loss.py 79.8 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17
import paddle

18
# TODO: define loss functions of neural network
L
Leo Chen 已提交
19
import paddle.fluid as fluid
20
from paddle import in_dynamic_mode
21
from paddle.fluid.framework import in_dygraph_mode
22

Z
zhiboniu 已提交
23
from .. import Layer
24
from .. import functional as F
25

26 27
__all__ = []

L
Leo Chen 已提交
28

Z
zhiboniu 已提交
29
class BCEWithLogitsLoss(Layer):
30
    r"""
31

学渣戊's avatar
学渣戊 已提交
32
    Combine the sigmoid layer and the :ref:`api_paddle_nn_BCELoss` layer.
33 34 35 36 37 38 39

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

学渣戊's avatar
学渣戊 已提交
40
    Firstly, calculate loss function as follows:
41 42

    .. math::
43
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
44

45
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
46 47

    .. math::
48
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
49

50
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
51 52
    we reformulate the loss as follows:

53
        .. math::
54
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
55

学渣戊's avatar
学渣戊 已提交
56
    Then, if ``weight`` or ``pos_weight`` is not None, then multiply the
57 58 59 60
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

学渣戊's avatar
学渣戊 已提交
61 62
    Finally, apply reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, will return the original loss `Out`.
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shapes:
学渣戊's avatar
学渣戊 已提交
85 86 87
        - logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, `*`], N is batch_size, `*` means number of additional dimensions. The ``logit`` is usually the output of Linear layer. Available dtype is float32, float64.
        - label (Tensor): The target labels tensor. 2-D tensor with the same shape as ``logit``. The target labels which values should be numbers between 0 and 1. Available dtype is float32, float64.
        - output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``logit`` , else the shape of output is scalar.
88 89 90 91 92

    Returns:
        A callable object of BCEWithLogitsLoss.

    Examples:
学渣戊's avatar
学渣戊 已提交
93

94
        .. code-block:: python
95

96
            import paddle
学渣戊's avatar
学渣戊 已提交
97

98 99 100 101
            logit = paddle.to_tensor([5.0, 1.0, 3.0], dtype="float32")
            label = paddle.to_tensor([1.0, 0.0, 1.0], dtype="float32")
            bce_logit_loss = paddle.nn.BCEWithLogitsLoss()
            output = bce_logit_loss(logit, label)
102 103 104
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.45618814])
105 106 107

    """

108 109 110
    def __init__(
        self, weight=None, reduction='mean', pos_weight=None, name=None
    ):
111 112 113
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in BCEWithLogitsLoss should be 'sum', 'mean' or 'none', but "
114 115
                "received %s, which is not allowed." % reduction
            )
116

117
        super().__init__()
118 119 120 121 122 123 124
        self.weight = weight
        self.reduction = reduction
        self.pos_weight = pos_weight
        self.name = name

    def forward(self, logit, label):
        out = paddle.nn.functional.binary_cross_entropy_with_logits(
125 126 127 128 129 130 131
            logit,
            label,
            self.weight,
            self.reduction,
            self.pos_weight,
            self.name,
        )
132 133 134
        return out


Z
zhiboniu 已提交
135
class CrossEntropyLoss(Layer):
136
    r"""
137

138
    By default, the cross entropy loss function is implemented using softmax. This function
139
    combines the calculation of the softmax operation and the cross entropy loss function
140
    to provide a more numerically stable computing.
S
swtkiwi 已提交
141

142
    Calculate the cross entropy loss function without softmax when use_softmax=False.
143

144
    By default, calculate the mean of the result, and you can also affect
145
    the default behavior by using the reduction parameter. Please refer to the part of
146
    parameters for details.
147

148
    Can be used to calculate the softmax cross entropy loss with soft and hard labels.
149
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
150
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
151

152
    The calculation includes the following two steps.
153

154
    -  **I.softmax cross entropy**
155

156
        1. Hard label (each sample can only be assigned into one category)
157

158
        1.1. when use_softmax=True
159

160 161
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
162

163
            where, N is the number of samples and C is the number of categories.
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).



191
    -  **II.Weight and reduction processing**
192 193 194 195 196 197 198 199 200 201 202

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
203
                \\loss_j=loss_j*weight[label_j]
204

205

206 207 208 209 210 211 212
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

213
            2.1 if the ``reduction`` parameter is ``none``
214 215 216

            Return the previous result directly

217
            2.2 if the ``reduction`` parameter is ``sum``
218 219 220 221 222 223

            Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

224 225
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
226

227
            2.3.1. If the  ``weight``  parameter is ``None``
228 229 230 231 232 233 234 235 236 237 238 239 240

            Return the average value of the previous results

             .. math::
                \\loss=\sum_{j}loss_j/N

            where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

             .. math::
241
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
242 243 244 245 246

            2. Soft labels (soft_label = True)

             .. math::
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
247 248


249
    Parameters:
250
        weight (Tensor, optional): a manual rescaling weight given to each class.
251
            If given, has to be a Tensor of size C and the data type is float32, float64.
252
            Default is ``'None'`` .
253
        ignore_index (int64, optional): Specifies a target value that is ignored
254 255
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
256
            Default is ``-100`` .
257
        reduction (str, optional): Indicate how to average the loss by batch_size,
258 259 260 261 262
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
263
        soft_label (bool, optional): Indicate whether label is soft.
264 265
            If soft_label=False, the label is hard.  If soft_label=True, the label is soft.
            Default is ``False``.
266
        axis (int, optional): The index of dimension to perform softmax calculations.
267 268
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the number
            of dimensions of input :attr:`input`.
269
            Default is ``-1`` .
270
        use_softmax (bool, optional): Indicate whether compute softmax before cross_entropy.
271
            Default is ``True``.
272
        name (str, optional): The name of the operator. Default is ``None`` .
273 274 275 276
            For more information, please refer to :ref:`api_guide_Name` .


    Shape:
277 278
        - **input** (Tensor), the data type is float32, float64. Shape is :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes, ``k >= 1`` .

279
            Note:
280

281
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the
282 283 284
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
285

286 287
        - **label** (Tensor)

288
            1. If soft_label=False, the shape is
289 290 291
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

292
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
293
            and the sum of the labels for each sample should be 1.
294

295 296 297 298
        - **output** (Tensor), Return the softmax cross_entropy loss of ``input`` and ``label``.
          The data type is the same as input.
          If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
          If :attr:`reduction` is ``'none'``:
299

300
            1. If soft_label = False, the dimension of return value is the same with ``label`` .
301

302
            2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
303

304
    Examples:
305 306

        .. code-block:: python
307

308
            # hard labels
309 310 311 312 313
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
314
            input =  paddle.rand([N, C], dtype='float64')
315
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
316 317
            weight = paddle.rand([C], dtype='float64')

318 319 320
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
321 322 323 324 325
                                        input,
                                        label)
            print(dy_ret)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [5.34043430])
326

327
        .. code-block:: python
328 329

            # soft labels
330
            import paddle
331 332 333 334 335 336 337 338 339 340 341 342
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
343 344 345 346 347 348 349 350 351
                                                                    logits,
                                                                    labels,
                                                                    soft_label=True,
                                                                    axis=axis,
                                                                    weight=weight,
                                                                    reduction=reduction)
            print(paddle_loss_mean)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [1.11043464])
352

353 354
    """

355 356 357 358 359 360 361 362 363 364
    def __init__(
        self,
        weight=None,
        ignore_index=-100,
        reduction='mean',
        soft_label=False,
        axis=-1,
        use_softmax=True,
        name=None,
    ):
365
        super().__init__()
366 367
        self.weight = weight
        self.reduction = reduction
368
        self.ignore_index = ignore_index
369 370
        self.soft_label = soft_label
        self.axis = axis
371
        self.use_softmax = use_softmax
372
        self.name = name
373 374

    def forward(self, input, label):
375 376 377 378 379 380 381 382 383 384 385
        ret = paddle.nn.functional.cross_entropy(
            input,
            label,
            weight=self.weight,
            ignore_index=self.ignore_index,
            reduction=self.reduction,
            soft_label=self.soft_label,
            axis=self.axis,
            use_softmax=self.use_softmax,
            name=self.name,
        )
386 387

        return ret
388 389


Z
zhiboniu 已提交
390
class HSigmoidLoss(Layer):
391 392
    """
    Hierarchical Sigmoid Layer.
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        feature_size (int): The number of features.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight_attr (ParamAttr, optional): The parameter attribute for the learnable weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default is None.
428
        is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
            `path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
            should not be passed to its forward method. Default is False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True,
            the gradient of weight and input will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        input (Tensor): The input tensor. The shapes is [N, D], where N is batch size and D is feature size. It's data type should be float32, float64.
        label (Tensor): It's shapes is [N, 1]. It's data type should be int64.
        output (Tensor): The HSigmoid Loss of ``input`` and ``label``. Shape is [N, 1]

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')

L
Linjie Chen 已提交
447 448 449 450 451
            input = paddle.uniform([4, 3])
            # [[0.56194401  -0.22450298  -0.10741806] # random
            #  [0.36136317  0.23556745  0.88748658] # random
            #  [0.18151939  0.80947340  -0.31078976] # random
            #  [0.68886101  -0.14239830  -0.41297770]] # random
452 453 454
            label = paddle.to_tensor([0, 1, 4, 5])
            m = paddle.nn.HSigmoidLoss(3, 5)
            out = m(input, label)
L
Linjie Chen 已提交
455 456 457 458
            # [[2.42524505]
            #  [1.74917245]
            #  [3.14571381]
            #  [2.34564662]]
459 460
    """

461 462 463 464 465 466 467 468 469 470
    def __init__(
        self,
        feature_size,
        num_classes,
        weight_attr=None,
        bias_attr=None,
        is_custom=False,
        is_sparse=False,
        name=None,
    ):
471
        super().__init__()
472 473
        if (num_classes < 2) and (not is_custom):
            raise ValueError(
474 475
                "num_classes must not be less than 2 with default tree"
            )
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

        if (not is_custom) and (is_sparse):
            print("Sparse mode should not be used without custom tree")
            is_sparse = False

        self._feature_size = feature_size
        self._num_classes = num_classes
        self._is_custom = is_custom
        self._is_sparse = is_sparse

        self._weight_attr = weight_attr
        self._bias_attr = bias_attr

        self._name = name
        self._dtype = paddle.get_default_dtype()

        remote_prefetch = is_sparse
493 494 495 496
        print(
            "With sparse mode, if your models has only"
            " small parameter prefetch may cause speed down"
        )
497 498

        C = self._num_classes if is_custom else self._num_classes - 1
499 500 501 502 503 504 505 506 507
        self.weight = self.create_parameter(
            [C, self._feature_size],
            attr=self._weight_attr,
            is_bias=False,
            dtype=self._dtype,
        )
        self.bias = self.create_parameter(
            [C, 1], attr=self._bias_attr, is_bias=True, dtype=self._dtype
        )
508 509

    def forward(self, input, label, path_table=None, path_code=None):
510 511 512 513 514 515 516 517 518 519 520
        out = F.hsigmoid_loss(
            input,
            label,
            self._num_classes,
            self.weight,
            self.bias,
            path_table=path_table,
            path_code=path_code,
            is_sparse=self._is_sparse,
            name=self._name,
        )
521 522 523
        return out


Z
zhiboniu 已提交
524
class MSELoss(Layer):
525
    r"""
526 527
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.
528

529
    If :attr:`reduction` is set to ``'none'``, loss is calculated as:
530

531 532
    .. math::
        Out = (input - label)^2
533

534
    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:
535

536 537
    .. math::
        Out = \operatorname{mean}((input - label)^2)
538

539
    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:
540

541 542
    .. math::
        Out = \operatorname{sum}((input - label)^2)
543

544
    where `input` and `label` are `float32` tensors of same shape.
545

546
    Parameters:
547
        reduction (str, optional): The reduction method for the output,
548
            could be 'none' | 'mean' | 'sum'.
549 550 551
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
552
            Default is ``'mean'``.
553

B
Bai Yifan 已提交
554 555 556 557
    Shape:
        input (Tensor): Input tensor, the data type is float32 or float64
        label (Tensor): Label tensor, the data type is float32 or float64
        output (Tensor): output tensor storing the MSE loss of input and label, the data type is same as input.
558

559
    Examples:
560

561
        .. code-block:: python
562

563
            import paddle
B
Bai Yifan 已提交
564
            mse_loss = paddle.nn.loss.MSELoss()
565 566
            input = paddle.to_tensor([1.5])
            label = paddle.to_tensor([1.7])
B
Bai Yifan 已提交
567
            output = mse_loss(input, label)
568
            print(output)
B
Bai Yifan 已提交
569
            # [0.04000002]
570

571 572 573
    """

    def __init__(self, reduction='mean'):
574
        super().__init__()
575 576 577
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
578 579
                "but received {}.".format(reduction)
            )
580 581 582
        self.reduction = reduction

    def forward(self, input, label):
Z
zhiboniu 已提交
583
        if not in_dynamic_mode():
584 585 586 587 588 589
            fluid.data_feeder.check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'MSELoss'
            )
            fluid.data_feeder.check_variable_and_dtype(
                label, 'label', ['float32', 'float64'], 'MSELoss'
            )
590

591
        if in_dygraph_mode():
592
            square_out = paddle._C_ops.square(paddle.subtract(input, label))
593 594
        else:
            square_out = paddle.square(paddle.subtract(input, label))
595 596 597 598 599
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
600 601
            square_out = paddle.sum(square_out)
            return square_out
602

603
        return paddle.mean(square_out)
604 605


Z
zhiboniu 已提交
606
class L1Loss(Layer):
607
    r"""
608

609
    Construct a callable object of the ``L1Loss`` class.
610
    The L1Loss layer calculates the L1 Loss of ``input`` and ``label`` as follows.
611

612
    If `reduction` set to ``'none'``, the loss is:
L
Leo Chen 已提交
613 614

    .. math::
615
        Out = \lvert input - label\rvert
616

617
    If `reduction` set to ``'mean'``, the loss is:
618

L
Leo Chen 已提交
619
    .. math::
620
        Out = MEAN(\lvert input - label\rvert)
621

622
    If `reduction` set to ``'sum'``, the loss is:
623

L
Leo Chen 已提交
624
    .. math::
625
        Out = SUM(\lvert input - label\rvert)
L
Leo Chen 已提交
626

627

L
Leo Chen 已提交
628
    Parameters:
629
        reduction (str, optional): Indicate the reduction to apply to the loss,
L
Leo Chen 已提交
630
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
631 632 633
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
L
Leo Chen 已提交
634
            Default is ``'mean'``.
635 636 637
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
638 639 640 641 642
        - input (Tensor): The input tensor. The shapes is ``[N, *]``, where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        - label (Tensor): label. The shapes is ``[N, *]``, same shape as ``input`` . It's data type should be float32, float64, int32, int64.
        - output (Tensor): The L1 Loss of ``input`` and ``label``.
          If `reduction` is ``'none'``, the shape of output loss is ``[N, *]``, the same as ``input`` .
          If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
643

L
Leo Chen 已提交
644 645
    Examples:
        .. code-block:: python
646

L
Leo Chen 已提交
647
            import paddle
648

649 650
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
651

C
Chen Long 已提交
652
            l1_loss = paddle.nn.L1Loss()
653
            output = l1_loss(input, label)
654 655 656
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.34999999])
657

C
Chen Long 已提交
658
            l1_loss = paddle.nn.L1Loss(reduction='sum')
659
            output = l1_loss(input, label)
660 661 662
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.39999998])
663

C
Chen Long 已提交
664
            l1_loss = paddle.nn.L1Loss(reduction='none')
665
            output = l1_loss(input, label)
C
Chen Long 已提交
666
            print(output)
667 668 669
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.20000005, 0.19999999],
            #         [0.20000000, 0.79999995]])
670

L
Leo Chen 已提交
671 672
    """

673
    def __init__(self, reduction='mean', name=None):
L
Leo Chen 已提交
674 675 676
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
677 678
                "received %s, which is not allowed." % reduction
            )
679
        super().__init__()
L
Leo Chen 已提交
680
        self.reduction = reduction
681
        self.name = name
L
Leo Chen 已提交
682

683
    def forward(self, input, label):
684 685 686
        return paddle.nn.functional.l1_loss(
            input, label, self.reduction, name=self.name
        )
C
ceci3 已提交
687 688


Z
zhiboniu 已提交
689
class BCELoss(Layer):
C
ceci3 已提交
690
    """
691

C
ceci3 已提交
692
    This interface is used to construct a callable object of the ``BCELoss`` class.
693 694
    The BCELoss layer measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:
C
ceci3 已提交
695

C
ceci3 已提交
696
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
697 698

    .. math::
C
ceci3 已提交
699
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
700

C
ceci3 已提交
701
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
702 703

    .. math::
C
ceci3 已提交
704 705
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

706
    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.
C
ceci3 已提交
707

C
ceci3 已提交
708
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
709

C
ceci3 已提交
710 711
    .. math::
        Out = MEAN(Out)
712

C
ceci3 已提交
713
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
714

C
ceci3 已提交
715 716
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
717

718
    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
C
ceci3 已提交
719 720
    should be numbers between 0 and 1.

C
ceci3 已提交
721
    Parameters:
722 723
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
C
ceci3 已提交
724
            is float32, float64. Default is ``'None'``.
725
        reduction (str, optional): Indicate how to average the loss by batch_size,
C
ceci3 已提交
726
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
727
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
728
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
C
ceci3 已提交
729
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
730
            Default is ``'mean'``.
731 732 733 734
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
学渣戊's avatar
学渣戊 已提交
735 736 737
        - input (Tensor): 2-D tensor with shape: ``[N, *]``, N is batch_size, `*` means number of additional dimensions. The input ``input`` should always be the output of sigmod. Available dtype is float32, float64.
        - label (Tensor): 2-D tensor with the same shape as ``input``. The target labels which values should be numbers between 0 and 1. Available dtype is float32, float64.
        - output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is scalar.
C
ceci3 已提交
738

739
    Returns:
C
ceci3 已提交
740 741
        A callable object of BCELoss.

C
ceci3 已提交
742 743
    Examples:
        .. code-block:: python
C
ceci3 已提交
744

C
ceci3 已提交
745
            import paddle
746

747 748
            input = paddle.to_tensor([0.5, 0.6, 0.7])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
C
Chen Long 已提交
749
            bce_loss = paddle.nn.BCELoss()
750
            output = bce_loss(input, label)
751 752 753
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.65537101])
754

C
ceci3 已提交
755 756
    """

757
    def __init__(self, weight=None, reduction='mean', name=None):
C
ceci3 已提交
758 759 760
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
761 762
                "received %s, which is not allowed." % reduction
            )
C
ceci3 已提交
763

764
        super().__init__()
C
ceci3 已提交
765 766
        self.weight = weight
        self.reduction = reduction
767
        self.name = name
C
ceci3 已提交
768 769

    def forward(self, input, label):
770 771 772
        out = paddle.nn.functional.binary_cross_entropy(
            input, label, self.weight, self.reduction, self.name
        )
773
        return out
774 775


Z
zhiboniu 已提交
776
class NLLLoss(Layer):
777
    r"""
S
swtkiwi 已提交
778

779
    This class accepts input and target label and returns negative log likelihood
780
    cross error. It is useful to train a classification problem with C classes.
781

782
    The input for the loss is expected to contain log-probabilities of
783
    each classes. It has to be a Tensor of size either (batch_size, C) or
784 785 786 787
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
788

789 790 791
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
792

793 794 795 796
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
797 798

        \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
799
        l_n = - w_{y_n} x_{n,y_n}, \quad
800
        w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignore_index}\},
801 802 803 804 805

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
806 807 808 809 810 811 812 813 814 815

        \ell(x, y) =
        \left\{
            \begin{array}{lcl}
            \sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, &
            \text{if  reduction} = \text{'mean';}\\
            \sum_{n=1}^N l_n,  &
            \text{if  reduction} = \text{'sum'.}
            \end{array}
        \right.
816 817

    Parameters:
818 819
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
820
            it treated as if having all ones. the data type is
821
            float32, float64, Default is ``'None'``.
822
        ignore_index (int, optional): Specifies a target value that is ignored
823
            and does not contribute to the input gradient.
824
        reduction (str, optional): Indicate how to average the loss,
825
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. Default is ``'mean'``.
826 827 828
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
829
            Default is ``'mean'``.
830
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default is ``'None'``.
831

832
    Shape:
833
        - input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
834 835
            But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
            The data type is float32, float64.
836
        - label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
837
            The data type is int64.
838
        - output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
839 840
            If `reduction` is `'none'`, the shape is `[N, *]`.
            If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`.
841 842 843 844

    Examples:
        .. code-block:: python

845
                import paddle
846

847
                nll_loss = paddle.nn.loss.NLLLoss()
848
                log_softmax = paddle.nn.LogSoftmax(axis=1)
849

850 851 852 853 854
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                                          [0.53331435, 0.07999352, 0.8549948 ],
                                          [0.25879037, 0.39530203, 0.698465  ],
                                          [0.73427284, 0.63575995, 0.18827209],
                                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
855
                log_out = log_softmax(input)
856
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
857
                result = nll_loss(log_out, label)
858
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
859

860
    """
861

862 863 864
    def __init__(
        self, weight=None, ignore_index=-100, reduction='mean', name=None
    ):
865
        if reduction not in ['sum', 'mean', 'none']:
866
            raise ValueError(
867
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
868 869
                "'none', but received %s, which is not allowed." % reduction
            )
870
        super().__init__()
871 872 873 874
        self._weight = weight
        self._ignore_index = ignore_index
        self._reduction = reduction
        self._name = name
875

876
    def forward(self, input, label):
877 878 879 880 881 882 883 884
        return F.nll_loss(
            input,
            label,
            weight=self._weight,
            ignore_index=self._ignore_index,
            reduction=self._reduction,
            name=self._name,
        )
885 886


Z
zhiboniu 已提交
887
class KLDivLoss(Layer):
888
    r"""
889

890 891 892 893
    Generate a callable object of 'KLDivLoss' to calculate the
    Kullback-Leibler divergence loss between Input(X) and
    Input(Target). Notes that Input(X) is the log-probability
    and Input(Target) is the probability.
894 895 896 897 898

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

899 900 901 902 903 904 905 906 907 908
    Here :math:`x` is input and :math:`y` is label.

    If `reduction` is ``'none'``, the output loss is the same shape as the input, and the loss at each point is calculated separately. There is no reduction to the result.

    If `reduction` is ``'mean'``, the output loss is the shape of [1], and the output is the average of all losses.

    If `reduction` is ``'sum'``, the output loss is the shape of [1], and the output is the sum of all losses.

    If `reduction` is ``'batchmean'``, the output loss is the shape of [N], N is the batch size, and the output is the sum of all losses divided by the batch size.

909
    Parameters:
910 911 912 913 914 915 916
        reduction (str, optional): Indicate how to average the loss,
            the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
917 918

    Shape:
919 920 921 922 923 924

        input (Tensor): ``(N, *)``, where ``*`` means, any number of additional dimensions.

        label (Tensor): ``(N, *)``, same shape as input.

        output (Tensor): tensor with shape: [1] by default.
925 926 927 928 929 930

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn
931

932
            shape = (5, 20)
933 934
            x = paddle.uniform(shape, min=-10, max=10).astype('float32')
            target = paddle.uniform(shape, min=-10, max=10).astype('float32')
935

L
LielinJiang 已提交
936
            # 'batchmean' reduction, loss shape will be [1]
937
            kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
938
            pred_loss = kldiv_criterion(x, target)
L
LielinJiang 已提交
939
            # shape=[1]
940

941 942
            # 'mean' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='mean')
943
            pred_loss = kldiv_criterion(x, target)
944 945 946 947
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='sum')
948
            pred_loss = kldiv_criterion(x, target)
949 950 951 952
            # shape=[1]

            # 'none' reduction, loss shape is same with X shape
            kldiv_criterion = nn.KLDivLoss(reduction='none')
953
            pred_loss = kldiv_criterion(x, target)
954
            # shape=[5, 20]
955

956 957 958
    """

    def __init__(self, reduction='mean'):
959
        super().__init__()
960 961 962
        self.reduction = reduction

    def forward(self, input, label):
L
LielinJiang 已提交
963
        out = F.kl_div(input, label, self.reduction)
964 965 966
        return out


Z
zhiboniu 已提交
967
class MarginRankingLoss(Layer):
968
    r"""
969 970

    This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
971
    The MarginRankingLoss layer calculates the margin rank loss between the input, other and label
972 973
    , use the math function as follows.

974
    .. math::
975
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

994
    Shape:
995

N
Noel 已提交
996 997
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

998
        other: N-D Tensor, `other` have the same shape and dtype as `input`.
N
Noel 已提交
999

1000
        label: N-D Tensor, label have the same shape and dtype as `input`.
N
Noel 已提交
1001

1002
        output: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1003 1004 1005 1006 1007 1008 1009 1010

    Returns:
        A callable object of MarginRankingLoss.

    Examples:

        .. code-block:: python

1011 1012
            import paddle

C
Chen Long 已提交
1013 1014
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype="float32")
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype="float32")
Z
Zhong Hui 已提交
1015
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype="float32")
1016
            margin_rank_loss = paddle.nn.MarginRankingLoss()
1017
            loss = margin_rank_loss(input, other, label)
1018 1019 1020

            print(loss)
            # [0.75]
1021 1022 1023 1024 1025
    """

    def __init__(self, margin=0.0, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
1026
                "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
1027 1028
                "received %s, which is not allowed." % reduction
            )
1029
        super().__init__()
1030 1031 1032 1033
        self.margin = margin
        self.reduction = reduction
        self.name = name

1034
    def forward(self, input, other, label):
1035 1036 1037
        out = paddle.nn.functional.margin_ranking_loss(
            input, other, label, self.margin, self.reduction, self.name
        )
1038
        return out
1039 1040


Z
zhiboniu 已提交
1041
class CTCLoss(Layer):
1042
    r"""
1043

1044 1045 1046
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1047 1048 1049 1050 1051 1052 1053
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.

    Shape:
1054 1055 1056 1057 1058
        - log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
        - labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        - input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        - label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        - norm_by_times (bool, optional): Whether to normalize the gradients by the number of time-step, which is also the sequence's length. There is no need to normalize the gradients if reduction mode is 'mean'. Default: False.
1059 1060 1061

    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1062

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

1079
            log_probs = paddle.to_tensor([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
1092 1093 1094 1095 1096
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]], dtype="float32")
            labels = paddle.to_tensor([[1, 2, 2],
                            [1, 2, 2]], dtype="int32")
            input_lengths = paddle.to_tensor([5, 5], dtype="int64")
            label_lengths = paddle.to_tensor([3, 3], dtype="int64")
1097

1098 1099
            loss = paddle.nn.CTCLoss(blank=0, reduction='none')(log_probs, labels,
                input_lengths,
1100
                label_lengths)
1101 1102 1103
            print(loss)
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.91798496, 2.90765190])
1104

1105 1106
            loss = paddle.nn.CTCLoss(blank=0, reduction='mean')(log_probs, labels,
                input_lengths,
1107
                label_lengths)
1108 1109 1110
            print(loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.13760614])
1111 1112 1113
    """

    def __init__(self, blank=0, reduction='mean'):
1114
        super().__init__()
1115 1116 1117
        self.blank = blank
        self.reduction = reduction

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    def forward(
        self,
        log_probs,
        labels,
        input_lengths,
        label_lengths,
        norm_by_times=False,
    ):
        return paddle.nn.functional.ctc_loss(
            log_probs,
            labels,
            input_lengths,
            label_lengths,
            self.blank,
            self.reduction,
            norm_by_times=norm_by_times,
        )
1135 1136


H
Hui Zhang 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
class RNNTLoss(Layer):
    """
    Parameters:
        blank (int, optional): blank label. Default: 0.
        fastemit_lambda (float, optional): Regularization parameter for FastEmit (https://arxiv.org/pdf/2010.11148.pdf)
        reduction (string, optional): Specifies the reduction to apply to the output:
            'none' | 'mean' | 'sum'. 'none': no reduction will be applied,
            'mean': the output losses will be divided by the target lengths and
            then the mean over the batch is taken. Default: 'mean'

    Shape:
        input: logprob Tensor of (batch x seqLength x labelLength x outputDim) containing output from network
        label: 2 dimensional (batch, labelLength) Tensor containing all the targets of the batch with zero padded
        input_lengths: Tensor of size (batch) containing size of each output sequence from the network
        label_lengths: Tensor of (batch) containing label length of each example

    Returns:
     Tensor, The RNN-T loss between ``logprobs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``logprobs``.

    Examples:
        .. code-block:: python

            # declarative mode
            import numpy as np
            import paddle
            from paddle.nn import RNNTLoss

            fn = RNNTLoss(reduction='sum', fastemit_lambda=0.0)

            acts = np.array([[[[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.6, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.8, 0.1]],
                            [[0.1, 0.6, 0.1, 0.1, 0.1],
                            [0.1, 0.1, 0.2, 0.1, 0.1],
                            [0.7, 0.1, 0.2, 0.1, 0.1]]]])
            labels = [[1, 2]]

            acts = paddle.to_tensor(acts, stop_gradient=False)

            lengths = [acts.shape[1]] * acts.shape[0]
            label_lengths = [len(l) for l in labels]
            labels = paddle.to_tensor(labels, paddle.int32)
            lengths = paddle.to_tensor(lengths, paddle.int32)
            label_lengths = paddle.to_tensor(label_lengths, paddle.int32)

            costs = fn(acts, labels, lengths, label_lengths)
            print(costs)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=False,
            #        [4.49566677])
    """

    def __init__(
        self, blank=0, fastemit_lambda=0.001, reduction='mean', name=None
    ):
        super().__init__()
        self.blank = blank
        self.reduction = reduction
        self.fastemit_lambda = fastemit_lambda
        self.name = name

    def forward(self, input, label, input_lengths, label_lengths):
        return paddle.nn.functional.rnnt_loss(
            input,
            label,
            input_lengths,
            label_lengths,
            blank=self.blank,
            fastemit_lambda=self.fastemit_lambda,
            reduction=self.reduction,
            name=self.name,
        )


Z
zhiboniu 已提交
1210
class SmoothL1Loss(Layer):
1211
    r"""
1212 1213 1214 1215 1216 1217 1218
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1219
        loss(x, y) = \frac{1}{n}\sum_{i}z_i
1220

1221
    where :math:`z_i` is given by:
1222 1223 1224

    .. math::

1225
        \mathop{z_i} = \left\{\begin{array}{rcl}
1226 1227 1228
                0.5(x_i - y_i)^2 & & {if |x_i - y_i| < \delta} \\
                \delta * |x_i - y_i| - 0.5 * \delta^2 & & {otherwise}
            \end{array} \right.
1229 1230 1231 1232 1233 1234 1235 1236

    Parameters:
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1237
        delta (float, optional): Specifies the hyperparameter :math:`\delta` to be used.
1238 1239
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
1240 1241
            negative/zero values. Default value is :math:`1.0`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1242 1243 1244

    Call Parameters:

1245 1246
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C),
        where C is number of classes, and if shape is more than 2D,
1247 1248
        this is (N, C, D1, D2,..., Dk), k >= 1.

1249
        label (Tensor): Label tensor, the data type is float32 or float64.
1250
        The shape of label is the same as the shape of input.
1251

1252 1253
    Returns:
        Tensor, The tensor storing the smooth_l1_loss of input and label.
1254 1255 1256 1257 1258

    Examples:
        .. code-block:: python

            import paddle
1259 1260
            input = paddle.rand([3, 3]).astype("float32")
            label = paddle.rand([3, 3]).astype("float32")
1261 1262
            loss = paddle.nn.SmoothL1Loss()
            output = loss(input, label)
G
Guanghua Yu 已提交
1263
            print(output)
1264
            # [0.049606]
1265 1266 1267
    """

    def __init__(self, reduction='mean', delta=1.0, name=None):
1268
        super().__init__()
1269 1270 1271 1272 1273
        self.reduction = reduction
        self.delta = delta
        self.name = name

    def forward(self, input, label):
1274 1275 1276 1277 1278 1279 1280
        return F.smooth_l1_loss(
            input,
            label,
            reduction=self.reduction,
            delta=self.delta,
            name=self.name,
        )
1281 1282


Y
yangguohao 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
class MultiLabelSoftMarginLoss(Layer):
    r"""Creates a criterion that optimizes a multi-class multi-classification
        hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
        and output :math:`y` (which is a 2D `Tensor` of target class indices).
        For each sample in the mini-batch:

        .. math::
            \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

        where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
        :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
        :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
        and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
        :math:`y` and :math:`x` must have the same size.

        Parameters:
1299
            weight (Tensor,optional): a manual rescaling weight given to each class.
Y
yangguohao 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
                    If given, has to be a Tensor of size C and the data type is float32, float64.
                    Default is ``'None'`` .
            reduction (str, optional): Indicate how to average the loss by batch_size,
                    the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                    If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                    If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                    Default: ``'mean'``
            name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.

        Call parameters:
            input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
            label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64. The shape of label is the same as the shape of input.

        Shape:
            input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
            label: N-D Tensor, same shape as the input.
            output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

        Returns:
            A callable object of MultiLabelSoftMarginLoss.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.nn as nn

                input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
                label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

                multi_label_soft_margin_loss = nn.MultiLabelSoftMarginLoss(reduction='none')
                loss = multi_label_soft_margin_loss(input, label)
                print(loss)
                # Tensor([3.49625897, 0.71111226, 0.43989015])

                multi_label_soft_margin_loss = nn.MultiLabelSoftMarginLoss(reduction='mean')
                loss = multi_label_soft_margin_loss(input, label)
                print(loss)
                # Tensor([1.54908717])
        """

    def __init__(self, weight=None, reduction="mean", name=None):
1344
        super().__init__()
Y
yangguohao 已提交
1345 1346 1347
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MultiLabelSoftMarginloss' should be 'sum', 'mean' or 'none', "
1348 1349
                "but received {}.".format(reduction)
            )
Y
yangguohao 已提交
1350 1351 1352 1353 1354
        self.weight = weight
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1355 1356 1357 1358 1359 1360 1361
        return F.multi_label_soft_margin_loss(
            input,
            label,
            weight=self.weight,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1362 1363


1364 1365
class HingeEmbeddingLoss(Layer):
    r"""
1366
    Create a callable object of `HingeEmbeddingLoss` to calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:

        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:

        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.

        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64. The shape of label is the same as the shape of input.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:

        Tensor, The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            hinge_embedding_loss = nn.HingeEmbeddingLoss(margin=1.0, reduction='none')
            loss = hinge_embedding_loss(input, label)
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            hinge_embedding_loss = nn.HingeEmbeddingLoss(margin=1.0, reduction='mean')
            loss = hinge_embedding_loss(input, label)
            print(loss)
            # Tensor([0.22222222])
    """

    def __init__(self, margin=1.0, reduction="mean", name=None):
1445
        super().__init__()
1446 1447 1448 1449 1450
        self.margin = margin
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1451 1452 1453 1454 1455 1456 1457
        return F.hinge_embedding_loss(
            input,
            label,
            reduction=self.reduction,
            margin=self.margin,
            name=self.name,
        )
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493


class CosineEmbeddingLoss(Layer):
    r"""
    This interface is used to construct a callable object of the ``CosineEmbeddingLoss`` class.
    The CosineEmbeddingLoss layer measures the cosine_embedding loss between input predictions ``input1``, ``input2``
    and target labels ``label`` with values 1 or 0. This is used for measuring whether two inputs are similar or
    dissimilar and is typically used for learning nonlinear embeddings or semi-supervised learning.
    The cosine embedding loss can be described as:

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

    Parameters:
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
            :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
            default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
            ``'mean'``: the sum of the output will be divided by the number of
            elements in the output, ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
1494
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
1495
                         Available dtypes are float32, float64.
1496
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
1497
                         Available dtypes are float32, float64.
1498
        label (Tensor): tensor with shape: [N] or [1], 'N' means the length of input array. The target labels values should be -1 or 1.
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
                         Available dtypes are int32, int64, float32, float64.
        output (Tensor): Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
                         If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
                         If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='mean')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.21155193]

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='sum')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.42310387]

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='none')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.42310387, 0.        ]

    """

    def __init__(self, margin=0, reduction='mean', name=None):
        if margin > 1 or margin < -1:
            raise ValueError(
                "The value of 'margin' should be in the interval of [-1, 1], but received %f, which is not allowed."
1531 1532
                % margin
            )
1533 1534 1535
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' should be 'sum', 'mean' or "
1536 1537
                "'none', but received %s, which is not allowed." % reduction
            )
1538
        super().__init__()
1539 1540 1541 1542 1543
        self.margin = margin
        self.reduction = reduction
        self.name = name

    def forward(self, input1, input2, label):
1544 1545 1546 1547 1548 1549 1550 1551
        return F.cosine_embedding_loss(
            input1,
            input2,
            label,
            margin=self.margin,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568


class TripletMarginWithDistanceLoss(Layer):
    r"""
    Creates a criterion that measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}

    where the default `distance_function`
1569

Y
yangguohao 已提交
1570
    .. math::
1571
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_2
1572 1573

    or user can define their own distance function. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
1574 1575 1576 1577 1578
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:
        distance_function (Callable, Optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
1579

Y
yangguohao 已提交
1580 1581 1582 1583
        margin (float, Optional):Default: :math:`1`.A nonnegative margin representing the minimum difference
                between the positive and negative distances required for the loss to be 0. Larger
                margins penalize cases where the negative examples are not distant enough from the
                anchors, relative to the positives.
1584

Y
yangguohao 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
        swap (bool, Optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, Optional):Indicate how to average the loss by batch_size.
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1596

Y
yangguohao 已提交
1597 1598
    Shapes:
        input (Tensor):Input tensor, the data type is float32 or float64.
1599
    the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
Y
yangguohao 已提交
1600 1601

        positive (Tensor):Positive tensor, the data type is float32 or float64.
1602
    The shape of label is the same as the shape of input.
Y
yangguohao 已提交
1603 1604

        negative (Tensor):Negative tensor, the data type is float32 or float64.
1605
    The shape of label is the same as the shape of input.
1606

1607
        output(Tensor): The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.
Y
yangguohao 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632

    Return:
        A callable object of TripletMarginWithDistanceLoss

    Examples:
        .. code-block:: python

            import paddle
            from paddle.nn import TripletMarginWithDistanceLoss

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            triplet_margin_with_distance_loss = TripletMarginWithDistanceLoss(reduction='none')
            loss = triplet_margin_with_distance_loss(input, positive, negative,)
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])

            triplet_margin_with_distance_loss = TripletMarginWithDistanceLoss(reduction='mean')
            loss = triplet_margin_with_distance_loss(input, positive, negative,)
            print(loss)
            # Tensor([0.19165580])

    """

1633 1634 1635 1636 1637 1638 1639 1640
    def __init__(
        self,
        distance_function=None,
        margin=1.0,
        swap=False,
        reduction: str = 'mean',
        name=None,
    ):
1641
        super().__init__()
Y
yangguohao 已提交
1642 1643 1644 1645
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in TripletMarginWithDistanceLoss "
                "should be 'sum', 'mean' or 'none', but "
1646 1647
                "received %s, which is not allowed." % reduction
            )
Y
yangguohao 已提交
1648 1649 1650 1651 1652 1653 1654
        self.margin = margin
        self.swap = swap
        self.reduction = reduction
        self.distance_function = distance_function
        self.name = name

    def forward(self, input, positive, negative):
1655 1656 1657 1658 1659 1660 1661 1662 1663
        return F.triplet_margin_with_distance_loss(
            input,
            positive,
            negative,
            margin=self.margin,
            swap=self.swap,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732


class TripletMarginLoss(Layer):
    r"""
    Creates a criterion that measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, *)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        margin (float, Optional):Default: :math:`1`.

        p (int, Optional):The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional):Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool, Optional):The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.

        reduction (str, Optional):Indicate how to average the loss by batch_size.
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``

        name (str,Optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:
        input (Tensor):Input tensor, the data type is float32 or float64.
        the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
        The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
        The shape of label is the same as the shape of input.

    Returns:
        Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            triplet_margin_loss = paddle.nn.TripletMarginLoss(reduction='none')
            loss = triplet_margin_loss(input, positive, negative)
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])
1733

Y
yangguohao 已提交
1734 1735 1736 1737 1738 1739 1740
            triplet_margin_loss = paddle.nn.TripletMarginLoss(margin=1.0, swap=True, reduction='mean', )
            loss = triplet_margin_loss(input, positive, negative,)
            print(loss)
            # Tensor([0.19165580])

    """

1741 1742 1743 1744 1745 1746 1747 1748 1749
    def __init__(
        self,
        margin=1.0,
        p=2.0,
        epsilon=1e-6,
        swap=False,
        reduction='mean',
        name=None,
    ):
1750
        super().__init__()
Y
yangguohao 已提交
1751 1752 1753
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in TripletMarginLoss should be 'sum', 'mean' or 'none', but "
1754 1755
                "received %s, which is not allowed." % reduction
            )
Y
yangguohao 已提交
1756 1757 1758 1759 1760 1761 1762 1763
        self.margin = margin
        self.p = p
        self.epsilon = epsilon
        self.swap = swap
        self.reduction = reduction
        self.name = name

    def forward(self, input, positive, negative):
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
        return F.triplet_margin_loss(
            input,
            positive,
            negative,
            margin=self.margin,
            p=self.p,
            epsilon=self.epsilon,
            swap=self.swap,
            reduction=self.reduction,
            name=self.name,
        )
1775 1776


Y
yangguohao 已提交
1777 1778
class MultiMarginLoss(Layer):
    r"""Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between
1779
    input :math:`input` and label :math:`label`:
Y
yangguohao 已提交
1780

1781 1782
    For i-th mini-batch sample, the loss in terms of the 1D input :math:`input_i` and scalar
    output :math:`label_i` is:
Y
yangguohao 已提交
1783

1784 1785
    .. math::
        \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, \text{margin} - input_i[label_i] + input_i[j])^p}{\text{C}}
Y
yangguohao 已提交
1786

1787
    where :math:`0 \leq j \leq \text{C}-1`, :math:`0 \leq i \leq \text{N}-1` and :math:`j \neq label_i`.
Y
yangguohao 已提交
1788

1789 1790
    Optionally, you can give non-equal weighting on the classes by passing
    a 1D :attr:`weight` tensor into the constructor.
Y
yangguohao 已提交
1791

1792
    The loss function for i-th sample then becomes:
Y
yangguohao 已提交
1793

1794 1795
    .. math::
        \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, weight[label_i] * (\text{margin} - input_i[label_i] + input_i[j]))^p}{\text{C}}
Y
yangguohao 已提交
1796 1797


1798
    Parameters:
Y
yangguohao 已提交
1799

1800
        p (int, Optional):The norm degree for pairwise distance. Default: :math:`1`.
Y
yangguohao 已提交
1801

1802
        margin (float, Optional):Default: :math:`1`.
Y
yangguohao 已提交
1803

1804 1805 1806
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of shape (C,) and the data type is float32, float64.
                Default is ``'None'`` .
Y
yangguohao 已提交
1807

1808 1809 1810 1811 1812 1813
        reduction (str, optional): Indicate how to calculate the loss by batch_size,
                the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
Y
yangguohao 已提交
1814

1815 1816
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
1817

1818 1819
    Call parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
Y
yangguohao 已提交
1820

1821
        label (Tensor): Label tensor, 0<= label < input.shape[1], the data type is int32 or int64.
Y
yangguohao 已提交
1822

1823 1824
    Shape:
        input: 2-D Tensor, the shape is [N, C], N is batch size and `C` means number of classes.
Y
yangguohao 已提交
1825

1826
        label: 1-D Tensor, the shape is [N,].
Y
yangguohao 已提交
1827

1828
        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the label.
Y
yangguohao 已提交
1829

1830 1831
    Returns:
        A callable object of MultiMarginLoss.
Y
yangguohao 已提交
1832

1833 1834
    Examples:
        .. code-block:: python
Y
yangguohao 已提交
1835

1836 1837
            import paddle
            import paddle.nn as nn
Y
yangguohao 已提交
1838

1839 1840
            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            label = paddle.to_tensor([0, 1, 2], dtype=paddle.int32)
Y
yangguohao 已提交
1841

1842 1843 1844 1845
            multi_margin_loss = nn.MultiMarginLoss(reduction='mean')
            loss = multi_margin_loss(input, label)
            print(loss)
    """
Y
yangguohao 已提交
1846

1847 1848 1849 1850 1851 1852 1853 1854
    def __init__(
        self,
        p: int = 1,
        margin: float = 1.0,
        weight=None,
        reduction="mean",
        name=None,
    ):
1855
        super().__init__()
Y
yangguohao 已提交
1856 1857 1858
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MultiMarginLoss' should be 'sum', 'mean' or 'none', "
1859 1860
                "but received {}.".format(reduction)
            )
Y
yangguohao 已提交
1861 1862 1863 1864 1865 1866 1867
        self.p = p
        self.margin = margin
        self.weight = weight
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1868 1869 1870 1871 1872 1873 1874 1875 1876
        return F.multi_margin_loss(
            input,
            label,
            p=self.p,
            margin=self.margin,
            weight=self.weight,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1877 1878


1879 1880
class SoftMarginLoss(Layer):
    r"""
1881

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
    Creates a criterion that measures a two-class soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shapes:
1900 1901 1902 1903 1904 1905 1906 1907
        - Input (Tensor): The input tensor with shape: ``[N, *]``,
          N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf
          Available dtype is float32, float64.
        - Label (Tensor): The target labels tensor with the same shape as
          ``input``. The target labels which values should be numbers -1 or 1.
          Available dtype is int32, int64, float32, float64.
        - Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
          same as ``input`` , else the shape of output is [1].
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

    Returns:
        A callable object of SoftMarginLoss.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            soft_margin_loss = paddle.nn.SoftMarginLoss()
            output = soft_margin_loss(input, label)
1921 1922 1923
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.64022040])
1924

1925 1926
            input_np = paddle.uniform(shape=(5, 5), min=0.1, max=0.8, dtype="float64")
            label_np = paddle.randint(high=2, shape=(5, 5), dtype="int64")
1927 1928 1929 1930 1931
            label_np[label_np==0]=-1
            input = paddle.to_tensor(input_np)
            label = paddle.to_tensor(label_np)
            soft_margin_loss = paddle.nn.SoftMarginLoss(reduction='none')
            output = soft_margin_loss(input, label)
1932 1933 1934 1935 1936 1937 1938
            print(output)
            # Tensor(shape=[5, 5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [[0.61739663, 0.51405668, 1.09346100, 0.42385561, 0.91602303],
            #         [0.76997038, 1.01977148, 0.98971722, 1.13976032, 0.88152088],
            #         [0.55476735, 1.10505384, 0.89923519, 0.45018155, 1.06587511],
            #         [0.37998142, 0.48067240, 0.47791212, 0.55664053, 0.98581399],
            #         [0.78571653, 0.59319711, 0.39701841, 0.76172109, 0.83781742]])
1939

1940 1941 1942 1943 1944 1945
    """

    def __init__(self, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in SoftMarginLoss should be 'sum', 'mean' or 'none', but "
1946 1947
                "received %s, which is not allowed." % reduction
            )
1948

1949
        super().__init__()
1950 1951 1952 1953
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1954 1955 1956
        out = paddle.nn.functional.soft_margin_loss(
            input, label, self.reduction, self.name
        )
1957
        return out