loss.py 76.9 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17
import paddle

18
# TODO: define loss functions of neural network
L
Leo Chen 已提交
19
import paddle.fluid as fluid
20
from paddle import in_dynamic_mode
21
from paddle.fluid.framework import in_dygraph_mode
22

Z
zhiboniu 已提交
23
from .. import Layer
24
from .. import functional as F
25

26 27
__all__ = []

L
Leo Chen 已提交
28

Z
zhiboniu 已提交
29
class BCEWithLogitsLoss(Layer):
30
    r"""
31

学渣戊's avatar
学渣戊 已提交
32
    Combine the sigmoid layer and the :ref:`api_paddle_nn_BCELoss` layer.
33 34 35 36 37 38 39

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

学渣戊's avatar
学渣戊 已提交
40
    Firstly, calculate loss function as follows:
41 42

    .. math::
43
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
44

45
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
46 47

    .. math::
48
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
49

50
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
51 52
    we reformulate the loss as follows:

53
        .. math::
54
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
55

学渣戊's avatar
学渣戊 已提交
56
    Then, if ``weight`` or ``pos_weight`` is not None, then multiply the
57 58 59 60
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

学渣戊's avatar
学渣戊 已提交
61 62
    Finally, apply reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, will return the original loss `Out`.
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shapes:
学渣戊's avatar
学渣戊 已提交
85 86 87
        - logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, `*`], N is batch_size, `*` means number of additional dimensions. The ``logit`` is usually the output of Linear layer. Available dtype is float32, float64.
        - label (Tensor): The target labels tensor. 2-D tensor with the same shape as ``logit``. The target labels which values should be numbers between 0 and 1. Available dtype is float32, float64.
        - output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``logit`` , else the shape of output is scalar.
88 89 90 91 92

    Returns:
        A callable object of BCEWithLogitsLoss.

    Examples:
学渣戊's avatar
学渣戊 已提交
93

94
        .. code-block:: python
95

96
            import paddle
学渣戊's avatar
学渣戊 已提交
97

98 99 100 101
            logit = paddle.to_tensor([5.0, 1.0, 3.0], dtype="float32")
            label = paddle.to_tensor([1.0, 0.0, 1.0], dtype="float32")
            bce_logit_loss = paddle.nn.BCEWithLogitsLoss()
            output = bce_logit_loss(logit, label)
102 103 104
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.45618814])
105 106 107

    """

108 109 110
    def __init__(
        self, weight=None, reduction='mean', pos_weight=None, name=None
    ):
111 112 113
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in BCEWithLogitsLoss should be 'sum', 'mean' or 'none', but "
114 115
                "received %s, which is not allowed." % reduction
            )
116

117
        super().__init__()
118 119 120 121 122 123 124
        self.weight = weight
        self.reduction = reduction
        self.pos_weight = pos_weight
        self.name = name

    def forward(self, logit, label):
        out = paddle.nn.functional.binary_cross_entropy_with_logits(
125 126 127 128 129 130 131
            logit,
            label,
            self.weight,
            self.reduction,
            self.pos_weight,
            self.name,
        )
132 133 134
        return out


Z
zhiboniu 已提交
135
class CrossEntropyLoss(Layer):
136
    r"""
137

138
    By default, the cross entropy loss function is implemented using softmax. This function
139
    combines the calculation of the softmax operation and the cross entropy loss function
140
    to provide a more numerically stable computing.
S
swtkiwi 已提交
141

142
    Calculate the cross entropy loss function without softmax when use_softmax=False.
143

144
    By default, calculate the mean of the result, and you can also affect
145
    the default behavior by using the reduction parameter. Please refer to the part of
146
    parameters for details.
147

148
    Can be used to calculate the softmax cross entropy loss with soft and hard labels.
149
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
150
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
151

152
    The calculation includes the following two steps.
153

154
    -  **I.softmax cross entropy**
155

156
        1. Hard label (each sample can only be assigned into one category)
157

158
        1.1. when use_softmax=True
159

160 161
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
162

163
            where, N is the number of samples and C is the number of categories.
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).



191
    -  **II.Weight and reduction processing**
192 193 194 195 196 197 198 199 200 201 202

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
203
                \\loss_j=loss_j*weight[label_j]
204

205

206 207 208 209 210 211 212
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

213
            2.1 if the ``reduction`` parameter is ``none``
214 215 216

            Return the previous result directly

217
            2.2 if the ``reduction`` parameter is ``sum``
218 219 220 221 222 223

            Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

224 225
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
226

227
            2.3.1. If the  ``weight``  parameter is ``None``
228 229 230 231 232 233 234 235 236 237 238 239 240

            Return the average value of the previous results

             .. math::
                \\loss=\sum_{j}loss_j/N

            where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

             .. math::
241
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
242 243 244 245 246

            2. Soft labels (soft_label = True)

             .. math::
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
247 248


249
    Parameters:
250
        weight (Tensor, optional): a manual rescaling weight given to each class.
251
            If given, has to be a Tensor of size C and the data type is float32, float64.
252
            Default is ``'None'`` .
253
        ignore_index (int64, optional): Specifies a target value that is ignored
254 255
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
256
            Default is ``-100`` .
257
        reduction (str, optional): Indicate how to average the loss by batch_size,
258 259 260 261 262
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
263
        soft_label (bool, optional): Indicate whether label is soft.
264 265
            If soft_label=False, the label is hard.  If soft_label=True, the label is soft.
            Default is ``False``.
266
        axis (int, optional): The index of dimension to perform softmax calculations.
267 268
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the number
            of dimensions of input :attr:`input`.
269
            Default is ``-1`` .
270
        use_softmax (bool, optional): Indicate whether compute softmax before cross_entropy.
271
            Default is ``True``.
272
        name (str, optional): The name of the operator. Default is ``None`` .
273 274 275 276
            For more information, please refer to :ref:`api_guide_Name` .


    Shape:
277 278
        - **input** (Tensor), the data type is float32, float64. Shape is :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes, ``k >= 1`` .

279
            Note:
280

281
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the
282 283 284
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
285

286 287
        - **label** (Tensor)

288
            1. If soft_label=False, the shape is
289 290 291
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

292
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
293
            and the sum of the labels for each sample should be 1.
294

295 296 297 298
        - **output** (Tensor), Return the softmax cross_entropy loss of ``input`` and ``label``.
          The data type is the same as input.
          If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
          If :attr:`reduction` is ``'none'``:
299

300
            1. If soft_label = False, the dimension of return value is the same with ``label`` .
301

302
            2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
303

304
    Examples:
305 306

        .. code-block:: python
307

308
            # hard labels
309 310 311 312 313
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
314
            input =  paddle.rand([N, C], dtype='float64')
315
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
316 317
            weight = paddle.rand([C], dtype='float64')

318 319 320
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
321 322 323 324 325
                                        input,
                                        label)
            print(dy_ret)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [5.34043430])
326

327
        .. code-block:: python
328 329

            # soft labels
330
            import paddle
331 332 333 334 335 336 337 338 339 340 341 342
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
343 344 345 346 347 348 349 350 351
                                                                    logits,
                                                                    labels,
                                                                    soft_label=True,
                                                                    axis=axis,
                                                                    weight=weight,
                                                                    reduction=reduction)
            print(paddle_loss_mean)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [1.11043464])
352

353 354
    """

355 356 357 358 359 360 361 362 363 364
    def __init__(
        self,
        weight=None,
        ignore_index=-100,
        reduction='mean',
        soft_label=False,
        axis=-1,
        use_softmax=True,
        name=None,
    ):
365
        super().__init__()
366 367
        self.weight = weight
        self.reduction = reduction
368
        self.ignore_index = ignore_index
369 370
        self.soft_label = soft_label
        self.axis = axis
371
        self.use_softmax = use_softmax
372
        self.name = name
373 374

    def forward(self, input, label):
375 376 377 378 379 380 381 382 383 384 385
        ret = paddle.nn.functional.cross_entropy(
            input,
            label,
            weight=self.weight,
            ignore_index=self.ignore_index,
            reduction=self.reduction,
            soft_label=self.soft_label,
            axis=self.axis,
            use_softmax=self.use_softmax,
            name=self.name,
        )
386 387

        return ret
388 389


Z
zhiboniu 已提交
390
class HSigmoidLoss(Layer):
391 392
    """
    Hierarchical Sigmoid Layer.
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        feature_size (int): The number of features.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight_attr (ParamAttr, optional): The parameter attribute for the learnable weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default is None.
428
        is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
            `path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
            should not be passed to its forward method. Default is False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True,
            the gradient of weight and input will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        input (Tensor): The input tensor. The shapes is [N, D], where N is batch size and D is feature size. It's data type should be float32, float64.
        label (Tensor): It's shapes is [N, 1]. It's data type should be int64.
        output (Tensor): The HSigmoid Loss of ``input`` and ``label``. Shape is [N, 1]

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')

L
Linjie Chen 已提交
447 448 449 450 451
            input = paddle.uniform([4, 3])
            # [[0.56194401  -0.22450298  -0.10741806] # random
            #  [0.36136317  0.23556745  0.88748658] # random
            #  [0.18151939  0.80947340  -0.31078976] # random
            #  [0.68886101  -0.14239830  -0.41297770]] # random
452 453 454
            label = paddle.to_tensor([0, 1, 4, 5])
            m = paddle.nn.HSigmoidLoss(3, 5)
            out = m(input, label)
L
Linjie Chen 已提交
455 456 457 458
            # [[2.42524505]
            #  [1.74917245]
            #  [3.14571381]
            #  [2.34564662]]
459 460
    """

461 462 463 464 465 466 467 468 469 470
    def __init__(
        self,
        feature_size,
        num_classes,
        weight_attr=None,
        bias_attr=None,
        is_custom=False,
        is_sparse=False,
        name=None,
    ):
471
        super().__init__()
472 473
        if (num_classes < 2) and (not is_custom):
            raise ValueError(
474 475
                "num_classes must not be less than 2 with default tree"
            )
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

        if (not is_custom) and (is_sparse):
            print("Sparse mode should not be used without custom tree")
            is_sparse = False

        self._feature_size = feature_size
        self._num_classes = num_classes
        self._is_custom = is_custom
        self._is_sparse = is_sparse

        self._weight_attr = weight_attr
        self._bias_attr = bias_attr

        self._name = name
        self._dtype = paddle.get_default_dtype()

        remote_prefetch = is_sparse
493 494 495 496
        print(
            "With sparse mode, if your models has only"
            " small parameter prefetch may cause speed down"
        )
497 498

        C = self._num_classes if is_custom else self._num_classes - 1
499 500 501 502 503 504 505 506 507
        self.weight = self.create_parameter(
            [C, self._feature_size],
            attr=self._weight_attr,
            is_bias=False,
            dtype=self._dtype,
        )
        self.bias = self.create_parameter(
            [C, 1], attr=self._bias_attr, is_bias=True, dtype=self._dtype
        )
508 509

    def forward(self, input, label, path_table=None, path_code=None):
510 511 512 513 514 515 516 517 518 519 520
        out = F.hsigmoid_loss(
            input,
            label,
            self._num_classes,
            self.weight,
            self.bias,
            path_table=path_table,
            path_code=path_code,
            is_sparse=self._is_sparse,
            name=self._name,
        )
521 522 523
        return out


Z
zhiboniu 已提交
524
class MSELoss(Layer):
525
    r"""
526 527 528 529 530 531 532 533 534 535 536
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.
    If :attr:`reduction` is set to ``'none'``, loss is calculated as:
    .. math::
        Out = (input - label)^2
    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:
    .. math::
        Out = \operatorname{mean}((input - label)^2)
    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:
    .. math::
        Out = \operatorname{sum}((input - label)^2)
537
    where `input` and `label` are `float32` tensors of same shape.
538
    Parameters:
539
        reduction (str, optional): The reduction method for the output,
540
            could be 'none' | 'mean' | 'sum'.
541 542 543
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
544
            Default is ``'mean'``.
B
Bai Yifan 已提交
545 546 547 548
    Shape:
        input (Tensor): Input tensor, the data type is float32 or float64
        label (Tensor): Label tensor, the data type is float32 or float64
        output (Tensor): output tensor storing the MSE loss of input and label, the data type is same as input.
549 550
    Examples:
        .. code-block:: python
551
            import paddle
B
Bai Yifan 已提交
552
            mse_loss = paddle.nn.loss.MSELoss()
553 554
            input = paddle.to_tensor([1.5])
            label = paddle.to_tensor([1.7])
B
Bai Yifan 已提交
555
            output = mse_loss(input, label)
556
            print(output)
B
Bai Yifan 已提交
557
            # [0.04000002]
558 559 560
    """

    def __init__(self, reduction='mean'):
561
        super().__init__()
562 563 564
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
565 566
                "but received {}.".format(reduction)
            )
567 568 569
        self.reduction = reduction

    def forward(self, input, label):
Z
zhiboniu 已提交
570
        if not in_dynamic_mode():
571 572 573 574 575 576
            fluid.data_feeder.check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'MSELoss'
            )
            fluid.data_feeder.check_variable_and_dtype(
                label, 'label', ['float32', 'float64'], 'MSELoss'
            )
577

578
        if in_dygraph_mode():
579
            square_out = paddle._C_ops.square(paddle.subtract(input, label))
580 581
        else:
            square_out = paddle.square(paddle.subtract(input, label))
582 583 584 585 586
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
587 588
            square_out = paddle.sum(square_out)
            return square_out
589

590
        return paddle.mean(square_out)
591 592


Z
zhiboniu 已提交
593
class L1Loss(Layer):
594
    r"""
595

596
    Construct a callable object of the ``L1Loss`` class.
597
    The L1Loss layer calculates the L1 Loss of ``input`` and ``label`` as follows.
598

599
    If `reduction` set to ``'none'``, the loss is:
L
Leo Chen 已提交
600 601

    .. math::
602
        Out = \lvert input - label\rvert
603

604
    If `reduction` set to ``'mean'``, the loss is:
605

L
Leo Chen 已提交
606
    .. math::
607
        Out = MEAN(\lvert input - label\rvert)
608

609
    If `reduction` set to ``'sum'``, the loss is:
610

L
Leo Chen 已提交
611
    .. math::
612
        Out = SUM(\lvert input - label\rvert)
L
Leo Chen 已提交
613

614

L
Leo Chen 已提交
615
    Parameters:
616
        reduction (str, optional): Indicate the reduction to apply to the loss,
L
Leo Chen 已提交
617
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
618 619 620
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
L
Leo Chen 已提交
621
            Default is ``'mean'``.
622 623 624
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
625 626 627 628 629
        - input (Tensor): The input tensor. The shapes is ``[N, *]``, where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        - label (Tensor): label. The shapes is ``[N, *]``, same shape as ``input`` . It's data type should be float32, float64, int32, int64.
        - output (Tensor): The L1 Loss of ``input`` and ``label``.
          If `reduction` is ``'none'``, the shape of output loss is ``[N, *]``, the same as ``input`` .
          If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
630

L
Leo Chen 已提交
631 632
    Examples:
        .. code-block:: python
633

L
Leo Chen 已提交
634
            import paddle
635

636 637
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
638

C
Chen Long 已提交
639
            l1_loss = paddle.nn.L1Loss()
640
            output = l1_loss(input, label)
641 642 643
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.34999999])
644

C
Chen Long 已提交
645
            l1_loss = paddle.nn.L1Loss(reduction='sum')
646
            output = l1_loss(input, label)
647 648 649
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.39999998])
650

C
Chen Long 已提交
651
            l1_loss = paddle.nn.L1Loss(reduction='none')
652
            output = l1_loss(input, label)
C
Chen Long 已提交
653
            print(output)
654 655 656
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.20000005, 0.19999999],
            #         [0.20000000, 0.79999995]])
657

L
Leo Chen 已提交
658 659
    """

660
    def __init__(self, reduction='mean', name=None):
L
Leo Chen 已提交
661 662 663
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
664 665
                "received %s, which is not allowed." % reduction
            )
666
        super().__init__()
L
Leo Chen 已提交
667
        self.reduction = reduction
668
        self.name = name
L
Leo Chen 已提交
669

670
    def forward(self, input, label):
671 672 673
        return paddle.nn.functional.l1_loss(
            input, label, self.reduction, name=self.name
        )
C
ceci3 已提交
674 675


Z
zhiboniu 已提交
676
class BCELoss(Layer):
C
ceci3 已提交
677
    """
678

C
ceci3 已提交
679
    This interface is used to construct a callable object of the ``BCELoss`` class.
680 681
    The BCELoss layer measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:
C
ceci3 已提交
682

C
ceci3 已提交
683
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
684 685

    .. math::
C
ceci3 已提交
686
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
687

C
ceci3 已提交
688
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
689 690

    .. math::
C
ceci3 已提交
691 692
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

693
    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.
C
ceci3 已提交
694

C
ceci3 已提交
695
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
696

C
ceci3 已提交
697 698
    .. math::
        Out = MEAN(Out)
699

C
ceci3 已提交
700
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
701

C
ceci3 已提交
702 703
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
704

705
    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
C
ceci3 已提交
706 707
    should be numbers between 0 and 1.

C
ceci3 已提交
708
    Parameters:
709 710
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
C
ceci3 已提交
711
            is float32, float64. Default is ``'None'``.
712
        reduction (str, optional): Indicate how to average the loss by batch_size,
C
ceci3 已提交
713
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
714
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
715
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
C
ceci3 已提交
716
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
717
            Default is ``'mean'``.
718 719 720 721
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
学渣戊's avatar
学渣戊 已提交
722 723 724
        - input (Tensor): 2-D tensor with shape: ``[N, *]``, N is batch_size, `*` means number of additional dimensions. The input ``input`` should always be the output of sigmod. Available dtype is float32, float64.
        - label (Tensor): 2-D tensor with the same shape as ``input``. The target labels which values should be numbers between 0 and 1. Available dtype is float32, float64.
        - output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is scalar.
C
ceci3 已提交
725

726
    Returns:
C
ceci3 已提交
727 728
        A callable object of BCELoss.

C
ceci3 已提交
729 730
    Examples:
        .. code-block:: python
C
ceci3 已提交
731

C
ceci3 已提交
732
            import paddle
733

734 735
            input = paddle.to_tensor([0.5, 0.6, 0.7])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
C
Chen Long 已提交
736
            bce_loss = paddle.nn.BCELoss()
737
            output = bce_loss(input, label)
738 739 740
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.65537101])
741

C
ceci3 已提交
742 743
    """

744
    def __init__(self, weight=None, reduction='mean', name=None):
C
ceci3 已提交
745 746 747
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
748 749
                "received %s, which is not allowed." % reduction
            )
C
ceci3 已提交
750

751
        super().__init__()
C
ceci3 已提交
752 753
        self.weight = weight
        self.reduction = reduction
754
        self.name = name
C
ceci3 已提交
755 756

    def forward(self, input, label):
757 758 759
        out = paddle.nn.functional.binary_cross_entropy(
            input, label, self.weight, self.reduction, self.name
        )
760
        return out
761 762


Z
zhiboniu 已提交
763
class NLLLoss(Layer):
764
    r"""
S
swtkiwi 已提交
765

766
    This class accepts input and target label and returns negative log likelihood
767
    cross error. It is useful to train a classification problem with C classes.
768

769
    The input for the loss is expected to contain log-probabilities of
770
    each classes. It has to be a Tensor of size either (batch_size, C) or
771 772 773 774
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
775

776 777 778
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
779

780 781 782 783
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
784 785

        \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
786
        l_n = - w_{y_n} x_{n,y_n}, \quad
787
        w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignore_index}\},
788 789 790 791 792

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
793 794 795 796 797 798 799 800 801 802

        \ell(x, y) =
        \left\{
            \begin{array}{lcl}
            \sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, &
            \text{if  reduction} = \text{'mean';}\\
            \sum_{n=1}^N l_n,  &
            \text{if  reduction} = \text{'sum'.}
            \end{array}
        \right.
803 804

    Parameters:
805 806
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
807
            it treated as if having all ones. the data type is
808
            float32, float64, Default is ``'None'``.
809
        ignore_index (int, optional): Specifies a target value that is ignored
810
            and does not contribute to the input gradient.
811
        reduction (str, optional): Indicate how to average the loss,
812
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. Default is ``'mean'``.
813 814 815
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
816
            Default is ``'mean'``.
817
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default is ``'None'``.
818

819
    Shape:
820
        - input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
821 822
            But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
            The data type is float32, float64.
823
        - label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
824
            The data type is int64.
825
        - output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
826 827
            If `reduction` is `'none'`, the shape is `[N, *]`.
            If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`.
828 829 830 831

    Examples:
        .. code-block:: python

832
                import paddle
833

834
                nll_loss = paddle.nn.loss.NLLLoss()
835
                log_softmax = paddle.nn.LogSoftmax(axis=1)
836

837 838 839 840 841
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                                          [0.53331435, 0.07999352, 0.8549948 ],
                                          [0.25879037, 0.39530203, 0.698465  ],
                                          [0.73427284, 0.63575995, 0.18827209],
                                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
842
                log_out = log_softmax(input)
843
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
844
                result = nll_loss(log_out, label)
845
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
846

847
    """
848

849 850 851
    def __init__(
        self, weight=None, ignore_index=-100, reduction='mean', name=None
    ):
852
        if reduction not in ['sum', 'mean', 'none']:
853
            raise ValueError(
854
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
855 856
                "'none', but received %s, which is not allowed." % reduction
            )
857
        super().__init__()
858 859 860 861
        self._weight = weight
        self._ignore_index = ignore_index
        self._reduction = reduction
        self._name = name
862

863
    def forward(self, input, label):
864 865 866 867 868 869 870 871
        return F.nll_loss(
            input,
            label,
            weight=self._weight,
            ignore_index=self._ignore_index,
            reduction=self._reduction,
            name=self._name,
        )
872 873


Z
zhiboniu 已提交
874
class KLDivLoss(Layer):
875
    r"""
876

877 878 879 880
    Generate a callable object of 'KLDivLoss' to calculate the
    Kullback-Leibler divergence loss between Input(X) and
    Input(Target). Notes that Input(X) is the log-probability
    and Input(Target) is the probability.
881 882 883 884 885

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

886 887 888 889 890 891 892 893 894 895
    Here :math:`x` is input and :math:`y` is label.

    If `reduction` is ``'none'``, the output loss is the same shape as the input, and the loss at each point is calculated separately. There is no reduction to the result.

    If `reduction` is ``'mean'``, the output loss is the shape of [1], and the output is the average of all losses.

    If `reduction` is ``'sum'``, the output loss is the shape of [1], and the output is the sum of all losses.

    If `reduction` is ``'batchmean'``, the output loss is the shape of [N], N is the batch size, and the output is the sum of all losses divided by the batch size.

896
    Parameters:
897 898 899 900 901 902 903
        reduction (str, optional): Indicate how to average the loss,
            the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
            Default is ``'mean'``.
904 905

    Shape:
906 907 908 909 910 911

        input (Tensor): ``(N, *)``, where ``*`` means, any number of additional dimensions.

        label (Tensor): ``(N, *)``, same shape as input.

        output (Tensor): tensor with shape: [1] by default.
912 913 914 915 916 917

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn
918

919
            shape = (5, 20)
920 921
            x = paddle.uniform(shape, min=-10, max=10).astype('float32')
            target = paddle.uniform(shape, min=-10, max=10).astype('float32')
922

L
LielinJiang 已提交
923
            # 'batchmean' reduction, loss shape will be [1]
924
            kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
925
            pred_loss = kldiv_criterion(x, target)
L
LielinJiang 已提交
926
            # shape=[1]
927

928 929
            # 'mean' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='mean')
930
            pred_loss = kldiv_criterion(x, target)
931 932 933 934
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='sum')
935
            pred_loss = kldiv_criterion(x, target)
936 937 938 939
            # shape=[1]

            # 'none' reduction, loss shape is same with X shape
            kldiv_criterion = nn.KLDivLoss(reduction='none')
940
            pred_loss = kldiv_criterion(x, target)
941
            # shape=[5, 20]
942

943 944 945
    """

    def __init__(self, reduction='mean'):
946
        super().__init__()
947 948 949
        self.reduction = reduction

    def forward(self, input, label):
L
LielinJiang 已提交
950
        out = F.kl_div(input, label, self.reduction)
951 952 953
        return out


Z
zhiboniu 已提交
954
class MarginRankingLoss(Layer):
955
    r"""
956 957

    This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
958
    The MarginRankingLoss layer calculates the margin rank loss between the input, other and label
959 960
    , use the math function as follows.

961
    .. math::
962
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

981
    Shape:
982

N
Noel 已提交
983 984
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

985
        other: N-D Tensor, `other` have the same shape and dtype as `input`.
N
Noel 已提交
986

987
        label: N-D Tensor, label have the same shape and dtype as `input`.
N
Noel 已提交
988

989
        output: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
990 991 992 993 994 995 996 997

    Returns:
        A callable object of MarginRankingLoss.

    Examples:

        .. code-block:: python

998 999
            import paddle

C
Chen Long 已提交
1000 1001
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype="float32")
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype="float32")
Z
Zhong Hui 已提交
1002
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype="float32")
1003
            margin_rank_loss = paddle.nn.MarginRankingLoss()
1004
            loss = margin_rank_loss(input, other, label)
1005 1006 1007

            print(loss)
            # [0.75]
1008 1009 1010 1011 1012
    """

    def __init__(self, margin=0.0, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
1013
                "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
1014 1015
                "received %s, which is not allowed." % reduction
            )
1016
        super().__init__()
1017 1018 1019 1020
        self.margin = margin
        self.reduction = reduction
        self.name = name

1021
    def forward(self, input, other, label):
1022 1023 1024
        out = paddle.nn.functional.margin_ranking_loss(
            input, other, label, self.margin, self.reduction, self.name
        )
1025
        return out
1026 1027


Z
zhiboniu 已提交
1028
class CTCLoss(Layer):
1029 1030
    """

1031 1032 1033
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1034 1035 1036 1037 1038 1039 1040
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.

    Shape:
1041
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1042 1043 1044
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
1045
        norm_by_times (bool, default false) – Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
1046 1047 1048

    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

1066
            log_probs = paddle.to_tensor([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
1079 1080 1081 1082 1083
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]], dtype="float32")
            labels = paddle.to_tensor([[1, 2, 2],
                            [1, 2, 2]], dtype="int32")
            input_lengths = paddle.to_tensor([5, 5], dtype="int64")
            label_lengths = paddle.to_tensor([3, 3], dtype="int64")
1084

1085 1086
            loss = paddle.nn.CTCLoss(blank=0, reduction='none')(log_probs, labels,
                input_lengths,
1087
                label_lengths)
1088 1089 1090
            print(loss)
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.91798496, 2.90765190])
1091

1092 1093
            loss = paddle.nn.CTCLoss(blank=0, reduction='mean')(log_probs, labels,
                input_lengths,
1094
                label_lengths)
1095 1096 1097
            print(loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.13760614])
1098 1099 1100
    """

    def __init__(self, blank=0, reduction='mean'):
1101
        super().__init__()
1102 1103 1104
        self.blank = blank
        self.reduction = reduction

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
    def forward(
        self,
        log_probs,
        labels,
        input_lengths,
        label_lengths,
        norm_by_times=False,
    ):
        return paddle.nn.functional.ctc_loss(
            log_probs,
            labels,
            input_lengths,
            label_lengths,
            self.blank,
            self.reduction,
            norm_by_times=norm_by_times,
        )
1122 1123


Z
zhiboniu 已提交
1124
class SmoothL1Loss(Layer):
1125
    r"""
1126 1127 1128 1129 1130 1131 1132
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1133
        loss(x, y) = \frac{1}{n}\sum_{i}z_i
1134

1135
    where :math:`z_i` is given by:
1136 1137 1138

    .. math::

1139
        \mathop{z_i} = \left\{\begin{array}{rcl}
1140 1141 1142
                0.5(x_i - y_i)^2 & & {if |x_i - y_i| < \delta} \\
                \delta * |x_i - y_i| - 0.5 * \delta^2 & & {otherwise}
            \end{array} \right.
1143 1144 1145 1146 1147 1148 1149 1150

    Parameters:
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1151
        delta (float, optional): Specifies the hyperparameter :math:`\delta` to be used.
1152 1153
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
1154 1155
            negative/zero values. Default value is :math:`1.0`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1156 1157 1158

    Call Parameters:

1159 1160
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C),
        where C is number of classes, and if shape is more than 2D,
1161 1162
        this is (N, C, D1, D2,..., Dk), k >= 1.

1163
        label (Tensor): Label tensor, the data type is float32 or float64.
1164
        The shape of label is the same as the shape of input.
1165

1166 1167
    Returns:
        Tensor, The tensor storing the smooth_l1_loss of input and label.
1168 1169 1170 1171 1172

    Examples:
        .. code-block:: python

            import paddle
1173 1174
            input = paddle.rand([3, 3]).astype("float32")
            label = paddle.rand([3, 3]).astype("float32")
1175 1176
            loss = paddle.nn.SmoothL1Loss()
            output = loss(input, label)
G
Guanghua Yu 已提交
1177
            print(output)
1178
            # [0.049606]
1179 1180 1181
    """

    def __init__(self, reduction='mean', delta=1.0, name=None):
1182
        super().__init__()
1183 1184 1185 1186 1187
        self.reduction = reduction
        self.delta = delta
        self.name = name

    def forward(self, input, label):
1188 1189 1190 1191 1192 1193 1194
        return F.smooth_l1_loss(
            input,
            label,
            reduction=self.reduction,
            delta=self.delta,
            name=self.name,
        )
1195 1196


Y
yangguohao 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
class MultiLabelSoftMarginLoss(Layer):
    r"""Creates a criterion that optimizes a multi-class multi-classification
        hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
        and output :math:`y` (which is a 2D `Tensor` of target class indices).
        For each sample in the mini-batch:

        .. math::
            \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

        where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
        :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
        :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
        and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
        :math:`y` and :math:`x` must have the same size.

        Parameters:
1213
            weight (Tensor,optional): a manual rescaling weight given to each class.
Y
yangguohao 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
                    If given, has to be a Tensor of size C and the data type is float32, float64.
                    Default is ``'None'`` .
            reduction (str, optional): Indicate how to average the loss by batch_size,
                    the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                    If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                    If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                    Default: ``'mean'``
            name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.

        Call parameters:
            input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
            label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64. The shape of label is the same as the shape of input.

        Shape:
            input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
            label: N-D Tensor, same shape as the input.
            output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

        Returns:
            A callable object of MultiLabelSoftMarginLoss.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.nn as nn

                input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
                label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

                multi_label_soft_margin_loss = nn.MultiLabelSoftMarginLoss(reduction='none')
                loss = multi_label_soft_margin_loss(input, label)
                print(loss)
                # Tensor([3.49625897, 0.71111226, 0.43989015])

                multi_label_soft_margin_loss = nn.MultiLabelSoftMarginLoss(reduction='mean')
                loss = multi_label_soft_margin_loss(input, label)
                print(loss)
                # Tensor([1.54908717])
        """

    def __init__(self, weight=None, reduction="mean", name=None):
1258
        super().__init__()
Y
yangguohao 已提交
1259 1260 1261
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MultiLabelSoftMarginloss' should be 'sum', 'mean' or 'none', "
1262 1263
                "but received {}.".format(reduction)
            )
Y
yangguohao 已提交
1264 1265 1266 1267 1268
        self.weight = weight
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1269 1270 1271 1272 1273 1274 1275
        return F.multi_label_soft_margin_loss(
            input,
            label,
            weight=self.weight,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1276 1277


1278 1279
class HingeEmbeddingLoss(Layer):
    r"""
1280
    Create a callable object of `HingeEmbeddingLoss` to calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:

        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:

        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.

        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64. The shape of label is the same as the shape of input.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:

        Tensor, The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            hinge_embedding_loss = nn.HingeEmbeddingLoss(margin=1.0, reduction='none')
            loss = hinge_embedding_loss(input, label)
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            hinge_embedding_loss = nn.HingeEmbeddingLoss(margin=1.0, reduction='mean')
            loss = hinge_embedding_loss(input, label)
            print(loss)
            # Tensor([0.22222222])
    """

    def __init__(self, margin=1.0, reduction="mean", name=None):
1359
        super().__init__()
1360 1361 1362 1363 1364
        self.margin = margin
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1365 1366 1367 1368 1369 1370 1371
        return F.hinge_embedding_loss(
            input,
            label,
            reduction=self.reduction,
            margin=self.margin,
            name=self.name,
        )
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407


class CosineEmbeddingLoss(Layer):
    r"""
    This interface is used to construct a callable object of the ``CosineEmbeddingLoss`` class.
    The CosineEmbeddingLoss layer measures the cosine_embedding loss between input predictions ``input1``, ``input2``
    and target labels ``label`` with values 1 or 0. This is used for measuring whether two inputs are similar or
    dissimilar and is typically used for learning nonlinear embeddings or semi-supervised learning.
    The cosine embedding loss can be described as:

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

    Parameters:
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
            :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
            default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
            ``'mean'``: the sum of the output will be divided by the number of
            elements in the output, ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
1408
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
1409
                         Available dtypes are float32, float64.
1410
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, which can be 0, 'M' means the length of input array.
1411
                         Available dtypes are float32, float64.
1412
        label (Tensor): tensor with shape: [N] or [1], 'N' means the length of input array. The target labels values should be -1 or 1.
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
                         Available dtypes are int32, int64, float32, float64.
        output (Tensor): Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
                         If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
                         If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='mean')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.21155193]

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='sum')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.42310387]

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='none')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.42310387, 0.        ]

    """

    def __init__(self, margin=0, reduction='mean', name=None):
        if margin > 1 or margin < -1:
            raise ValueError(
                "The value of 'margin' should be in the interval of [-1, 1], but received %f, which is not allowed."
1445 1446
                % margin
            )
1447 1448 1449
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' should be 'sum', 'mean' or "
1450 1451
                "'none', but received %s, which is not allowed." % reduction
            )
1452
        super().__init__()
1453 1454 1455 1456 1457
        self.margin = margin
        self.reduction = reduction
        self.name = name

    def forward(self, input1, input2, label):
1458 1459 1460 1461 1462 1463 1464 1465
        return F.cosine_embedding_loss(
            input1,
            input2,
            label,
            margin=self.margin,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482


class TripletMarginWithDistanceLoss(Layer):
    r"""
    Creates a criterion that measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}

    where the default `distance_function`
1483

Y
yangguohao 已提交
1484
    .. math::
1485
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_2
1486 1487

    or user can define their own distance function. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
1488 1489 1490 1491 1492
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:
        distance_function (Callable, Optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
1493

Y
yangguohao 已提交
1494 1495 1496 1497
        margin (float, Optional):Default: :math:`1`.A nonnegative margin representing the minimum difference
                between the positive and negative distances required for the loss to be 0. Larger
                margins penalize cases where the negative examples are not distant enough from the
                anchors, relative to the positives.
1498

Y
yangguohao 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
        swap (bool, Optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, Optional):Indicate how to average the loss by batch_size.
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1510

Y
yangguohao 已提交
1511 1512
    Shapes:
        input (Tensor):Input tensor, the data type is float32 or float64.
1513
    the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
Y
yangguohao 已提交
1514 1515

        positive (Tensor):Positive tensor, the data type is float32 or float64.
1516
    The shape of label is the same as the shape of input.
Y
yangguohao 已提交
1517 1518

        negative (Tensor):Negative tensor, the data type is float32 or float64.
1519
    The shape of label is the same as the shape of input.
1520

1521
        output(Tensor): The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.
Y
yangguohao 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

    Return:
        A callable object of TripletMarginWithDistanceLoss

    Examples:
        .. code-block:: python

            import paddle
            from paddle.nn import TripletMarginWithDistanceLoss

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            triplet_margin_with_distance_loss = TripletMarginWithDistanceLoss(reduction='none')
            loss = triplet_margin_with_distance_loss(input, positive, negative,)
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])

            triplet_margin_with_distance_loss = TripletMarginWithDistanceLoss(reduction='mean')
            loss = triplet_margin_with_distance_loss(input, positive, negative,)
            print(loss)
            # Tensor([0.19165580])

    """

1547 1548 1549 1550 1551 1552 1553 1554
    def __init__(
        self,
        distance_function=None,
        margin=1.0,
        swap=False,
        reduction: str = 'mean',
        name=None,
    ):
1555
        super().__init__()
Y
yangguohao 已提交
1556 1557 1558 1559
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in TripletMarginWithDistanceLoss "
                "should be 'sum', 'mean' or 'none', but "
1560 1561
                "received %s, which is not allowed." % reduction
            )
Y
yangguohao 已提交
1562 1563 1564 1565 1566 1567 1568
        self.margin = margin
        self.swap = swap
        self.reduction = reduction
        self.distance_function = distance_function
        self.name = name

    def forward(self, input, positive, negative):
1569 1570 1571 1572 1573 1574 1575 1576 1577
        return F.triplet_margin_with_distance_loss(
            input,
            positive,
            negative,
            margin=self.margin,
            swap=self.swap,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646


class TripletMarginLoss(Layer):
    r"""
    Creates a criterion that measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, *)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        margin (float, Optional):Default: :math:`1`.

        p (int, Optional):The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional):Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool, Optional):The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.

        reduction (str, Optional):Indicate how to average the loss by batch_size.
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``

        name (str,Optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:
        input (Tensor):Input tensor, the data type is float32 or float64.
        the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
        The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
        The shape of label is the same as the shape of input.

    Returns:
        Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            triplet_margin_loss = paddle.nn.TripletMarginLoss(reduction='none')
            loss = triplet_margin_loss(input, positive, negative)
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])
1647

Y
yangguohao 已提交
1648 1649 1650 1651 1652 1653 1654
            triplet_margin_loss = paddle.nn.TripletMarginLoss(margin=1.0, swap=True, reduction='mean', )
            loss = triplet_margin_loss(input, positive, negative,)
            print(loss)
            # Tensor([0.19165580])

    """

1655 1656 1657 1658 1659 1660 1661 1662 1663
    def __init__(
        self,
        margin=1.0,
        p=2.0,
        epsilon=1e-6,
        swap=False,
        reduction='mean',
        name=None,
    ):
1664
        super().__init__()
Y
yangguohao 已提交
1665 1666 1667
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in TripletMarginLoss should be 'sum', 'mean' or 'none', but "
1668 1669
                "received %s, which is not allowed." % reduction
            )
Y
yangguohao 已提交
1670 1671 1672 1673 1674 1675 1676 1677
        self.margin = margin
        self.p = p
        self.epsilon = epsilon
        self.swap = swap
        self.reduction = reduction
        self.name = name

    def forward(self, input, positive, negative):
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
        return F.triplet_margin_loss(
            input,
            positive,
            negative,
            margin=self.margin,
            p=self.p,
            epsilon=self.epsilon,
            swap=self.swap,
            reduction=self.reduction,
            name=self.name,
        )
1689 1690


Y
yangguohao 已提交
1691 1692
class MultiMarginLoss(Layer):
    r"""Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between
1693
    input :math:`input` and label :math:`label`:
Y
yangguohao 已提交
1694

1695 1696
    For i-th mini-batch sample, the loss in terms of the 1D input :math:`input_i` and scalar
    output :math:`label_i` is:
Y
yangguohao 已提交
1697

1698 1699
    .. math::
        \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, \text{margin} - input_i[label_i] + input_i[j])^p}{\text{C}}
Y
yangguohao 已提交
1700

1701
    where :math:`0 \leq j \leq \text{C}-1`, :math:`0 \leq i \leq \text{N}-1` and :math:`j \neq label_i`.
Y
yangguohao 已提交
1702

1703 1704
    Optionally, you can give non-equal weighting on the classes by passing
    a 1D :attr:`weight` tensor into the constructor.
Y
yangguohao 已提交
1705

1706
    The loss function for i-th sample then becomes:
Y
yangguohao 已提交
1707

1708 1709
    .. math::
        \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, weight[label_i] * (\text{margin} - input_i[label_i] + input_i[j]))^p}{\text{C}}
Y
yangguohao 已提交
1710 1711


1712
    Parameters:
Y
yangguohao 已提交
1713

1714
        p (int, Optional):The norm degree for pairwise distance. Default: :math:`1`.
Y
yangguohao 已提交
1715

1716
        margin (float, Optional):Default: :math:`1`.
Y
yangguohao 已提交
1717

1718 1719 1720
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of shape (C,) and the data type is float32, float64.
                Default is ``'None'`` .
Y
yangguohao 已提交
1721

1722 1723 1724 1725 1726 1727
        reduction (str, optional): Indicate how to calculate the loss by batch_size,
                the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
Y
yangguohao 已提交
1728

1729 1730
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
1731

1732 1733
    Call parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
Y
yangguohao 已提交
1734

1735
        label (Tensor): Label tensor, 0<= label < input.shape[1], the data type is int32 or int64.
Y
yangguohao 已提交
1736

1737 1738
    Shape:
        input: 2-D Tensor, the shape is [N, C], N is batch size and `C` means number of classes.
Y
yangguohao 已提交
1739

1740
        label: 1-D Tensor, the shape is [N,].
Y
yangguohao 已提交
1741

1742
        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the label.
Y
yangguohao 已提交
1743

1744 1745
    Returns:
        A callable object of MultiMarginLoss.
Y
yangguohao 已提交
1746

1747 1748
    Examples:
        .. code-block:: python
Y
yangguohao 已提交
1749

1750 1751
            import paddle
            import paddle.nn as nn
Y
yangguohao 已提交
1752

1753 1754
            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            label = paddle.to_tensor([0, 1, 2], dtype=paddle.int32)
Y
yangguohao 已提交
1755

1756 1757 1758 1759
            multi_margin_loss = nn.MultiMarginLoss(reduction='mean')
            loss = multi_margin_loss(input, label)
            print(loss)
    """
Y
yangguohao 已提交
1760

1761 1762 1763 1764 1765 1766 1767 1768
    def __init__(
        self,
        p: int = 1,
        margin: float = 1.0,
        weight=None,
        reduction="mean",
        name=None,
    ):
1769
        super().__init__()
Y
yangguohao 已提交
1770 1771 1772
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MultiMarginLoss' should be 'sum', 'mean' or 'none', "
1773 1774
                "but received {}.".format(reduction)
            )
Y
yangguohao 已提交
1775 1776 1777 1778 1779 1780 1781
        self.p = p
        self.margin = margin
        self.weight = weight
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1782 1783 1784 1785 1786 1787 1788 1789 1790
        return F.multi_margin_loss(
            input,
            label,
            p=self.p,
            margin=self.margin,
            weight=self.weight,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1791 1792


1793 1794
class SoftMarginLoss(Layer):
    r"""
1795

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
    Creates a criterion that measures a two-class soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shapes:
1814 1815 1816 1817 1818 1819 1820 1821
        - Input (Tensor): The input tensor with shape: ``[N, *]``,
          N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf
          Available dtype is float32, float64.
        - Label (Tensor): The target labels tensor with the same shape as
          ``input``. The target labels which values should be numbers -1 or 1.
          Available dtype is int32, int64, float32, float64.
        - Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
          same as ``input`` , else the shape of output is [1].
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

    Returns:
        A callable object of SoftMarginLoss.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            soft_margin_loss = paddle.nn.SoftMarginLoss()
            output = soft_margin_loss(input, label)
1835 1836 1837
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.64022040])
1838

1839 1840
            input_np = paddle.uniform(shape=(5, 5), min=0.1, max=0.8, dtype="float64")
            label_np = paddle.randint(high=2, shape=(5, 5), dtype="int64")
1841 1842 1843 1844 1845
            label_np[label_np==0]=-1
            input = paddle.to_tensor(input_np)
            label = paddle.to_tensor(label_np)
            soft_margin_loss = paddle.nn.SoftMarginLoss(reduction='none')
            output = soft_margin_loss(input, label)
1846 1847 1848 1849 1850 1851 1852
            print(output)
            # Tensor(shape=[5, 5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [[0.61739663, 0.51405668, 1.09346100, 0.42385561, 0.91602303],
            #         [0.76997038, 1.01977148, 0.98971722, 1.13976032, 0.88152088],
            #         [0.55476735, 1.10505384, 0.89923519, 0.45018155, 1.06587511],
            #         [0.37998142, 0.48067240, 0.47791212, 0.55664053, 0.98581399],
            #         [0.78571653, 0.59319711, 0.39701841, 0.76172109, 0.83781742]])
1853

1854 1855 1856 1857 1858 1859
    """

    def __init__(self, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in SoftMarginLoss should be 'sum', 'mean' or 'none', but "
1860 1861
                "received %s, which is not allowed." % reduction
            )
1862

1863
        super().__init__()
1864 1865 1866 1867
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1868 1869 1870
        out = paddle.nn.functional.soft_margin_loss(
            input, label, self.reduction, self.name
        )
1871
        return out