self, reduction='mean', name=None):
L
Leo Chen 已提交
520 521 522 523 524 525
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(L1Loss, self).__init__()
        self.reduction = reduction
526
        self.name = name
L
Leo Chen 已提交
527

528
    def forward(self, input, label):
529
        return paddle.nn.functional.l1_loss(
530
            input, label, self.reduction, name=self.name)
C
ceci3 已提交
531 532 533 534


class BCELoss(fluid.dygraph.Layer):
    """
C
ceci3 已提交
535
    This interface is used to construct a callable object of the ``BCELoss`` class.
536 537
    The BCELoss layer measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:
C
ceci3 已提交
538

C
ceci3 已提交
539
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
540 541

    .. math::
C
ceci3 已提交
542
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
543

C
ceci3 已提交
544
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
545 546

    .. math::
C
ceci3 已提交
547 548
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

549
    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.
C
ceci3 已提交
550

C
ceci3 已提交
551
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
552

C
ceci3 已提交
553 554
    .. math::
        Out = MEAN(Out)
555

C
ceci3 已提交
556
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
557

C
ceci3 已提交
558 559
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
560

561
    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
C
ceci3 已提交
562 563
    should be numbers between 0 and 1.

C
ceci3 已提交
564
    Parameters:
565 566
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
C
ceci3 已提交
567
            is float32, float64. Default is ``'None'``.
568
        reduction (str, optional): Indicate how to average the loss by batch_size,
C
ceci3 已提交
569
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
570
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
571
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
C
ceci3 已提交
572
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
573
            Default is ``'mean'``.
574 575 576 577
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
Z
Zhong Hui 已提交
578
        input (Tensor): 2-D tensor with shape: [N, *], N is batch_size, `*` means
579 580 581 582 583 584 585
            number of additional dimensions. The input ``input`` should always
            be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): 2-D tensor with the same shape as ``input``. The target
            labels which values should be numbers between 0 and 1. Available
            dtype is float32, float64.
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.
C
ceci3 已提交
586

587
    Returns:
C
ceci3 已提交
588 589
        A callable object of BCELoss.

C
ceci3 已提交
590 591
    Examples:
        .. code-block:: python
C
ceci3 已提交
592

C
ceci3 已提交
593 594 595 596
            import numpy as np
            import paddle
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
597 598

            paddle.disable_static()
Z
Zhong Hui 已提交
599 600
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
601 602 603 604
            bce_loss = paddle.nn.loss.BCELoss()
            output = bce_loss(input, label)
            print(output.numpy())  # [0.65537095]

C
ceci3 已提交
605 606
    """

607
    def __init__(self, weight=None, reduction='mean', name=None):
C
ceci3 已提交
608 609 610 611 612 613 614 615
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
616
        self.name = name
C
ceci3 已提交
617 618

    def forward(self, input, label):
619 620 621
        out = paddle.nn.functional.binary_cross_entropy(
            input, label, self.weight, self.reduction, self.name)
        return out
622 623 624


class NLLLoss(fluid.dygraph.Layer):
625
    r"""
S
swtkiwi 已提交
626

627
    This class accepts input and target label and returns negative log likelihood
628
    cross error. It is useful to train a classification problem with C classes.
629

630
    The input for the loss is epected to contain log-probabilities of
631
    each classes. It has to be a Tensor of size either (batch_size, C) or
632 633 634 635
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
636

637 638 639
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
640

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
        \ell(x, y) = L = \{l_1,\dots,l_N\}^\\top, \quad
        l_n = - w_{y_n} x_{n,y_n}, \quad
        w_{c} = \\text{weight}[c] \cdot \mathbb{1}\{c \\not= \\text{ignore\\_index}\},

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
        \ell(x, y) = \\begin{cases}
            \\sum_{n=1}^N \\frac{1}{\\sum_{n=1}^N w_{y_n}} l_n, &
            \\text{if reduction} = \\text{'mean';}\\\\
            \\sum_{n=1}^N l_n,  &
            \\text{if reduction} = \\text{'sum'.}
        \\end{cases}

    Parameters:
661 662
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
663
            it treated as if having all ones. the data type is
664
            float32, float64, Default is ``'None'``.
665 666
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient.
667
        reduction (str, optional): Indicate how to average the loss,
668
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
669 670 671
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
672
            Default is ``'mean'``.
673 674
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.
675

676 677 678 679 680 681 682 683 684
    Shape:
        input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
            But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
            The data type is float32, float64.
        label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
            The data type is int64.
        output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
            If `reduction` is `'none'`, the shape is `[N, *]`.
            If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`.
685 686 687 688

    Examples:
        .. code-block:: python

689 690
                import paddle
                import numpy as np
691

692
                nll_loss = paddle.nn.NLLLoss()
693
                log_softmax = paddle.nn.LogSoftmax(axis=1)
694

695 696 697 698 699 700
                input_np = np.array([[0.88103855, 0.9908683 , 0.6226845 ],
                                 [0.53331435, 0.07999352, 0.8549948 ],
                                 [0.25879037, 0.39530203, 0.698465  ],
                                 [0.73427284, 0.63575995, 0.18827209],
                                 [0.05689114, 0.0862954 , 0.6325046 ]]).astype(np.float32)
                label_np = np.array([0, 2, 1, 1, 0]).astype(np.int64)
701

Z
Zhong Hui 已提交
702
                input = paddle.to_tensor(input_np)
703
                log_out = log_softmax(input)
Z
Zhong Hui 已提交
704
                label = paddle.to_tensor(label_np)
705
                result = nll_loss(log_out, label)
706
                print(result) # [1.0720209]
707

708
    """
709

710 711 712 713 714 715
    def __init__(self,
                 weight=None,
                 ignore_index=-100,
                 reduction='mean',
                 name=None):
        if reduction not in ['sum', 'mean', 'none']:
716
            raise ValueError(
717 718 719 720 721 722 723
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
                "'none', but received %s, which is not allowed." % reduction)
        super(NLLLoss, self).__init__()
        self._weight = weight
        self._ignore_index = ignore_index
        self._reduction = reduction
        self._name = name
724

725 726 727 728 729 730 731 732
    def forward(self, input, label):
        return F.nll_loss(
            input,
            label,
            weight=self._weight,
            ignore_index=self._ignore_index,
            reduction=self._reduction,
            name=self._name)
733 734


735
class KLDivLoss(fluid.dygraph.Layer):
736
    r"""
737 738 739 740 741 742 743 744 745
    This interface calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    Parameters:
L
LielinJiang 已提交
746 747 748 749 750 751 752
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
753 754

    Shape:
755 756 757 758 759 760

        - input (Tensor): (N, *), where * means, any number of additional dimensions.

        - label (Tensor): (N, *), same shape as input.

        - output (Tensor): tensor with shape: [1] by default.
761 762 763 764 765 766 767 768


    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn as nn
769

770 771 772 773
            shape = (5, 20)
            x = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

L
LielinJiang 已提交
774
            # 'batchmean' reduction, loss shape will be [1]
775
            kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
776 777
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
L
LielinJiang 已提交
778
            # shape=[1]
779

780 781
            # 'mean' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='mean')
782 783
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
784 785 786 787
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='sum')
788 789
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
790 791 792 793
            # shape=[1]

            # 'none' reduction, loss shape is same with X shape
            kldiv_criterion = nn.KLDivLoss(reduction='none')
794 795
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
796 797 798 799 800 801 802 803
            # shape=[5, 20]
    """

    def __init__(self, reduction='mean'):
        super(KLDivLoss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label):
L
LielinJiang 已提交
804
        out = F.kl_div(input, label, self.reduction)
805 806 807
        return out


808
class MarginRankingLoss(fluid.dygraph.Layer):
809
    r"""
810 811

    This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
812
    The MarginRankingLoss layer calculates the margin rank loss between the input, other and label
813 814
    , use the math function as follows.

815
    .. math::
816
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

835
    Shape:
836 837
        input: N-D Tensor, the shape is [N, *], N is batch size and `*` means any number of additional dimensions., available dtype is float32, float64.
        other: N-D Tensor, `other` have the same shape and dtype as `input`.
838 839
        label: N-D Tensor, label have the same shape and dtype as `input`.
        output: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
840 841 842 843 844 845 846 847

    Returns:
        A callable object of MarginRankingLoss.

    Examples:

        .. code-block:: python

848
            import paddle
849
            paddle.disable_static()
850

Z
Zhong Hui 已提交
851 852 853
            input = paddle.to_tensor([[1, 2], [3, 4]]), dtype="float32")
            other = paddle.to_tensor([[2, 1], [2, 4]]), dtype="float32")
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype="float32")
854
            margin_rank_loss = paddle.nn.MarginRankingLoss()
855
            loss = margin_rank_loss(input, other, label)
856 857 858 859 860 861
            print(loss.numpy()) # [0.75]
    """

    def __init__(self, margin=0.0, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
862
                "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
863 864 865 866 867 868
                "received %s, which is not allowed." % reduction)
        super(MarginRankingLoss, self).__init__()
        self.margin = margin
        self.reduction = reduction
        self.name = name

869
    def forward(self, input, other, label):
870
        out = paddle.nn.functional.margin_ranking_loss(
871
            input, other, label, self.margin, self.reduction, self.name)
872
        return out
873 874


875 876 877
class CTCLoss(fluid.dygraph.Layer):
    """

878 879 880
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
881 882 883 884 885 886 887
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.

    Shape:
888
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
889 890 891 892 893 894
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.

    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
895

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
    Examples:

        .. code-block:: python

            # declarative mode
            import numpy as np
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

            np.random.seed(1)
            log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32")
            labels = np.array([[1, 2, 2],
                            [1, 2, 2]]).astype("int32")
            input_lengths = np.array([5, 5]).astype("int64")
            label_lengths = np.array([3, 3]).astype("int64")

933 934 935 936
            log_probs = paddle.to_tensor(log_probs)
            labels = paddle.to_tensor(labels)
            input_lengths = paddle.to_tensor(input_lengths)
            label_lengths = paddle.to_tensor(label_lengths)
937

938 939
            loss = paddle.nn.CTCLoss(blank=0, reduction='none')(log_probs, labels,
                input_lengths,
940
                label_lengths)
941
            print(loss)  #[3.9179852 2.9076521]
942

943 944
            loss = paddle.nn.CTCLoss(blank=0, reduction='mean')(log_probs, labels,
                input_lengths,
945
                label_lengths)
946
            print(loss)  #[1.1376063]
947 948 949 950 951 952 953 954 955 956 957 958 959
    """

    def __init__(self, blank=0, reduction='mean'):
        super(CTCLoss, self).__init__()
        self.blank = blank
        self.reduction = reduction

    def forward(self, log_probs, labels, input_lengths, label_lengths):
        return paddle.nn.functional.ctc_loss(log_probs, labels, input_lengths,
                                             label_lengths, self.blank,
                                             self.reduction)


960
class SmoothL1Loss(fluid.dygraph.Layer):
961
    r"""
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

         loss(x,y)=\\frac{1}{n}\\sum_{i}z_i

    where z_i is given by:

    .. math::

         \\mathop{z_i}=\\left\\{\\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\\\
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
        \\end{array} \\right.

    Parameters:
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
987
        delta (float, optional): Specifies the hyperparameter delta to be used.
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.

    Returns:
L
Leo Chen 已提交
1002
        The tensor storing the smooth_l1_loss of input and label.
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

    Return type: Tensor.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.disable_static()
            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            loss = paddle.nn.SmoothL1Loss()
            output = loss(input, label)
            print(output.numpy())
    """

    def __init__(self, reduction='mean', delta=1.0, name=None):
        super(SmoothL1Loss, self).__init__()
        self.reduction = reduction
        self.delta = delta
        self.name = name

    def forward(self, input, label):
        return F.smooth_l1_loss(
            input,
            label,
            reduction=self.reduction,
            delta=self.delta,
            name=self.name)