Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
73583f86
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
73583f86
编写于
3月 08, 2022
作者:
L
lilong12
提交者:
GitHub
3月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add the implementation of process group for hccl (#40228)
* add pg_hccl
上级
7024ade7
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
995 addition
and
0 deletion
+995
-0
paddle/fluid/distributed/collective/CMakeLists.txt
paddle/fluid/distributed/collective/CMakeLists.txt
+3
-0
paddle/fluid/distributed/collective/HCCLTools.h
paddle/fluid/distributed/collective/HCCLTools.h
+174
-0
paddle/fluid/distributed/collective/ProcessGroupHCCL.cc
paddle/fluid/distributed/collective/ProcessGroupHCCL.cc
+356
-0
paddle/fluid/distributed/collective/ProcessGroupHCCL.h
paddle/fluid/distributed/collective/ProcessGroupHCCL.h
+152
-0
paddle/fluid/platform/device/npu/hccl_helper.h
paddle/fluid/platform/device/npu/hccl_helper.h
+17
-0
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+3
-0
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+12
-0
python/paddle/fluid/tests/unittests/npu/process_group_hccl.py
...on/paddle/fluid/tests/unittests/npu/process_group_hccl.py
+249
-0
python/paddle/fluid/tests/unittests/npu/test_collective_process_group_hccl.py
...tests/unittests/npu/test_collective_process_group_hccl.py
+29
-0
未找到文件。
paddle/fluid/distributed/collective/CMakeLists.txt
浏览文件 @
73583f86
...
...
@@ -7,3 +7,6 @@ cc_library(eager_reducer SRCS reducer.cc DEPS eager_api processgroup)
if
(
WITH_NCCL
)
cc_library
(
processgroup_nccl SRCS ProcessGroupNCCL.cc DEPS place cuda_stream enforce collective_helper device_context phi phi_api eager_api
)
endif
()
if
(
WITH_ASCEND_CL
)
cc_library
(
processgroup_hccl SRCS ProcessGroupHCCL.cc DEPS place npu_stream enforce collective_helper device_context phi phi_api eager_api
)
endif
()
paddle/fluid/distributed/collective/HCCLTools.h
0 → 100644
浏览文件 @
73583f86
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <error.h>
#include <string>
#include "boost/variant.hpp"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/npu/enforce_npu.h"
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
distributed
{
class
NPUEventManager
{
public:
NPUEventManager
()
=
default
;
~
NPUEventManager
()
{
if
(
is_created_
)
{
platform
::
NPUDeviceGuard
guard
(
device_index_
);
platform
::
NPUEventDestroy
(
event_
);
}
}
NPUEventManager
(
const
NPUEventManager
&
)
=
delete
;
NPUEventManager
&
operator
=
(
const
NPUEventManager
&
)
=
delete
;
NPUEventManager
(
NPUEventManager
&&
other
)
{
std
::
swap
(
is_created_
,
other
.
is_created_
);
std
::
swap
(
device_index_
,
other
.
device_index_
);
std
::
swap
(
event_
,
other
.
event_
);
}
NPUEventManager
&
operator
=
(
NPUEventManager
&&
other
)
{
std
::
swap
(
is_created_
,
other
.
is_created_
);
std
::
swap
(
device_index_
,
other
.
device_index_
);
std
::
swap
(
event_
,
other
.
event_
);
return
*
this
;
}
bool
IsCreated
()
const
{
return
is_created_
;
}
bool
DeviceId
()
const
{
return
device_index_
;
}
aclrtEvent
GetRawNPUEvent
()
const
{
return
event_
;
}
void
Record
(
const
paddle
::
platform
::
NPUDeviceContext
&
ctx
)
{
auto
device_index
=
ctx
.
GetPlace
().
device
;
if
(
!
is_created_
)
{
CreateEvent
(
device_index
);
}
PADDLE_ENFORCE_EQ
(
device_index
,
device_index_
,
platform
::
errors
::
PreconditionNotMet
(
"NPUDeviceContext's device %d does not match"
"Event's device %d"
,
device_index
,
device_index_
));
platform
::
NPUDeviceGuard
guard
(
device_index_
);
platform
::
NPUEventRecord
(
event_
,
ctx
.
stream
());
}
bool
Query
()
const
{
aclrtEventStatus
status
=
ACL_EVENT_STATUS_COMPLETE
;
platform
::
NPUEventQuery
(
event_
,
&
status
);
if
(
status
==
ACL_EVENT_STATUS_COMPLETE
)
{
return
true
;
}
return
false
;
}
void
Block
(
const
paddle
::
platform
::
NPUDeviceContext
&
ctx
)
const
{
if
(
is_created_
)
{
auto
device_index
=
ctx
.
GetPlace
().
device
;
PADDLE_ENFORCE_EQ
(
device_index
,
device_index_
,
platform
::
errors
::
PreconditionNotMet
(
"CUDADeviceContext's device %d does not match"
"Event's device %d"
,
device_index
,
device_index_
));
platform
::
NPUDeviceGuard
guard
(
device_index_
);
platform
::
NPUStreamWaitEvent
(
ctx
.
stream
(),
event_
);
}
}
private:
bool
is_created_
{
false
};
aclrtEvent
event_
{};
int8_t
device_index_
{
0
};
private:
void
CreateEvent
(
int
device_index
)
{
device_index_
=
device_index
;
platform
::
NPUDeviceGuard
guard
(
device_index
);
platform
::
NPUEventCreate
(
&
event_
);
is_created_
=
true
;
}
};
class
HCCLCommManager
{
public:
explicit
HCCLCommManager
(
HcclComm
hcclComm
)
:
hccl_comm_
(
hcclComm
)
{}
HCCLCommManager
()
:
HCCLCommManager
(
nullptr
)
{}
~
HCCLCommManager
()
noexcept
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
if
(
hccl_comm_
)
{
platform
::
dynload
::
HcclCommDestroy
(
hccl_comm_
);
}
}
static
std
::
shared_ptr
<
HCCLCommManager
>
Create
(
int
num_ranks
,
int
rank
,
HcclRootInfo
*
comm_id
,
HcclComm
hccl_comm
)
{
auto
hccl_manager
=
std
::
make_shared
<
HCCLCommManager
>
();
auto
ret
=
platform
::
dynload
::
HcclCommInitRootInfo
(
num_ranks
,
comm_id
,
rank
,
&
hccl_comm
);
using
__NPU_STATUS_TYPE__
=
decltype
(
ret
);
constexpr
auto
__success_type__
=
platform
::
details
::
NPUStatusType
<
__NPU_STATUS_TYPE__
>::
kSuccess
;
if
(
UNLIKELY
(
ret
!=
__success_type__
))
{
VLOG
(
0
)
<<
"Error: create hccl_id error."
;
exit
(
-
1
);
}
hccl_manager
->
hccl_id_
=
comm_id
;
hccl_manager
->
rank_
=
rank
;
hccl_manager
->
hccl_comm_
=
hccl_comm
;
return
hccl_manager
;
}
HcclRootInfo
*
GetHcclId
()
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
return
hccl_id_
;
}
HcclComm
GetHcclComm
()
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
return
hccl_comm_
;
}
HCCLCommManager
(
const
HCCLCommManager
&
)
=
delete
;
HCCLCommManager
&
operator
=
(
const
HCCLCommManager
&
)
=
delete
;
HCCLCommManager
&
operator
=
(
HCCLCommManager
&&
other
)
=
delete
;
HCCLCommManager
(
HCCLCommManager
&&
other
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
other
.
mutex_
);
std
::
swap
(
hccl_comm_
,
other
.
hccl_comm_
);
}
protected:
HcclComm
hccl_comm_
;
HcclRootInfo
*
hccl_id_
;
int
rank_
;
mutable
std
::
mutex
mutex_
;
};
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/collective/ProcessGroupHCCL.cc
0 → 100644
浏览文件 @
73583f86
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/device/npu/hccl_helper.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/place.h"
DECLARE_bool
(
hccl_blocking_wait
);
// DECLARE_bool(use_stream_safe_npu_allocator);
constexpr
int64_t
kWaitBlockTImeout
=
10
;
namespace
paddle
{
namespace
distributed
{
static
HcclReduceOp
ToHCCLRedType
(
ReduceOp
reduction
)
{
static
const
std
::
map
<
ReduceOp
,
HcclReduceOp
>
red_type
=
{
{
ReduceOp
::
MIN
,
HCCL_REDUCE_MIN
},
{
ReduceOp
::
MAX
,
HCCL_REDUCE_MAX
},
{
ReduceOp
::
SUM
,
HCCL_REDUCE_SUM
},
{
ReduceOp
::
PRODUCT
,
HCCL_REDUCE_PROD
},
};
auto
it
=
red_type
.
find
(
reduction
);
PADDLE_ENFORCE_EQ
(
it
!=
red_type
.
end
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Invalid hccl reduction. "
"Must be Min | Max | Prod | Sum"
));
return
it
->
second
;
}
std
::
string
SerializeHCCLUniqueId
(
const
HcclRootInfo
&
hcclID
)
{
const
uint8_t
*
bytes
=
reinterpret_cast
<
const
uint8_t
*>
(
&
hcclID
);
std
::
ostringstream
oss
;
for
(
size_t
i
=
0
;
i
<
sizeof
(
hcclID
);
++
i
)
{
oss
<<
std
::
hex
<<
static_cast
<
int
>
(
bytes
[
i
]);
}
return
oss
.
str
();
}
// Get the list of devices from list of tensors
std
::
vector
<
Place
>
GetPlaceList
(
const
std
::
vector
<
Tensor
>&
tensors
)
{
std
::
vector
<
Place
>
places
;
places
.
reserve
(
tensors
.
size
());
for
(
auto
&
tensor
:
tensors
)
{
places
.
push_back
(
tensor
.
inner_place
());
}
return
places
;
}
// Get the deviceList String from the list of devices
std
::
string
GetKeyFromPlaces
(
const
std
::
vector
<
Place
>&
places
)
{
std
::
string
placeList
;
for
(
auto
&
place
:
places
)
{
std
::
stringstream
tmp
;
tmp
<<
place
;
if
(
placeList
.
empty
())
{
placeList
+=
tmp
.
str
();
}
else
{
placeList
+=
","
+
tmp
.
str
();
}
}
return
placeList
;
}
// bool CheckTensorsInNPUPlace(const std::vector<Tensor>& tensors) {
// return std::all_of(tensors.cbegin(), tensors.cend(), [&](const Tensor& t) {
// return t.place() == platform::DeviceType::NPU;
// });
// }
void
SyncDefaultStream
(
const
std
::
vector
<
Place
>&
places
,
std
::
vector
<
NPUEventManager
>&
hcclEvents
,
// NOLINT
std
::
vector
<
std
::
unique_ptr
<
NPUDeviceContext
>>&
dev_ctx
)
{
// NOLINT
for
(
size_t
i
=
0
;
i
<
places
.
size
();
++
i
)
{
auto
*
default_ctx
=
static_cast
<
platform
::
NPUDeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
places
[
i
]));
hcclEvents
[
i
].
Record
(
*
dev_ctx
[
i
]);
hcclEvents
[
i
].
Block
(
*
default_ctx
);
}
}
std
::
shared_ptr
<
ProcessGroupHCCL
::
HCCLTask
>
ProcessGroupHCCL
::
CreateTask
(
std
::
vector
<
Place
>
places
,
int
rank
,
CommType
comm_type
,
const
std
::
vector
<
Tensor
>&
inputs
)
{
return
std
::
make_shared
<
ProcessGroupHCCL
::
HCCLTask
>
(
places
,
rank
,
comm_type
,
inputs
);
}
ProcessGroupHCCL
::
HCCLTask
::
HCCLTask
(
const
std
::
vector
<
Place
>&
places
,
int
rank
,
CommType
CommType
,
const
std
::
vector
<
Tensor
>&
inputs
)
:
Task
(
rank
,
inputs
,
CommType
),
places_
(
places
)
{
control_events_
.
resize
(
places
.
size
());
hcclComms_
.
resize
(
places
.
size
());
}
ProcessGroupHCCL
::
HCCLTask
::~
HCCLTask
()
{}
void
ProcessGroupHCCL
::
HCCLTask
::
SetOutputs
(
std
::
vector
<
Tensor
>&
outputs
)
{
// NOLINT
outputs_
=
std
::
make_shared
<
std
::
vector
<
Tensor
>>
(
outputs
);
}
void
ProcessGroupHCCL
::
HCCLTask
::
SynchronizeStreams
()
{
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
auto
*
default_ctx
=
static_cast
<
platform
::
NPUDeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
places_
[
i
]));
platform
::
NPUStreamWaitEvent
(
default_ctx
->
stream
(),
control_events_
[
i
].
GetRawNPUEvent
());
}
}
bool
ProcessGroupHCCL
::
HCCLTask
::
IsCompleted
()
{
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
if
(
!
control_events_
[
i
].
Query
())
{
return
false
;
}
}
return
true
;
}
// TODO(sandyhouse): Add timeout for wait, now timeout unused
bool
ProcessGroupHCCL
::
HCCLTask
::
Wait
(
std
::
chrono
::
milliseconds
timeout
)
{
SynchronizeStreams
();
if
(
FLAGS_hccl_blocking_wait
)
{
// NOTE(sandyhouse): It will block host for sync
while
(
!
IsCompleted
())
{
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
milliseconds
(
kWaitBlockTImeout
));
}
}
return
true
;
}
// Same as Wait
void
ProcessGroupHCCL
::
HCCLTask
::
Synchronize
()
{
Wait
(
kWaitTimeout
);
}
ProcessGroupHCCL
::
ProcessGroupHCCL
(
const
std
::
shared_ptr
<
Store
>&
store
,
int
rank
,
int
size
)
:
ProcessGroup
(
rank
,
size
),
store_
(
store
)
{}
void
ProcessGroupHCCL
::
BroadcastUniqueHCCLID
(
std
::
vector
<
HcclRootInfo
>&
hccl_ids
)
{
// NOLINT
if
(
rank_
==
0
)
{
for
(
size_t
i
=
0
;
i
<
hccl_ids
.
size
();
i
++
)
{
auto
key
=
"ProcessGroupHCCL/hccl_ids/"
+
std
::
to_string
(
i
);
auto
hccl_id
=
std
::
vector
<
uint8_t
>
(
reinterpret_cast
<
uint8_t
*>
(
&
hccl_ids
[
i
]),
reinterpret_cast
<
uint8_t
*>
(
&
hccl_ids
[
i
])
+
sizeof
(
HcclRootInfo
));
store_
->
set
(
key
,
hccl_id
);
}
}
else
{
for
(
size_t
i
=
0
;
i
<
hccl_ids
.
size
();
i
++
)
{
auto
key
=
"ProcessGroupHCCL/hccl_ids/"
+
std
::
to_string
(
i
);
auto
ret
=
store_
->
get
(
key
);
std
::
memcpy
(
&
hccl_ids
[
i
],
ret
.
data
(),
ret
.
size
());
}
}
}
// create HCCLManager cache for places_key
void
ProcessGroupHCCL
::
CreateHCCLManagerCache
(
const
std
::
string
&
places_key
,
const
std
::
vector
<
Place
>&
places
)
{
PADDLE_ENFORCE_EQ
(
places_key
.
empty
(),
false
,
platform
::
errors
::
PreconditionNotMet
(
"Not able to create/get the HCCL Communicator since "
"the NPU place are not known"
));
std
::
vector
<
std
::
shared_ptr
<
HCCLCommManager
>>
hccl_comms
;
hccl_comms
.
resize
(
places
.
size
());
// using vector just for broadcast
std
::
vector
<
HcclRootInfo
>
hccl_ids
;
hccl_ids
.
resize
(
1
);
auto
&
hccl_id
=
hccl_ids
.
front
();
if
(
rank_
==
0
)
{
PADDLE_ENFORCE_NPU_SUCCESS
(
platform
::
dynload
::
HcclGetRootInfo
(
&
hccl_id
));
}
BroadcastUniqueHCCLID
(
hccl_ids
);
VLOG
(
3
)
<<
"init hccl rank: "
<<
rank_
<<
", nranks: "
<<
size_
<<
", place: "
<<
places_key
<<
", hccl uniqueid: "
<<
SerializeHCCLUniqueId
(
hccl_id
);
std
::
vector
<
std
::
unique_ptr
<
NPUDeviceContext
>>
dev_ctx
;
dev_ctx
.
resize
(
places
.
size
());
std
::
unique_ptr
<
HcclComm
[]
>
comms
(
new
HcclComm
[
places
.
size
()]);
for
(
size_t
i
=
0
;
i
<
places
.
size
();
++
i
)
{
platform
::
NPUDeviceGuard
guard
(
places
[
i
].
GetDeviceId
());
hccl_comms
[
i
]
=
HCCLCommManager
::
Create
(
GetSize
(),
GetRank
(),
&
hccl_id
,
comms
.
get
()
+
i
);
dev_ctx
[
i
].
reset
(
new
NPUDeviceContext
(
places
[
i
]));
}
std
::
vector
<
NPUEventManager
>
events
;
events
.
resize
(
places
.
size
());
// These caches will be useful to process sync/wait/communicate
places_to_events_
.
emplace
(
places_key
,
std
::
move
(
events
));
places_to_hcclcomm_
.
emplace
(
places_key
,
std
::
move
(
hccl_comms
));
places_to_ctx_
.
emplace
(
places_key
,
std
::
move
(
dev_ctx
));
}
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHCCL
::
Collective
(
std
::
vector
<
Tensor
>&
inputs
,
std
::
vector
<
Tensor
>&
outputs
,
Fn
fn
,
CommType
op_type
)
{
const
auto
places
=
GetPlaceList
(
inputs
);
const
auto
key
=
GetKeyFromPlaces
(
places
);
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
if
(
places_to_hcclcomm_
.
find
(
key
)
==
places_to_hcclcomm_
.
end
())
{
CreateHCCLManagerCache
(
key
,
places
);
}
}
auto
&
hccl_comms
=
places_to_hcclcomm_
[
key
];
SyncDefaultStream
(
places
,
places_to_events_
[
key
],
places_to_ctx_
[
key
]);
auto
task
=
CreateTask
(
places
,
rank_
,
op_type
,
inputs
);
task
->
SetOutputs
(
outputs
);
// if (FLAGS_use_stream_safe_npu_allocator) {
// for (size_t i = 0; i < inputs.size(); ++i) {
// platform::NPUDeviceGuard guard(places[i].GetDeviceId());
// auto dense_tensor =
// std::dynamic_pointer_cast<phi::DenseTensor>(inputs[i].impl());
// memory::RecordStream(dense_tensor->Holder(),
// places_to_ctx_[key][i]->stream());
// }
// }
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
platform
::
NPUDeviceGuard
guard
(
places
[
i
].
GetDeviceId
());
const
auto
&
hccl_stream
=
places_to_ctx_
[
key
][
i
]
->
stream
();
fn
(
inputs
[
i
],
outputs
[
i
],
hccl_comms
[
i
]
->
GetHcclComm
(),
hccl_stream
);
}
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
platform
::
NPUDeviceGuard
guard
(
places
[
i
].
GetDeviceId
());
task
->
control_events_
[
i
].
Record
(
*
places_to_ctx_
[
key
][
i
]);
}
return
task
;
}
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHCCL
::
PointToPoint
(
std
::
vector
<
Tensor
>&
tensors
,
Fn
fn
,
int
dst_rank
,
CommType
op_type
)
{
const
auto
places
=
GetPlaceList
(
tensors
);
const
auto
key
=
GetKeyFromPlaces
(
places
);
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
if
(
places_to_hcclcomm_
.
find
(
key
)
==
places_to_hcclcomm_
.
end
())
{
CreateHCCLManagerCache
(
key
,
places
);
}
}
auto
&
hccl_comms
=
places_to_hcclcomm_
[
key
];
SyncDefaultStream
(
places
,
places_to_events_
[
key
],
places_to_ctx_
[
key
]);
auto
task
=
CreateTask
(
places
,
rank_
,
op_type
,
tensors
);
// construct uninitialize guard for device
// if (FLAGS_use_stream_safe_npu_allocator) {
// for (size_t i = 0; i < tensors.size(); ++i) {
// platform::NPUDeviceGuard guard(places[i].GetDeviceId());
// auto dense_tensor =
// std::dynamic_pointer_cast<phi::DenseTensor>(tensors[i].impl());
// memory::RecordStream(dense_tensor->Holder(),
// places_to_ctx_[key][i]->stream());
// }
// }
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
platform
::
NPUDeviceGuard
guard
(
places
[
i
].
GetDeviceId
());
const
auto
&
hccl_stream
=
places_to_ctx_
[
key
][
i
]
->
stream
();
fn
(
tensors
[
i
],
hccl_comms
[
i
]
->
GetHcclComm
(),
hccl_stream
,
dst_rank
);
}
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
platform
::
NPUDeviceGuard
guard
(
places
[
i
].
GetDeviceId
());
task
->
control_events_
[
i
].
Record
(
*
places_to_ctx_
[
key
][
i
]);
}
return
task
;
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHCCL
::
AllReduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
AllreduceOptions
&
opts
)
{
// PADDLE_ENFORCE_EQ(
// CheckTensorsInNPUPlace(tensors), true,
// platform::errors::InvalidArgument("All inputs should be in
// NPUPlace."));
return
Collective
(
tensors
,
tensors
,
[
&
](
const
Tensor
&
input
,
Tensor
&
output
,
HcclComm
comm
,
const
aclrtStream
&
stream
)
{
auto
input_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
input
.
impl
());
auto
output_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
output
.
impl
());
return
platform
::
dynload
::
HcclAllReduce
(
input_tensor
->
data
(),
output_tensor
->
data
(),
input_tensor
->
numel
(),
platform
::
ToHCCLDataType
(
input
.
type
()),
ToHCCLRedType
(
opts
.
reduce_op
),
comm
,
stream
);
},
CommType
::
ALLREDUCE
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHCCL
::
Broadcast
(
std
::
vector
<
Tensor
>&
tensors
,
const
BroadcastOptions
&
opts
)
{
// PADDLE_ENFORCE_EQ(
// CheckTensorsInNPUPlace(tensors), true,
// platform::errors::InvalidArgument("All inputs should be in
// CudaPlace."));
return
Collective
(
tensors
,
tensors
,
[
&
](
Tensor
&
input
,
Tensor
&
output
,
HcclComm
comm
,
const
aclrtStream
&
stream
)
{
const
auto
root
=
opts
.
source_rank
*
tensors
.
size
()
+
opts
.
source_root
;
auto
input_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
input
.
impl
());
auto
output_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
output
.
impl
());
return
platform
::
dynload
::
HcclBroadcast
(
input_tensor
->
data
(),
input_tensor
->
numel
(),
platform
::
ToHCCLDataType
(
input
.
type
()),
root
,
comm
,
stream
);
},
CommType
::
BROADCAST
);
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/collective/ProcessGroupHCCL.h
0 → 100644
浏览文件 @
73583f86
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <chrono>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/distributed/collective/HCCLTools.h"
#include "paddle/fluid/distributed/store/store.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/gen_comm_id_helper.h"
#include "paddle/fluid/platform/place.h"
constexpr
const
char
*
HCCL_BACKEND_NAME
=
"HCCL"
;
namespace
paddle
{
namespace
distributed
{
using
Place
=
paddle
::
platform
::
Place
;
using
NPUStream
=
platform
::
stream
::
NPUStream
;
using
NPUDeviceContext
=
paddle
::
platform
::
NPUDeviceContext
;
class
ProcessGroupHCCL
:
public
ProcessGroup
{
public:
class
HCCLTask
:
public
ProcessGroup
::
Task
,
public
std
::
enable_shared_from_this
<
HCCLTask
>
{
public:
HCCLTask
(
const
std
::
vector
<
Place
>&
places
,
int
rank
,
CommType
CommType
,
const
std
::
vector
<
Tensor
>&
inputs
);
bool
IsCompleted
();
void
SynchronizeStreams
();
bool
Wait
(
std
::
chrono
::
milliseconds
timeout
=
kWaitTimeout
);
void
Synchronize
();
void
SetOutputs
(
std
::
vector
<
Tensor
>&
outputs
);
// NOLINT
virtual
~
HCCLTask
();
std
::
vector
<
NPUEventManager
>
control_events_
;
protected:
std
::
vector
<
Place
>
places_
;
std
::
vector
<
std
::
shared_ptr
<
HCCLCommManager
>>
hcclComms_
;
std
::
shared_ptr
<
std
::
vector
<
Tensor
>>
outputs_
;
private:
};
ProcessGroupHCCL
(
const
std
::
shared_ptr
<
Store
>&
store
,
int
rank
,
int
size
);
const
std
::
string
GetBackendName
()
const
override
{
return
std
::
string
(
HCCL_BACKEND_NAME
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllReduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
AllreduceOptions
&
=
AllreduceOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Broadcast
(
std
::
vector
<
Tensor
>&
tensors
,
const
BroadcastOptions
&
=
BroadcastOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Barrier
(
const
BarrierOptions
&
=
BarrierOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Send
(
std
::
vector
<
Tensor
>&
tensors
,
int
dst_rank
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Recv
(
std
::
vector
<
Tensor
>&
tensors
,
int
src_rank
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAll
(
std
::
vector
<
Tensor
>&
in
,
std
::
vector
<
Tensor
>&
out
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Reduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
ReduceOptions
&
opts
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Scatter
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
,
const
ScatterOptions
&
)
override
;
protected:
virtual
std
::
shared_ptr
<
ProcessGroupHCCL
::
HCCLTask
>
CreateTask
(
std
::
vector
<
Place
>
places
,
int
rank
,
CommType
opType
,
const
std
::
vector
<
Tensor
>&
inputs
);
std
::
shared_ptr
<
Store
>
store_
;
std
::
shared_ptr
<
HCCLCommManager
>
hccl_comm_
;
std
::
mutex
mutex_
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
HCCLCommManager
>>>
places_to_hcclcomm_
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
NPUEventManager
>>
places_to_events_
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
unique_ptr
<
NPUDeviceContext
>>>
places_to_ctx_
;
std
::
set
<
int
>
used_place_ids_
;
private:
void
BcastHCCLId
(
std
::
vector
<
HcclRootInfo
>&
hccl_ids
,
int
root
,
// NOLINT
int
server_fd
);
void
BroadcastUniqueHCCLID
(
std
::
vector
<
HcclRootInfo
>&
hccl_ids
);
// NOLINT
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Collective
(
std
::
vector
<
Tensor
>&
inputs
,
// NOLINT
std
::
vector
<
Tensor
>&
outputs
,
// NOLINT
Fn
fn
,
CommType
op_type
);
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
PointToPoint
(
std
::
vector
<
Tensor
>&
tensors
,
// NOLINT
Fn
fn
,
int
dst_rank
,
CommType
op_type
);
void
CreateHCCLManagerCache
(
const
std
::
string
&
places_key
,
const
std
::
vector
<
Place
>&
places
);
};
}
// namespace distributed
}
// namespace paddle
paddle/fluid/platform/device/npu/hccl_helper.h
浏览文件 @
73583f86
...
...
@@ -53,6 +53,23 @@ inline HcclDataType ToHCCLDataType(framework::proto::VarType::Type type) {
}
}
inline
HcclDataType
ToHCCLDataType
(
experimental
::
DataType
type
)
{
if
(
type
==
experimental
::
DataType
::
FLOAT32
)
{
return
HCCL_DATA_TYPE_FP32
;
}
else
if
(
type
==
experimental
::
DataType
::
FLOAT16
)
{
return
HCCL_DATA_TYPE_FP16
;
}
else
if
(
type
==
experimental
::
DataType
::
INT64
)
{
return
HCCL_DATA_TYPE_INT64
;
}
else
if
(
type
==
experimental
::
DataType
::
INT32
)
{
return
HCCL_DATA_TYPE_INT32
;
}
else
if
(
type
==
experimental
::
DataType
::
INT8
)
{
return
HCCL_DATA_TYPE_INT8
;
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"This datatype in hccl is not supported."
));
}
}
// NOTE(minqiyang): according to the ncclGroupEnd documentations:
// https://docs.nvidia.com/deeplearning/sdk/nccl-api/ncclapidoc.html,
// ncclGroupEnd will wait for all communicators to be initialized, which will
...
...
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
73583f86
...
...
@@ -88,6 +88,9 @@ if(NOT ON_INFER)
if
(
WITH_GLOO
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_gloo
)
endif
()
if
(
WITH_ASCEND
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_hccl
)
endif
()
set
(
PYBIND_SRCS
${
PYBIND_SRCS
}
distributed_py.cc
)
endif
()
...
...
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
73583f86
...
...
@@ -35,6 +35,10 @@ limitations under the License. */
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#endif
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#endif
#if defined(PADDLE_WITH_GLOO)
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/distributed/store/tcp_store.h"
...
...
@@ -201,6 +205,14 @@ void BindDistributed(py::module *m) {
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#endif
#if defined(PADDLE_WITH_ASCEND_CL)
py
::
class_
<
distributed
::
ProcessGroupHCCL
,
std
::
shared_ptr
<
distributed
::
ProcessGroupHCCL
>>
(
*
m
,
"ProcessGroupHCCL"
,
ProcessGroup
)
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
>
(),
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#endif
py
::
class_
<
distributed
::
ProcessGroup
::
Task
,
std
::
shared_ptr
<
distributed
::
ProcessGroup
::
Task
>>
(
*
m
,
"task"
)
.
def
(
"is_completed"
,
&
distributed
::
ProcessGroup
::
Task
::
IsCompleted
)
...
...
python/paddle/fluid/tests/unittests/npu/process_group_hccl.py
0 → 100644
浏览文件 @
73583f86
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
random
import
numpy
as
np
import
os
import
shutil
import
paddle
from
paddle.fluid
import
core
from
datetime
import
timedelta
import
paddle.fluid.core
as
core
from
paddle.fluid.framework
import
_test_eager_guard
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
def
init_process_group
(
strategy
=
None
):
nranks
=
ParallelEnv
().
nranks
rank
=
ParallelEnv
().
local_rank
is_master
=
True
if
rank
==
0
else
False
store
=
paddle
.
fluid
.
core
.
TCPStore
(
"127.0.0.1"
,
6173
,
is_master
,
nranks
)
pg_group
=
core
.
ProcessGroupHCCL
(
store
,
rank
,
nranks
)
return
pg_group
class
TestProcessGroupFp32
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
seed
(
2022
)
random
.
seed
(
2022
)
np
.
random
.
seed
(
2022
)
self
.
config
()
def
config
(
self
):
self
.
dtype
=
"float32"
self
.
shape
=
(
2
,
10
,
5
)
def
test_create_process_group_nccl
(
self
):
with
_test_eager_guard
():
paddle
.
set_device
(
'npu:%d'
%
paddle
.
distributed
.
ParallelEnv
().
dev_id
)
pg
=
init_process_group
()
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
sum_result
=
tensor_x
+
tensor_y
if
pg
.
rank
()
==
0
:
task
=
pg
.
allreduce
(
tensor_x
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_x
,
sum_result
)
else
:
task
=
pg
.
allreduce
(
tensor_y
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_y
,
sum_result
)
print
(
"test allreduce sum api ok"
)
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
max_result
=
paddle
.
maximum
(
tensor_x
,
tensor_y
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
allreduce
(
tensor_x
,
core
.
ReduceOp
.
MAX
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_x
,
max_result
)
else
:
task
=
pg
.
allreduce
(
tensor_y
,
core
.
ReduceOp
.
MAX
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_y
,
max_result
)
print
(
"test allreduce max api ok"
)
# test broadcast
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
# rank 1
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
broadcast_result
=
paddle
.
assign
(
tensor_x
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
broadcast
(
tensor_x
,
0
)
task
.
synchronize
()
paddle
.
device
.
cuda
.
synchronize
()
assert
task
.
is_completed
()
assert
np
.
array_equal
(
broadcast_result
,
tensor_x
)
else
:
task
=
pg
.
broadcast
(
tensor_y
,
0
)
task
.
synchronize
()
paddle
.
device
.
cuda
.
synchronize
()
assert
task
.
is_completed
()
assert
np
.
array_equal
(
broadcast_result
,
tensor_y
)
print
(
"test broadcast api ok"
)
# test barrier
# rank 0
if
pg
.
rank
()
==
0
:
task
=
pg
.
barrier
()
task
.
wait
()
# rank 1
else
:
task
=
pg
.
barrier
()
task
.
wait
()
print
(
"test barrier api ok
\n
"
)
exit
(
0
)
# test allgather
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
out_shape
=
list
(
self
.
shape
)
out_shape
[
0
]
*=
2
out
=
np
.
random
.
random
(
out_shape
).
astype
(
self
.
dtype
)
tensor_out
=
paddle
.
to_tensor
(
out
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
all_gather
(
tensor_x
,
tensor_out
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
task
=
pg
.
all_gather
(
tensor_y
,
tensor_out
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
out_1
=
paddle
.
slice
(
tensor_out
,
[
0
],
[
0
],
[
out_shape
[
0
]
//
2
])
out_2
=
paddle
.
slice
(
tensor_out
,
[
0
],
[
out_shape
[
0
]
//
2
],
[
out_shape
[
0
]])
assert
np
.
array_equal
(
tensor_x
,
out_1
)
assert
np
.
array_equal
(
tensor_y
,
out_2
)
print
(
"test allgather api ok
\n
"
)
# test alltoall
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
out1
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
out2
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
tensor_out1
=
paddle
.
to_tensor
(
out1
)
tensor_out2
=
paddle
.
to_tensor
(
out2
)
raw_tensor_x_2
=
paddle
.
slice
(
tensor_x
,
[
0
],
[
self
.
shape
[
0
]
//
2
],
[
self
.
shape
[
0
]])
raw_tensor_y_1
=
paddle
.
slice
(
tensor_y
,
[
0
],
[
0
],
[
self
.
shape
[
0
]
//
2
])
if
pg
.
rank
()
==
0
:
task
=
pg
.
alltoall
(
tensor_x
,
tensor_out1
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
task
=
pg
.
alltoall
(
tensor_y
,
tensor_out2
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
out1_2
=
paddle
.
slice
(
tensor_out1
,
[
0
],
[
self
.
shape
[
0
]
//
2
],
[
self
.
shape
[
0
]])
out2_1
=
paddle
.
slice
(
tensor_out2
,
[
0
],
[
0
],
[
self
.
shape
[
0
]
//
2
])
if
pg
.
rank
()
==
0
:
assert
np
.
array_equal
(
out1_2
.
numpy
(),
raw_tensor_y_1
.
numpy
())
else
:
assert
np
.
array_equal
(
out2_1
,
raw_tensor_x_2
)
print
(
"test alltoall api ok
\n
"
)
# test Reduce
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
sum_result
=
tensor_x
+
tensor_y
if
pg
.
rank
()
==
0
:
task
=
pg
.
reduce
(
tensor_x
,
0
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
task
=
pg
.
reduce
(
tensor_y
,
0
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
if
pg
.
rank
()
==
0
:
assert
np
.
array_equal
(
tensor_x
,
sum_result
)
print
(
"test reduce sum api ok
\n
"
)
# test Scatter
# rank 0
in_shape
=
list
(
self
.
shape
)
in_shape
[
0
]
*=
2
x
=
np
.
random
.
random
(
in_shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
scatter
(
tensor_x
,
tensor_y
,
0
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
task
=
pg
.
scatter
(
tensor_x
,
tensor_y
,
0
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
out1
=
paddle
.
slice
(
tensor_x
,
[
0
],
[
0
],
[
self
.
shape
[
0
]])
out2
=
paddle
.
slice
(
tensor_x
,
[
0
],
[
self
.
shape
[
0
]],
[
self
.
shape
[
0
]
*
2
])
if
pg
.
rank
()
==
0
:
assert
np
.
array_equal
(
tensor_y
,
out1
)
else
:
assert
np
.
array_equal
(
tensor_y
,
out2
)
print
(
"test scatter api ok
\n
"
)
class
TestProcessGroupFp16
(
TestProcessGroupFp32
):
def
setUp
(
self
):
paddle
.
seed
(
2022
)
random
.
seed
(
2022
)
np
.
random
.
seed
(
2022
)
self
.
config
()
def
config
(
self
):
self
.
dtype
=
"float16"
self
.
shape
=
(
4
,
20
,
20
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/npu/test_collective_process_group_hccl.py
0 → 100644
浏览文件 @
73583f86
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
test_parallel_dygraph_dataparallel
import
TestMultipleGpus
class
TestProcessGroup
(
TestMultipleGpus
):
def
test_process_group_nccl
(
self
):
self
.
run_mnist_2gpu
(
'process_group_hccl.py'
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录