distributed_py.cc 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fcntl.h>
#ifdef _POSIX_C_SOURCE
#undef _POSIX_C_SOURCE
#endif

#ifdef _XOPEN_SOURCE
#undef _XOPEN_SOURCE
#endif

#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/distributed/collective/Types.h"
26
#include "paddle/fluid/distributed/collective/reducer.h"
27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/all.h"

#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#endif

38 39 40 41
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#endif

42 43 44 45 46
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
#include "paddle/fluid/distributed/collective/ProcessGroupHeter.h"
#endif

47 48 49 50 51
#if defined(PADDLE_WITH_GLOO)
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/distributed/store/tcp_store.h"
#endif

52 53 54 55 56 57 58
namespace py = pybind11;

namespace paddle {
namespace pybind {

using Tensor = paddle::experimental::Tensor;

59 60 61 62 63 64 65 66 67 68 69 70
std::shared_ptr<distributed::EagerReducer> CreateEagerReducer(
    py::handle py_tensors,
    const std::vector<std::vector<size_t>> &group_indices,
    const std::vector<bool> &is_sparse_gradient,
    std::shared_ptr<distributed::ProcessGroup> process_group,
    const std::vector<size_t> &group_size_limits, bool find_unused_parameters) {
  auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
  return std::make_shared<distributed::EagerReducer>(
      params, group_indices, is_sparse_gradient, process_group,
      group_size_limits, find_unused_parameters);
}

71 72 73 74 75 76 77 78
#if defined(PADDLE_WITH_GLOO)
using ProcessGroupGloo = paddle::distributed::ProcessGroupGloo;
using GlooStore = paddle::distributed::ProcessGroupGloo::GlooStore;
using GlooOptions = paddle::distributed::ProcessGroupGloo::GlooOptions;
#endif

static std::string GLOO_SOCKET_IFNAME_ENV = "GLOO_SOCKET_IFNAME";  // NOLINT

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
void BindDistributed(py::module *m) {
  py::enum_<distributed::ReduceOp>(*m, "ReduceOp")
      .value("SUM", distributed::ReduceOp::SUM)
      .value("AVG", distributed::ReduceOp::AVG)
      .value("MAX", distributed::ReduceOp::MAX)
      .value("MIN", distributed::ReduceOp::MIN)
      .value("PRODUCT", distributed::ReduceOp::PRODUCT);

  py::class_<distributed::AllreduceOptions>(*m, "AllreduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::AllreduceOptions::reduce_op);

  py::class_<distributed::BroadcastOptions>(*m, "BroadcastOptions")
      .def(py::init<>())
      .def_readwrite("source_rank", &distributed::BroadcastOptions::source_rank)
      .def_readwrite("source_root",
                     &distributed::BroadcastOptions::source_root);

B
Baibaifan 已提交
97 98 99 100
  py::class_<distributed::BarrierOptions>(*m, "BarrierOptions")
      .def(py::init<>())
      .def_readwrite("place_ids", &distributed::BarrierOptions::place_ids);

101 102 103 104 105
  py::class_<distributed::ReduceOptions>(*m, "ReduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::ReduceOptions::reduce_op)
      .def_readwrite("source_root", &distributed::ReduceOptions::root_rank);

106 107 108 109 110 111 112 113 114 115 116 117
  auto ProcessGroup =
      py::class_<distributed::ProcessGroup,
                 std::shared_ptr<distributed::ProcessGroup>>(*m, "ProcessGroup")
          .def("rank", &distributed::ProcessGroup::GetRank)
          .def("size", &distributed::ProcessGroup::GetSize)
          .def("name", &distributed::ProcessGroup::GetBackendName)
          .def("allreduce",
               [](distributed::ProcessGroup &self, py::handle py_tensor,
                  distributed::ReduceOp op) {
                 auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                 distributed::AllreduceOptions opts;
                 opts.reduce_op = op;
118 119 120 121
                 auto dense =
                     std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                 std::vector<phi::DenseTensor> tensors = {*dense};
                 return self.AllReduce(tensors, tensors, opts);
122 123 124 125 126 127 128 129 130 131
               },
               py::arg("tensor"), py::arg("op") = distributed::ReduceOp::SUM,
               py::call_guard<py::gil_scoped_release>())

          .def("broadcast",
               [](distributed::ProcessGroup &self, py::handle py_tensor,
                  int source_rank) {
                 auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                 distributed::BroadcastOptions opts;
                 opts.source_rank = source_rank;
132 133 134 135
                 auto dense =
                     std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                 std::vector<phi::DenseTensor> tensors = {*dense};
                 return self.Broadcast(tensors, tensors, opts);
136 137
               },
               py::arg("tensor"), py::arg("source_rank"),
B
Baibaifan 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
               py::call_guard<py::gil_scoped_release>())

          .def("barrier",
               [](distributed::ProcessGroup &self, std::vector<int> place_ids) {
                 distributed::BarrierOptions opts;
                 opts.place_ids = place_ids;
                 return self.Barrier(opts);
               },
               py::arg("place_ids") = std::vector<int>{},
               py::call_guard<py::gil_scoped_release>())

          .def("send",
               [](distributed::ProcessGroup &self, py::handle py_tensor,
                  int dst) {
                 auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
153 154 155
                 auto dense =
                     std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                 std::vector<phi::DenseTensor> tensors = {*dense};
B
Baibaifan 已提交
156 157 158 159 160 161 162 163 164
                 return self.Send(tensors, dst);
               },
               py::arg("tensor"), py::arg("dst"),
               py::call_guard<py::gil_scoped_release>())

          .def("recv",
               [](distributed::ProcessGroup &self, py::handle py_tensor,
                  int src) {
                 auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
165 166 167
                 auto dense =
                     std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                 std::vector<phi::DenseTensor> tensors = {*dense};
B
Baibaifan 已提交
168 169 170
                 return self.Recv(tensors, src);
               },
               py::arg("tensor"), py::arg("src"),
171 172 173 174 175 176 177
               py::call_guard<py::gil_scoped_release>())

          .def("all_gather",
               [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                  py::handle py_out_tensor) {
                 auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                 auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
178 179 180 181 182 183
                 auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                     in_tensor.impl());
                 auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                     out_tensor.impl());
                 std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                 std::vector<phi::DenseTensor> out_tensors = {*out_dense};
184 185 186 187 188 189 190 191 192 193
                 return self.AllGather(in_tensors, out_tensors);
               },
               py::arg("in"), py::arg("out"),
               py::call_guard<py::gil_scoped_release>())

          .def("alltoall",
               [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                  py::handle py_out_tensor) {
                 auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                 auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
194 195 196 197 198 199
                 auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                     in_tensor.impl());
                 auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                     out_tensor.impl());
                 std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                 std::vector<phi::DenseTensor> out_tensors = {*out_dense};
200 201 202 203 204 205 206 207 208 209 210 211
                 return self.AllToAll(in_tensors, out_tensors);
               },
               py::arg("in"), py::arg("out"),
               py::call_guard<py::gil_scoped_release>())

          .def("reduce",
               [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                  int dst, distributed::ReduceOp op) {
                 auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                 distributed::ReduceOptions opts;
                 opts.reduce_op = op;
                 opts.root_rank = dst;
212 213 214 215
                 auto dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                     in_tensor.impl());
                 std::vector<phi::DenseTensor> tensors = {*dense};
                 return self.Reduce(tensors, tensors, opts);
216 217 218 219 220 221 222 223 224 225 226 227
               },
               py::arg("tensor"), py::arg("dst"),
               py::arg("op") = distributed::ReduceOp::SUM,
               py::call_guard<py::gil_scoped_release>())

          .def("scatter",
               [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                  py::handle py_out_tensor, int src) {
                 auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                 auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                 distributed::ScatterOptions opts;
                 opts.root_rank = src;
228 229 230 231 232 233
                 auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                     in_tensor.impl());
                 auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                     out_tensor.impl());
                 std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                 std::vector<phi::DenseTensor> out_tensors = {*out_dense};
234 235 236
                 return self.Scatter(in_tensors, out_tensors, opts);
               },
               py::arg("in"), py::arg("out"), py::arg("src"),
237 238 239 240 241 242
               py::call_guard<py::gil_scoped_release>());

#if defined(PADDLE_WITH_NCCL)
  py::class_<distributed::ProcessGroupNCCL,
             std::shared_ptr<distributed::ProcessGroupNCCL>>(
      *m, "ProcessGroupNCCL", ProcessGroup)
L
lilong12 已提交
243
      .def(py::init<const std::shared_ptr<distributed::Store> &, int, int,
244
                    const platform::CUDAPlace &, int>(),
L
lilong12 已提交
245
           py::arg("store"), py::arg("rank"), py::arg("world_size"),
246 247 248
           py::arg("place"), py::arg("group_id") = 0,
           py::call_guard<py::gil_scoped_release>());
#endif
249 250 251 252 253 254

#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
  py::class_<distributed::ProcessGroupHeter,
             std::shared_ptr<distributed::ProcessGroupHeter>>(
      *m, "ProcessGroupHeter", ProcessGroup)
255 256 257 258 259 260
      .def(py::init<const std::shared_ptr<distributed::Store> &, int, int,
#if defined(PADDLE_WITH_ASCEND_CL)
                    const platform::NPUPlace &,
#else
                    const platform::CUDAPlace &,
#endif
261
                    int, int, int, int, int, bool, std::string, int, int>(),
262
           py::arg("store"), py::arg("rank"), py::arg("world_size"),
263
           py::arg("place"), py::arg("gid") = 0, py::arg("local_rank") = 0,
264 265
           py::arg("local_size") = 1, py::arg("gloo_rank") = 0,
           py::arg("gloo_size") = 1, py::arg("with_switch") = false,
266 267
           py::arg("switch_endpoint") = "", py::arg("src_rank") = "",
           py::arg("dst_rank") = "", py::call_guard<py::gil_scoped_release>());
268
#endif
269

270 271 272 273
#if defined(PADDLE_WITH_ASCEND_CL)
  py::class_<distributed::ProcessGroupHCCL,
             std::shared_ptr<distributed::ProcessGroupHCCL>>(
      *m, "ProcessGroupHCCL", ProcessGroup)
L
lilong12 已提交
274
      .def(py::init<const std::shared_ptr<distributed::Store> &, int, int,
275
                    const platform::NPUPlace &, int>(),
276
           py::arg("store"), py::arg("rank"), py::arg("world_size"),
277
           py::arg("place"), py::arg("group_id") = 0,
278
           py::call_guard<py::gil_scoped_release>());
279

280 281
#endif

282 283 284 285 286 287 288 289 290
  py::class_<distributed::ProcessGroup::Task,
             std::shared_ptr<distributed::ProcessGroup::Task>>(*m, "task")
      .def("is_completed", &distributed::ProcessGroup::Task::IsCompleted)
      .def("wait", &distributed::ProcessGroup::Task::Wait,
           py::arg("timeout") = kWaitTimeout,
           py::call_guard<py::gil_scoped_release>())
      .def("synchronize", &distributed::ProcessGroup::Task::Synchronize,
           py::call_guard<py::gil_scoped_release>());

291 292 293
#if defined(PADDLE_WITH_GLOO)
  py::class_<ProcessGroupGloo, std::shared_ptr<ProcessGroupGloo>>(
      *m, "ProcessGroupGloo", ProcessGroup)
294
      .def(py::init<const std::shared_ptr<paddle::distributed::Store> &, int,
295 296
                    int, const platform::CPUPlace &, int,
                    std::shared_ptr<GlooOptions> &>(),
297
           py::call_guard<py::gil_scoped_release>())
298
      .def(py::init([](const std::shared_ptr<paddle::distributed::Store> &store,
299 300
                       int rank, int world_size,
                       const platform::CPUPlace &place, int gid) {
301 302 303 304 305 306 307 308 309
             auto opts = GlooOptions::create();
             char *ifname = getenv(GLOO_SOCKET_IFNAME_ENV.c_str());
             if (ifname && strlen(ifname) > 1) {
               opts->device = ProcessGroupGloo::createDeviceForInterface(
                   std::string(ifname));
             } else {
               opts->device = ProcessGroupGloo::createDefaultDevice();
             }
             return std::make_shared<ProcessGroupGloo>(store, rank, world_size,
310
                                                       place, gid, opts);
311
           }),
312
           py::arg("store"), py::arg("rank"), py::arg("world_size"),
313 314
           py::arg("place"), py::arg("group_id") = 0,
           py::call_guard<py::gil_scoped_release>())
315 316 317 318
      .def_static("create_default_device",
                  &ProcessGroupGloo::createDefaultDevice);
#endif

319 320 321 322 323 324 325 326 327 328 329 330
  m->def("eager_assign_group_by_size",
         [](py::handle py_tensors, std::vector<bool> is_sparse_gradient,
            std::vector<size_t> group_size_limits,
            std::vector<int64_t> tensor_indices) {
           auto tensors = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
           return distributed::Eager_AssignGroupBySize(
               tensors, is_sparse_gradient, group_size_limits, tensor_indices);
         },
         py::arg("tensors"), py::arg("is_sparse_gradient"),
         py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
         py::arg("tensor_indices") = std::vector<int64_t>{},
         py::call_guard<py::gil_scoped_release>());
331 332 333 334 335 336 337 338 339 340 341

  py::class_<distributed::EagerReducer,
             std::shared_ptr<distributed::EagerReducer>>(*m, "EagerReducer",
                                                         R"DOC()DOC")
      .def(py::init(&CreateEagerReducer))
      .def("prepare_for_backward",
           [](distributed::EagerReducer &self, py::handle py_tensors) {
             auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
             self.PrepareForBackward(params);
           },
           py::arg("tensors"), py::call_guard<py::gil_scoped_release>());
342 343 344 345
}

}  // end namespace pybind
}  // namespace paddle