conv_grad_kernel.cu 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangkaihuo 已提交
15
#include "paddle/phi/kernels/sparse/conv_grad_kernel.h"
16

17
#include "glog/logging.h"
18 19 20 21
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
22
#include "paddle/phi/core/tensor_utils.h"
23
#include "paddle/phi/core/visit_type.h"
24 25
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
26
#include "paddle/phi/kernels/sparse/gpu/conv.cu.h"
27
#if defined(PADDLE_WITH_CUTLASS) && SPCONV_WITH_CUTLASS
28 29
#include "paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.h"
#endif
30 31 32

namespace phi {
namespace sparse {
33
extern size_t workspace_size;
34 35 36 37 38 39 40 41 42

// rulebook[3, rulebook_len]:
//[
//  [kernel_index],
//  [in_i],
//  [out_i],
//]
// x_grad = out_grad * transpose(kenrel)
// kernel_grad = transpose(x) * out_grad
43
template <typename T, typename IntT>
Z
zhangkaihuo 已提交
44 45 46
void Conv3dCooGradGPUKernel(const GPUContext& dev_ctx,
                            const SparseCooTensor& x,
                            const DenseTensor& kernel,
47
                            const SparseCooTensor& out,
Z
zhangkaihuo 已提交
48
                            const DenseTensor& rulebook,
49
                            const DenseTensor& counter,
Z
zhangkaihuo 已提交
50 51 52 53 54 55
                            const SparseCooTensor& out_grad,
                            const std::vector<int>& paddings,
                            const std::vector<int>& dilations,
                            const std::vector<int>& strides,
                            const int groups,
                            const bool subm,
56
                            const std::string& key,
Z
zhangkaihuo 已提交
57 58
                            SparseCooTensor* x_grad,
                            DenseTensor* kernel_grad) {
59 60 61 62 63
  const auto& kernel_dims = kernel.dims();
  const int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];

64 65 66 67
  int rulebook_len = 0;
  const IntT* rulebook_ptr = phi::funcs::sparse::GetRulebookPtr<IntT>(
      out, rulebook, key, &rulebook_len);
  const int* counter_ptr = phi::funcs::sparse::GetCounterPtr(out, counter, key);
68 69

  phi::DenseTensor in_features =
70
      phi::Empty<T>(dev_ctx, {rulebook_len, in_channels});
71
  phi::DenseTensor d_x_features =
72
      phi::Empty<T>(dev_ctx, {rulebook_len, in_channels});
73
  phi::DenseTensor out_grad_features =
74
      phi::Empty<T>(dev_ctx, {rulebook_len, out_channels});
75 76 77 78

  T* in_features_ptr = in_features.data<T>();
  T* d_x_features_ptr = d_x_features.data<T>();
  T* out_grad_features_ptr = out_grad_features.data<T>();
79
  *kernel_grad = phi::EmptyLike<T>(dev_ctx, kernel);
80
  T* d_kernel_ptr = kernel_grad->data<T>();
81 82
  phi::backends::gpu::GpuMemsetAsync(
      d_kernel_ptr, 0, sizeof(T) * kernel_grad->numel(), dev_ctx.stream());
83

Z
zhangkaihuo 已提交
84
  int half_kernel_size = kernel_size / 2;
85
  auto blas = phi::funcs::GetBlas<GPUContext, T>(dev_ctx);
86
  DenseTensor x_grad_indices = phi::EmptyLike<IntT>(dev_ctx, x.indices());
87
  DenseTensor x_grad_values = phi::EmptyLike<T>(dev_ctx, x.values());
88
  T* x_grad_values_ptr = x_grad_values.data<T>();
89 90 91 92 93 94
  phi::backends::gpu::GpuMemsetAsync(x_grad_values_ptr,
                                     0,
                                     sizeof(T) * x_grad_values.numel(),
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemsetAsync(
      d_x_features_ptr, 0, sizeof(T) * d_x_features.numel(), dev_ctx.stream());
95 96
  phi::Copy<GPUContext>(
      dev_ctx, x.indices(), dev_ctx.GetPlace(), false, &x_grad_indices);
97
  x_grad->SetMember(x_grad_indices, x_grad_values, x.dims(), true);
Z
zhangkaihuo 已提交
98

99
  std::vector<int> offsets(kernel_size + 1);
100

101
  int offset = 0, max_count = 0;
102 103
  for (int i = 0; i < kernel_size; i++) {
    offsets[i] = offset;
104
    offset += counter_ptr[i];
Z
zhangkaihuo 已提交
105
    if (i < half_kernel_size) {
106
      max_count = std::max(max_count, counter_ptr[i]);
Z
zhangkaihuo 已提交
107
    }
108 109 110
  }
  offsets[kernel_size] = offset;

Z
zhangkaihuo 已提交
111
  if (subm) {
112 113 114 115 116 117 118 119 120
    phi::funcs::sparse::SubmPreProcess<T, GPUContext>(dev_ctx,
                                                      x,
                                                      kernel,
                                                      out_grad.values(),
                                                      in_channels,
                                                      out_channels,
                                                      half_kernel_size,
                                                      kernel_grad,
                                                      &x_grad_values);
Z
zhangkaihuo 已提交
121 122 123 124 125
    if (max_count == 0) {
      return;
    }
  }

126 127 128
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rulebook_len, 1);
  DenseTensor unique_value = phi::Empty<int>(
129
      dev_ctx, {static_cast<int>(x_grad->nnz() * kernel_size * 2)});
130 131 132 133 134 135
  DenseTensor out_index =
      phi::Empty<int>(dev_ctx, {static_cast<int>(x.nnz() * 2)});
  int* out_index_ptr = out_index.data<int>();
  int* unique_value_ptr = unique_value.data<int>();
  phi::backends::gpu::GpuMemsetAsync(
      out_index_ptr, 0, sizeof(int) * x.nnz() * 2, dev_ctx.stream());
Z
zhangkaihuo 已提交
136

137
#if defined(PADDLE_WITH_CUTLASS) && SPCONV_WITH_CUTLASS
138 139
  bool cutlass = true;
  if (dev_ctx.GetComputeCapability() < 80) cutlass = false;
Z
zhangkaihuo 已提交
140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  if (in_channels % 4 != 0 || out_channels % 4 != 0) cutlass = false;

  if (std::is_same<T, phi::dtype::float16>::value ||
      std::is_same<T, double>::value)
    cutlass = false;

  if (!std::is_same<IntT, int32_t>::value) cutlass = false;

  if (!cutlass) {
#endif

    GroupIndexsV2<<<config.block_per_grid,
                    config.thread_per_block,
                    0,
                    dev_ctx.stream()>>>(rulebook_len,
                                        x.nnz(),
                                        kernel_size,
                                        offsets[kernel_size / 2],
                                        rulebook_ptr,
                                        out_index_ptr,
                                        unique_value_ptr);

    GatherV2<T, IntT>(dev_ctx,
                      x.values().data<T>(),
                      out_index_ptr,
                      unique_value_ptr,
                      x.nnz(),
                      kernel_size,
                      in_channels,
                      2,
                      in_features_ptr);

    Gather<T, IntT>(dev_ctx,
                    out_grad.values().data<T>(),
                    rulebook_ptr + rulebook_len,
                    rulebook_len,
                    out_channels,
                    out_grad_features_ptr);

180
#if defined(PADDLE_WITH_CUTLASS) && SPCONV_WITH_CUTLASS
181 182
  }
#endif
183 184
  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
185
    if (counter_ptr[i] <= 0 || (subm && i == half_kernel_size)) {
186 187 188
      continue;
    }

189
    const int M = counter_ptr[i];
190 191 192 193 194
    const int K = in_channels;
    const int N = out_channels;
    T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels;
    T* tmp_out_grad_ptr = out_grad_features_ptr + offsets[i] * out_channels;
    const T* tmp_kernel_ptr = kernel_ptr + i * in_channels * out_channels;
195
    T* tmp_d_x_ptr = d_x_features_ptr + offsets[i] * in_channels;
196 197
    T* tmp_d_kernel_ptr = d_kernel_ptr + i * in_channels * out_channels;

198
#if defined(PADDLE_WITH_CUTLASS) && SPCONV_WITH_CUTLASS
199 200 201 202 203 204 205 206 207
    if (cutlass) {
      const IntT* gather_x_indices = rulebook_ptr + offsets[i];
      const IntT* scatter_x_indices = rulebook_ptr + offsets[i];
      const IntT* gather_out_indices = rulebook_ptr + rulebook_len + offsets[i];
      const size_t key = autotune::GenKey(M / features_num_range, N, K);
      // call gemm: d_kernel = transpose(x) * out_grad
      // (in_channels, n) * (n, out_channels)
      static cutlass::device_memory::allocation<uint8_t> workspace(
          workspace_size);
208
      GatherGemmScatterDriver<80, true, false>(
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
          dev_ctx,
          key,
          x.values().data<T>(),
          out_grad.values().data<T>(),
          tmp_d_kernel_ptr,
          tmp_d_kernel_ptr,
          in_channels,
          out_channels,
          counter_ptr[i],
          gather_x_indices,
          gather_out_indices,
          static_cast<const IntT*>(nullptr),
          static_cast<const T>(1.0),
          static_cast<const T>(0.0),
          &workspace);
      // call gemm: d_x = out_grad * transpose(kernel)
      // (n, out_channels) * (out_channels, in_channels)
226
      GatherGemmScatterDriver<80, false, true>(
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
          dev_ctx,
          key,
          out_grad.values().data<T>(),
          tmp_kernel_ptr,
          x_grad_values_ptr,
          x_grad_values_ptr,
          counter_ptr[i],
          in_channels,
          out_channels,
          gather_out_indices,
          static_cast<const IntT*>(nullptr),
          scatter_x_indices,
          static_cast<const T>(1.0),
          static_cast<const T>(1.0),
          nullptr);
    } else {
#endif
      // call gemm: d_kernel = transpose(x) * out_grad
      // (in_channels, n) * (n, out_channels)
      blas.GEMM(CblasTrans,
                CblasNoTrans,
                K,
                N,
                M,
                static_cast<T>(1),
                tmp_in_ptr,
                tmp_out_grad_ptr,
                static_cast<T>(0),
                tmp_d_kernel_ptr);

      // call gemm: d_x = out_grad * transpose(kernel)
      // (n, out_channels) * (out_channels, in_channels)
      blas.GEMM(CblasNoTrans,
                CblasTrans,
                M,
                K,
                N,
                static_cast<T>(1),
                tmp_out_grad_ptr,
                tmp_kernel_ptr,
                static_cast<T>(0),
                tmp_d_x_ptr);
269
#if defined(PADDLE_WITH_CUTLASS) && SPCONV_WITH_CUTLASS
270 271
    }
#endif
272 273 274
  }

  // 4. scatter
275
#if defined(PADDLE_WITH_CUTLASS) && SPCONV_WITH_CUTLASS
276 277 278 279 280 281 282 283 284 285 286
  if (!cutlass) {
#endif
    phi::funcs::sparse::ScatterV2<T>(dev_ctx,
                                     d_x_features_ptr,
                                     out_index.data<int>(),
                                     unique_value.data<int>(),
                                     x_grad->nnz(),
                                     kernel_size,
                                     in_channels,
                                     2,
                                     x_grad_values_ptr);
287
#if defined(PADDLE_WITH_CUTLASS) && SPCONV_WITH_CUTLASS
288 289
  }
#endif
290 291
}

292
template <typename T, typename Context>
Z
zhangkaihuo 已提交
293 294 295
void Conv3dCooGradKernel(const Context& dev_ctx,
                         const SparseCooTensor& x,
                         const DenseTensor& kernel,
296
                         const SparseCooTensor& out,
Z
zhangkaihuo 已提交
297
                         const DenseTensor& rulebook,
298
                         const DenseTensor& counter,
Z
zhangkaihuo 已提交
299 300 301 302 303 304
                         const SparseCooTensor& out_grad,
                         const std::vector<int>& paddings,
                         const std::vector<int>& dilations,
                         const std::vector<int>& strides,
                         const int groups,
                         const bool subm,
305
                         const std::string& key,
Z
zhangkaihuo 已提交
306 307
                         SparseCooTensor* x_grad,
                         DenseTensor* kernel_grad) {
Z
zhangkaihuo 已提交
308
  PD_VISIT_BASE_INTEGRAL_TYPES(
309
      x.indices().dtype(), "Conv3dCooGradGPUKernel", ([&] {
Z
zhangkaihuo 已提交
310 311 312
        Conv3dCooGradGPUKernel<T, data_t>(dev_ctx,
                                          x,
                                          kernel,
313
                                          out,
Z
zhangkaihuo 已提交
314
                                          rulebook,
315
                                          counter,
Z
zhangkaihuo 已提交
316 317 318 319 320 321
                                          out_grad,
                                          paddings,
                                          dilations,
                                          strides,
                                          groups,
                                          subm,
322
                                          key,
Z
zhangkaihuo 已提交
323 324
                                          x_grad,
                                          kernel_grad);
325 326 327
      }));
}

328 329 330
}  // namespace sparse
}  // namespace phi

Z
zhangkaihuo 已提交
331
PD_REGISTER_KERNEL(conv3d_coo_grad,
332 333
                   GPU,
                   ALL_LAYOUT,
Z
zhangkaihuo 已提交
334
                   phi::sparse::Conv3dCooGradKernel,
335 336 337 338 339
                   float,
                   double,
                   phi::dtype::float16) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}